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Realizing Levels of the Hyperarithmetic Hierarchy
as Degree Spectra of Relations on

Computable Structures

Denis R. Hirschfeldt and Walker M. White

Abstract We construct a class of relations on computable structures whose
degree spectra form natural classes of degrees. Given any computable ordinal
α and reducibility r stronger than or equal to m-reducibility, we show how to
construct a structure with an intrinsically 6α invariant relation whose degree
spectrum consists of all nontrivial 6α r-degrees. We extend this construction to
show that 6α can be replaced by either 5α or 1α .

1 Introduction

Since the pioneering work of Ash and Nerode [10], the study of additional relations
on computable structures has been one of the central topics in computable model
theory. Not only is it often possible to understand the differences between the vari-
ous computable copies of a structure M by examining the images in these copies of
a particular relation on the domain of M, but concepts and techniques developed for
this purpose have also been instrumental in resolving several other types of questions
about computable structures. (For more on this theme, see Hirschfeldt [15], Khous-
sainov and Shore [18], or Shore [21].) Before we proceed, let us recall the basic
definitions we will need below.

Definition 1.1 A structure A is computable if both its domain |A| and the atomic
diagram of 〈A, a〉a∈|A| are computable. An isomorphism from a structure M to a
computable structure is called a computable presentation of M. (We often abuse
terminology and refer to the image of a computable presentation as a computable
presentation.) If M has a computable presentation, then it is computably presentable.
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Ash and Nerode were concerned with relations that maintain some degree of effec-
tiveness in different computable presentations of a structure.

Definition 1.2 Let U be a relation on the domain of a computable structure M and
let C be a class of relations. U is intrinsically C on M if the image of U in any
computable presentation of M is in C.

Another approach to the study of relations on computable structures, which began
with the work of Harizanov [12], is to fix a reducibility (most often Turing reducibil-
ity) and look at the collection of degrees of the images of a relation in different
computable presentations of a structure.

Definition 1.3 Let r be a reducibility such as many-one reducibility (m-reduc-
ibility) or Turing reducibility. Let U be a relation on the domain of a computable
structure M. The r-degree spectrum of U on M, DgSpr

M
(U), is the set of r-degrees of

the images of U in all computable presentations of M.

For simplicity in the statement of results below, we will call an r-degree nontrivial if
it contains an infinite and coinfinite set. Note that if r and s are reducibilities such that
r is stronger than s, and U is a relation on a computable structure M, then DgSps

M
(U)

is equal to the set of s-degrees that contain at least one r-degree in DgSpr
M

(U).
There has been a large amount of research on degree spectra of relations both in

the general case and with certain restrictions imposed on the structure or the relation.
Much of this work has been devoted to exploring syntactic conditions on a relation
that guarantee that its degree spectrum has certain properties. Another rich vein has
been the study of “pathological” examples such as degree spectra that are finite but
not singletons, with work focused both on constructing such examples and on giving
conditions that imply that they cannot occur.

Less work has been devoted to giving examples of relations whose degree spectra
form natural classes of degrees. Despite the fact that there are no known nontrivial
restrictions on which sets of degrees can be realized as degree spectra of relations,
such examples are still important to our understanding of degree spectra of relations,
particularly if they are in some sense natural. The purpose of this paper is to present
a family of relations on computable structures whose degree spectra (with respect to
any reducibility stronger than or equal to m-reducibility) coincide with levels of the
hyperarithmetic hierarchy.

Of course, naturalness is very much in the eye of the beholder, but we believe the
examples in this paper qualify because they are built up from trees that explicitly code
the alternations of quantifiers that define the levels of the hyperarithmetic hierarchy.
Furthermore, by the results of Hirschfeldt, Khoussainov, Shore, and Slinko [17], our
results automatically imply that such examples also exist within well-known classes
of algebraic structures such as integral domains and 2-step nilpotent groups.

There are two further reasons for our interest in the family of examples con-
structed in this paper. First, the trees that form their basic building blocks are useful
in establishing a wide range of results in the classification of the complexity of index
sets of computable structures with given model-theoretic properties (see White [25]
for details).

Second, realizing levels of the hyperarithmetic hierarchy as degree spectra of rela-
tions gives an illustration of the difference between the general case, in which we are
trying to realize certain sets of degrees as degree spectra of relations on computable
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structures with no additional restrictions, and cases in which we impose extra condi-
tions on one or more aspects of this realization. This is due to the following result,
proved independently by Ash, Cholak, and Knight [2] and Harizanov [14].

Theorem 1.4 (Ash, Cholak, and Knight; Harizanov) Let U be a relation on the
domain of a computable structure A. Suppose that for each 13 set C there is an
isomorphism f from A to a computable structure B such that f ≤T C ≤T f (U).
Then for each set C there is an isomorphism f from A to a computable structure B

such that f ≤T C ≤T f (U). In particular, DgSpT
A
(U) contains every degree.

We should stress that, although our result and the specific trees used to prove it appear
to be new, our approach is hardly novel. Indeed, when analyzing hyperarithmetic
structures and relations, it is quite natural to consider structures similar to our trees
and to analyze their complexity in terms of recursively defined infinitary formulas as
we do. Examples of this approach to various questions in computable model theory
are the following papers of Ash and Knight [1; 4; 5; 6; 7; 8; 19]; see also their book
[3]. (A general abstract framework for these kinds of results would be useful; Soskov
and Baleva [23], [24] have introduced such a framework but from a quite different
perspective.)

In [13], Harizanov gave a syntactical condition on a computable structure A and
a relation U on A which, with certain additional effectiveness conditions, is equiv-
alent to U being intrinsically c.e. with degree spectrum consisting of all c.e. Turing
degrees. A reasonable extension of this condition from 61 to 6α would of course
imply our result (at least for Turing degrees), but in [8] it is shown that such an
extension is unlikely to exist. Indeed, it appears that the natural classes of degrees
captured by such syntactical conditions are not the 6α degrees but the 6α degrees
possessing an α-table (see [8] for a definition) or the 6α degrees over 10

α as in Ash
and Knight [9].

In [4], conditions on a pair of computable structures A and B and a computable
ordinal α are given which ensure that for any 6α set S there is a uniformly com-
putable family of structures C0, C1, . . . such that Cn ∼= A if n ∈ S and Cn ∼= B

if n /∈ S. We could use these conditions in proving Proposition 3.2 below, but the
direct proof we give is simpler. Indeed, because we are just producing an example,
rather than giving general conditions as in the papers mentioned above, our analysis
is a particularly simple example of this line of research, so we prefer to give direct
proofs rather than attempt to employ some of the abstract theorems available in the
literature.

In the next section, we define relevant concepts relating to the hyperarithmetic
hierarchy and ordinal notations. In Section 3, we define our basic building blocks,
the back-and-forth trees. Finally, in Section 4, we define our relations and structures
and establish their relevant properties.

2 The Hyperarithmetic Hierarchy and Ordinal Notations

Throughout this paper, we will use the standard notions of the arithmetic and ana-
lytic hierarchies for predicates R( f, n) on ωω × ω, as in Sacks [20]. However, our
definition of the hyperarithmetic hierarchy will follow the less standard terminology
of Ash and Knight [3], since this is more in line with several important concepts from
model theory.
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Definition 2.1 A system of notations for ordinals consists of a set O ⊂ ω and a
function | |O taking each element of O to an ordinal. The function | |O defines a
natural partial ordering on O given by

a ≤O b ⇔ |a|O ≤ |b|O .

Our notations will follow certain standard conventions.
1. 1 ∈ O is the notation for 0. That is, |1|O = 0.
2. If a ∈ O is a notation for α, then 2a ∈ O is a notation for α + 1.
3. Suppose that the eth partial computable function {e} determines a fun-

damental sequence for a limit ordinal γ . In other words, {e} is total,
{e}(n) ≤O {e}(n +1) for all n, and γ is the least upper bound for the ordinals
|{e}(n)|O . Then 3 · 5e ∈ O is a notation for γ .

As there are only countably many notations, not every ordinal will have a notation.
However, these standard conventions ensure that every computable ordinal does have
a notation. The computable ordinals are an initial sequence of all ordinals bounded
above by ωck

1 , the first noncomputable ordinal.
It is clear from the final convention that ordinal notations need not be unique,

since any limit ordinal may have multiple fundamental sequences. In this paper we
will restrict ourselves to a subset O1 ⊆ O of unique notations so that every limit
ordinal has a unique fundamental sequence. For any limit ordinal γ , we define

γn = |{e}(n)|O

where {e} determines our fixed fundamental sequence for γ . Furthermore, we require
that this fixed fundamental sequence contain only successor ordinals and that γ0 = 1.
We do this simply as a matter of convenience; none of the results in this paper depend
on our choice of fundamental sequences.

Given these notations for ordinals, we define the hyperarithmetic hierarchy in
terms of computable infinitary formulas.

Definition 2.2 A 60 (50) index for a computable predicate R( f, n) is a triple
〈6, 0, e〉 (〈5, 0, e〉) where e is an index for the predicate R. For any computable
ordinal α, a 6α (5α) index for a predicate R( f, n) is a triple 〈6, a, e〉 (〈5, a, e〉),
where a is a notation for α and e is an index for a c.e. set of 5βk (6βk ) indices for
predicates Qk( f, n, x) such that βk < α for all k ∈ ω and

R( f, n) ⇔
∨

k∈ω

∃x Qk( f, n, x)

(
R( f, n) ⇔

∧

k∈ω

∀x Qk( f, n, x)

)
.

We say that a predicate is 6α (5α) if it has a 6α (5α) index. We say that a predicate
is 1α if it is both 6α and 5α .

It is straightforward to check that this definition of the hyperarithmetic hierarchy is
equivalent to other common definitions, with one important exception. In the case
of infinite ordinals, the levels of our hierarchy may be indexed by the appropriate
successor ordinal in other definitions of the hierarchy. For example, in Soare [22,
p. 259], a predicate is 6ω+1 if it is 6

∅
ω

1 . In our definition above, these are ex-
actly the 6ω predicates. We choose this definition because it gives a more natural
correspondence between computable ordinals and infinitary formulas. Furthermore,
this choice does not omit any interesting levels of complexity in the hyperarithmetic
hierarchy.
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3 Back-and-Forth Trees

Our starting point is the following very simple but highly suggestive example. Let
C0 be the directed graph consisting of a single node and no edges, and let C1 be the
directed graph consisting of two nodes x and y with an edge from x to y. Consider
the directed graph G =

〈∣∣G
∣∣ , E

〉
that is the disjoint union of infinitely many copies

of each of C0 and C1. Let U be the unary relation on the domain of G that holds of
x if and only if there is a y such that E(x, y). Since U is defined by an existential
formula in the language of directed graphs, U is intrinsically c.e. Furthermore, it is
not hard to check that DgSpm

G (U) contains all nontrivial c.e. m-degrees.
For any n ∈ ω, it is possible to modify this example in a natural way to realize

the set of all n-c.e. degrees as the degree spectrum of an intrinsically n-c.e. relation
on the domain of a computable structure. In fact, this is true even with n replaced by
any computable ordinal α (for the definition of α-c.e. sets and degrees, see Epstein,
Haas, and Kramer [11]). We will not do this here since a stronger result appears
in Hirschfeldt [16]. Instead, we generalize the above example in a different direction.
We begin by defining building blocks that generalize the graphs C0 and C1 above.

Definition 3.1 We define the back-and-forth trees by induction on α.
1. A1 consists of a single node.
2. E1 consists of a root node to which are attached infinitely many nodes with

no children. This tree is illustrated in Figure 3.1.

PSfrag replacements

A1 E1

Figure 3.1 The base back-and-forth trees

3. For any successor ordinal α + 1, Aα+2 consists of a root node with infinitely
many copies of Eα+1 attached to this root. This tree is illustrated in Fig-
ure 3.2.

PSfrag replacements

Aα+2 Eα+2

Aα+1Aα+1Aα+1Eα+1Eα+1Eα+1Eα+1Eα+1Eα+1

Figure 3.2 The successor back-and-forth trees
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4. For any successor ordinal α + 1, Eα+2 consists of a root node with infinitely
many copies of Aα+1 and infinitely many copies of Eα+1 attached to this
root. This tree is also illustrated in Figure 3.2.

5. Let γ be a limit ordinal with fundamental sequence { γk }k∈ω . For any k, L
γ

k
consists of a root node with exactly one copy of Aγn attached to this root for
each n ≤ k and exactly one copy of Eγn attached to this root for each n > k.
This tree is well defined since our fundamental sequences consist only of
successor ordinals. It is illustrated in Figure 3.3.

PSfrag replacements

Aγ1Aγ1 Aγ2Aγ2 Aγ3 Aγ4 Aγk Eγk+1 Eγk+2

L
γ
∞ L

γ

k

Figure 3.3 The limit back-and-forth trees

6. For any limit ordinal γ , L
γ
∞ consists of a root node with exactly one copy

of Aγn attached to this root for each n ∈ ω. This tree is also illustrated in
Figure 3.3.

7. For any limit ordinal γ , Aγ+1 consists of a root node with infinitely many
copies of L

γ
n attached to this root for each n ∈ ω. This tree is illustrated in

Figure 3.4.
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γ
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γ

0L
γ

0 L
γ

0 L
γ
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γ

1L
γ

1L
γ

1 L
γ

2L
γ

2

Figure 3.4 The transition back-and-forth trees

8. For any limit ordinal γ , Eγ+1 consists of a root node with infinitely many
copies of L

γ
n attached to this root for each n ∈ ω ∪ {∞}. This tree is also

illustrated in Figure 3.4.
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We say that the back-and-forth trees L
γ
n for n ∈ ω ∪ {∞ } have rank γ , while the

back-and-forth trees Eα and Aα each have rank α.

Note that all of these trees are computably presentable, by effective transfinite recur-
sion on the computable ordinals. In the case of infinite ordinals, the isomorphism
structure of these trees does depend on our choice of fundamental sequences for the
limit ordinals. However, the following basic properties of back-and-forth trees are
independent of our choice of fundamental sequences.

Proposition 3.2 Let P (n) be a 6α predicate.
1. If α is a successor ordinal, there is sequence of trees Tn , uniformly com-

putable from a 6α index for P , such that for all n,

Tn ∼=

{
Eα if P (n)

Aα otherwise.

2. If α is a limit ordinal, there is sequence of trees Tn , uniformly computable
from a 6α index for P , such that for all n,

Tn ∼=

{
Lα

∞ if ¬P (n)

Lα
k for some k otherwise.

Proof We proceed by effective transfinite recursion.

Case α = 1: Since we can code disjunction over a c.e. set of indices as an exis-
tential quantifier, it follows from Definition 2.2 that P (n) = ∃x Q(x, n) for some
computable predicate Q. We enumerate a root element into Tn . So long as no wit-
ness appears for Q(x, n), we do not add any children. Once a witness appears, we
add infinitely many children to Tn . We can do this while keeping Tn computable by
ensuring that the children are all elements greater than our witness for Q(x, n).

Case α = β + 1, with β a successor ordinal: Again P (n) = ∃x Q(x, n) for some
5β predicate Q(x, n). Since we can go uniformly from a 6α index for P to a 6β

index for Q, we apply our induction hypothesis.
As β is a successor ordinal, we have a computable sequence of trees Ux,n satis-

fying 1. For each n, let Tn be a tree whose root has infinitely many copies of Ux,n
for each x ∈ ω, and infinitely many copies of Eβ . As each Ux,n is either Eβ or Aβ ,
Tn is either Eα or Aα. Furthermore, Tn is Eα only when at least one of the Ux,n is
Aβ , or equivalently, when ∃x Q(x, n).

Case α is a limit ordinal: By padding, we can assume without loss of generality that
P (n) is a computable disjunction of Qk(n) ∈ 6αk with { αk }k∈ω the fundamental
sequence for α. Furthermore, we can go uniformly from a 6α index for P to 6αk

indices for the Qk . By induction, we have a computable sequence Um,n satisfying 1
for the predicate

C(m, n) =def
∨

k≤m

Qk(n).

Let Tn be the tree whose root has exactly one copy of Um,n for each m ∈ ω. Then
Tn is Lα

n for some n ∈ ω ∪ {∞}. Moreover, Tn is Lα
∞ exactly when P (n) fails. So

the trees Tn satisfy 2.
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Case α = β + 1, with β a limit ordinal: Again we write P (n) = ∃x Q(x, n) for
some 5β predicate Q(x, n). By induction, there is a computable sequence of trees
Sx,n satisfying 2 for Q. Let Tn be a tree whose root has infinitely many copies of
Lα

m for each m ∈ ω and infinitely many copies of Sx,n for each x ∈ ω. These trees
satisfy 1. �

By appropriately padding the indices of our computable structures, this result allows
us several 1-reductions from predicates to our collection of back-and-forth trees.
Each back-and-forth tree has a natural level of complexity such that we can go from
predicates of that complexity to the corresponding back-and-forth tree. The fol-
lowing results show that we can also go in the reverse direction, from computable
presentations of back-and-forth trees to hyperarithmetic predicates.

Definition 3.3 Let T be a tree with edge relation E . A tree S is a limb of T if
S ⊆ T and

∀x ∈ S ∀y ∈ T (E(x, y) ⇒ y ∈ S).

If a ∈ T is the parent of the root of S, we say that S is a limb attached to a in T. For
convenience, we often say that S is a limb attached to a if it is isomorphic to a limb
attached to a.

Lemma 3.4 Let T be any tree. For each computable ordinal α, there is an infinitary
formula χα(x) ∈ Lω1,ω such that for any back-and-forth limb S of T with root
a ∈ T,

T � χα(a) ⇔ rank(S) = α. (1)

Furthermore, T � χα(a) is a 5α condition for computable structures T.

Proof We proceed by transfinite induction on the complexity of α.

Case α = 1: We define the formula

χ1(x) =def ∀y, z
(
E(x, y) ⇒ ¬E(y, z)

)
.

This formula is universal, and so T � χ1(a) is 51 for computable structures T.
Note that T � χ1(a) if and only if every element of S has depth at most 1. Since

S is a back-and-forth tree, this can only be the case when S is either E1 or A1.

Case α = β + 1: We define the formula

χα(x) =def ∃y E(x, y) ∧ ∀z
(
E(x, z) ⇒ χβ(z)

)
.

Since β ≥ 1, T � χα(a) is 5α for computable structures T.
Because S is a back-and-forth tree, all of the limbs attached to the root of S are

also back-and-forth trees. As limbs of S are also limbs of T, T � χα(a) if and only
if all of the limbs attached to a have rank β and there is at least one attached limb
with rank β. It follows from Definition 3.1 that this is true exactly when S has rank
α.
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Case α is a limit ordinal: Let {αk }k∈ω be the fundamental sequence for α. We
define the formula

χα(x) =def
∧

n∈ω

∃≥n y E(x, y) ∧

∀z

(
E(x, z) ⇒

∨

k∈ω

χαk (z)

)
∧

∧

n∈ω

∀u, v
((

E(x, u) ∧ E(x, v) ∧ χαn (u) ∧ χαn (v)
)

⇒ u = v
)
.

Since α ≥ ω, T � χα(a) is 5α for computable structures T.
Because S is a back-and-forth tree, T � χα(a) if and only if S has exactly one

limb of rank αk for each k ∈ ω. It follows from Definition 3.1 that this is true exactly
when S has rank α. �

Lemma 3.5 Let T be a tree and let B be any back-and-forth tree. Then there is
an infinitary formula ϕB(x) ∈ Lω1,ω such that for any back-and-forth limb S of T

which has root a ∈ T and is of the same rank as B,

T �

{
ϕB(a) if S ∼= B

¬ϕB(a) otherwise.
(2)

Furthermore, for computable T, the complexity of T � ϕB(a) is the natural com-
plexity of B.

Proof We proceed by transfinite induction on the complexity of B.

Case B ∼
= A1: We define the formula

ϕA1(x) =def ∀y ¬E(x, y).

This formula is universal, and so T � ϕA1(a) is 51 for computable structures T.
Note that T � ϕA1(a) if and only if a has no children in T. Since any child of a

in T is also a child of the root in S, this is the case exactly when S ∼= A1.

Case B ∼
= E1: We define the formula

ϕE1(x) =def ∃y E(x, y).

This formula is existential, and so T � ϕE1(a) is 61 for computable structures T.
Since S is a back-and-forth tree of the same rank as B, it is isomorphic to either

E1 or A1. T � ϕE1(a) if and only if a has a child in T, and hence in S. This is the
case exactly when S ∼= E1.

Case B ∼
= Aα+1, α a successor ordinal: We define the formula

ϕAα+1(x) =def ∃y E(x, y) ∧ ∀z
(
E(x, z) ⇒ ϕEα (z)

)
.

Since α ≥ 1, T � ϕAα+1(a) is 5α for computable structures T.
Note that T � ϕAα+1(a) if and only if all of the limbs attached to the root of S are

isomorphic to Eα . Since S has rank α + 1, this is the case exactly when S ∼= Aα+1.

Case B ∼
= Eα+1, α a successor ordinal: We define the formula

ϕEα+1(x) =def ∃y
(
E(x, y) ∧ ϕAα (y)

)
.

The argument that ϕEα+1 works is as before.
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Case B ∼
= L

γ
∞: Let { γk }k∈ω be the fundamental sequence for α. We define the

formula

ϕ
L

γ
∞

(x) =def ∀z

(
E(x, z) ⇒

∨

n∈ω

ϕAγn (z)

)
.

Note that ϕ
L

γ
∞

(x) ∈ Lω1,ω, since it involves a countable disjunction of formulas.
Furthermore, T � ϕ

L
γ
∞

(a) is 5γ for computable structures T.
Since S is a back-and-forth tree of the same rank γ as B, S ∼= L

γ

k for some
k ∈ ω ∪ { ∞ }. By induction, T � ϕ

L
γ
∞

(a) if and only if, for each n ∈ ω, any limb of
rank αn is isomorphic to Aγn . This is the case exactly when S ∼= L

γ
∞.

Case B ∼
= L

γ
n , n ∈ ω: We define the formula

ϕ
L

γ
n
(x) =def ∃y, z

(
E(x, y) ∧ E(x, z) ∧ χγn (y) ∧ ϕAγn (y) ∧ χγn+1(z) ∧ ϕEγn+1

(z)
)

.

This is a formula of Lω1,ω, and T � ϕ
L

γ
n
(a) is 6γ for computable structures T.

Again, S ∼= L
γ

k for some k ∈ ω ∪ {∞ }. By Lemma 3.4, T � ϕ
L

γ
n
(a) if and only

if S has a limb of rank γn isomorphic to Aγn and another of rank γn+1 isomorphic to
Eγn+1 . By Definition 3.1, this is true exactly when S ∼= L

γ
n .

Case B ∼
= Aγ+1, γ a limit ordinal: We define the formula

ϕAγ+1(x) =def ∀y

(
E(x, y) ⇒

∨

k∈ω

ϕ
L

γ

k
(y)

)
.

The argument that ϕAγ+1 works is as before.

Case B ∼
= Eγ+1, γ a limit ordinal: We define the formula

ϕEγ+1(x) =def ∃y
(
E(x, y) ∧ ϕ

L
γ
∞

(y)
)
.

The argument that ϕEγ+1 works is as before. �

4 Main Results

We are now ready to use the trees defined in Section 3 to obtain new examples of pos-
sible degree spectra of relations. A relation on the domain of a structure is invariant
if it is mapped to itself by every automorphism of the structure.

Theorem 4.1 Let α be a computable ordinal and let s be any reducibility stronger
than or equal to m-reducibility. There exists an intrinsically 6α invariant relation
U on a computably presentable structure M such that DgSps

M
(U) consists of all

nontrivial 6α s-degrees.

Proof Let M be a copy of Eα+1, and let r be the root of M.

Case α is a successor ordinal: Let U be the unary relation consisting of the children
of r that are the roots of Eα limbs. Every limb attached to r is a copy of either Aα or
Eα , and hence all such limbs are of the same rank. By Lemma 3.5,

a ∈ U ⇔ M � E(r, a) ∧ ϕEα (a). (3)

Therefore, U is intrinsically 6α .
The parameter r in (3) is first-order definable by the formula ∀y¬E(y, x). There-

fore, U is definable by a parameter-free formula of Lω1,ω. Thus U is invariant.



Degree Spectra of Relations on Computable Structures 61

Given an infinite and coinfinite 6α relation P (n) in 6α , let Tn be the computable
sequence from part 1 of Proposition 3.2. It is straightforward to define a computable
presentation M of M consisting of a copy of Eα with root node 〈0, n〉 for each n ∈ ω,
a copy of Aα with root node 〈1, n〉 for each n ∈ ω, and a copy of Tn with root node
〈2, n〉 for each n ∈ ω. Now x ∈ U if and only if either x = 〈0, n〉 for some n ∈ ω or
x = 〈2, n〉 for some n such that P (n). Thus U M ≡m P .

Case α is a limit ordinal: Let U be the unary relation consisting of the children of r
that are the roots of copies of L

α
k for k ∈ ω. By Lemma 3.5,

a ∈ U ⇔ M � E(r, a) ∧
∨

k∈ω

ϕL
α
k
(a).

This is a computable disjunction of 6α predicates, and so U is intrinsically 6α .
Furthermore, U is invariant since r is first-order definable.

Given an infinite and coinfinite relation P (n) in 6α , let Tn be the computable
sequence from part 2 of Proposition 3.2. It is straightforward to define a computable
presentation M of M consisting of a copy of Lα

k with root node 〈0, k, n〉 for each n,
k ∈ ω, a copy of Lα

∞ with root node 〈1, n〉 for each n ∈ ω, and a copy of Tn with
root node 〈2, n〉 for each n ∈ ω. Now x ∈ U if and only if either x = 〈0, k, n〉 for
some n, k ∈ ω or x = 〈2, n〉 for some n such that P (n). Thus U M ≡m P . �

By replacing U with its complement, we can replace 6α with 5α in the statement of
Theorem 4.1. The next result shows that we can also replace 6α with 1α.

Theorem 4.2 Let α be a computable ordinal and let s be any reducibility stronger
than or equal to m-reducibility. There exists an intrinsically 1α invariant relation
V on a computably presentable structure N such that DgSps

N
(V ) consists of all non-

trivial 1α s-degrees.

Proof Let M and U be as in the proof of Theorem 4.1, and let M0 and M1 be copies
of M. Let Si be the set of children of the root of Mi , let Ui be the copy of U in Mi ,
and let Ûi = Si −Ui . Note that Ui is intrinsically 6α and Ûi is intrinsically 5α . Let
ai

0, ai
1, . . . and bi

0, bi
1, . . . be the elements of Ui and Ûi , respectively.

In addition to the edge relation, the language of N has two unary relations D0
and D1 and a binary relation F . To define N, we begin with M0 and M1, add new
elements c0, c1, . . . and d0, d1, . . ., and let

FN(x, y) ⇔ (x = ck ∧ (y = a0
k ∨ y = b1

k)) ∨

(x = dk ∧ (y = b0
k ∨ y = a1

k ))

and
DN

i (x) ⇔ x ∈ Mi .

This completes the definition of N. Let V = { c0, c1, . . . }.
Since V can be defined both as

{ x ∈ N | ∃y ∈ U0 (F(x, y)) }

and as {
x ∈ N | ∀y (F(x, y) ⇒ y ∈ Û1)

}
,

V is intrinsically 1α .
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Given an infinite and coinfinite relation P (n) in 1α, we can use the construction
in the proof of Theorem 4.1 to build computable presentations M0 and M1 of M

satisfying the following conditions.
1. |M0| ∩ |M1| = ∅.
2. |M0| ∪ |M1| is coinfinite.
3. For some computable list y0

0 , y0
1, . . . of elements of S0, U M0(y0

k ) ⇔ P (k).
4. For some computable list y1

0 , y1
1, . . . of elements of S1, U M1(y1

k ) ⇔ ¬P (k).
Now build a computable presentation N of N as follows. Begin with M0 and M1.
Let x0 < x1 < · · · be the elements of ω − (|M0| ∪ |M1|). Let DN

i = |Mi |, and let
F N =

{
(xk, yi

k) | i < 1, k ∈ ω
}
.

It is easy to check that N is a computable presentation of N. Furthermore, if
x /∈ { x0, x1, . . . } then ¬V N (x), while V N (xk) ⇔ U N

0 (y0
k ) ⇔ P (k), and hence

V N ≡m P . �
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