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Implicit Definability of Subfields

Kenji Fukuzaki and Akito Tsuboi

Abstract We say that a subset A of M is implicitly definable in M if there

exists a sentence ϕ(P) in the language L(M)∪ {P} such that A is the unique set

with (M, A) |H ϕ(P). We consider implicit definability of subfields of a given

field. Among others, we prove the following: Q is not implicitly ∅-definable

in any of its (proper) elementary extension K ≻ Q. Q is implicitly ∅-definable

in any field K (of characteristic 0) with tr.degQ K < ω. In a field extension

Q < K with K algebraically closed, Q is implicitly definable in K if and only if

tr.degQ(K ) is finite.

1 Introduction

We begin with the definition of implicit definability.

Definition 1.1

1. Let T be a theory in the language L and P, P ′ two new unary relation sym-

bols not in L and ϕ(P) an L ∪ {P}-sentence. We say that ϕ(P) defines P

implicitly in T if T ⊢ ϕ(P) ∧ ϕ(P ′) → ∀x(P(x) ↔ P ′(x)).
2. Let M be an L-structure. We say that a subset A of M is implicitly definable

in M if there exists a sentence ϕ(P) in the language L(M) ∪ {P} such that

A is the unique set with (M, A) |H ϕ(P). In this case, we also say that ϕ(P)

implicitly defines A in M . If ϕ(P) does not have parameters, we say that A

is implicitly ∅-definable in M .

Beth’s definability theorem states that if ϕ(P) defines P implicitly in T then P(x)

is (T ∪ {ϕ(P)})-equivalent to an L-formula (i.e., ϕ(P) defines explicitly P in

T ). Hence ϕ(P) defines P explicitly in T if and only if ϕ(P) defines P implic-

itly in T . However, the situation is different if we consider implicit definability

in a given structure M . It is clear that any first-order definable subset of M is

implicitly definable, but the converse is not true in general. There is a structure
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in which two notions (implicit definability and first-order definability) are dif-

ferent. For example, let M = (N ∪ Z,<M ), where N and Z are disjoint and

<M=<N ∪ <Z ∪{(a, b) : a ∈ N, b ∈ Z}. Then N is not first-order definable,

but it is implicitly definable. It can be shown that for a given structure there is an

elementary extension in which any implicitly definable subset is first-order definable

(see Section 2). One can show that there are M , an implicitly definable subset A

in M , and an elementary extension (N, B) of (M, A) such that B is not implicitly

definable in N .

In [8], Shelah and Tsuboi considered nonstandard models of PA (Peano Arith-

metic) and showed that in some elementary extension of the standard model N, the

standard part is implicitly ∅-definable. From a given model M of PA, we can easily

construct a field in the same manner as we construct Q from N. By Robinson’s result

on first-order definability of N in Q, the constructed field is bi-interpretable with M .

So Shelah and Tsuboi showed that there is an elementary (field) extension of Q in

which Q is implicitly definable. In this paper we shall consider implicit definablity

of subfields in a more general setting.

In Section 2, we state basic results on implicit definability. We also consider im-

plicit definability under categoricity assumptions. In Section 3, we give negative

results concerning implicit definability. The following statement is a part of Theo-

rem 3.2.

(A) Q is not implicitly ∅-definable in any of its (proper) elementary extensions

K ≻ Q.

In Section 4, we give positive results concerning implicit definability. Among others,

we show that

(B) Q is implicitly ∅-definable in any field K (of characteristic 0) with

tr.degQ K < ω.

So, in particular, Q is implicitly definable in its algebraic closure Q, while it is not

first-order definable there. (Notice that Q is stable, but Q is not.) Combining this

with a result in Section 2, we get

(C) In a field extension Q < K with K algebraically closed, Q is implicitly

definable in K if and only if tr.degQ(K ) is finite.

Throughout, L is a first-order language. L-structures are denoted by M , M ′

and so forth. We will simply say that a subset A of M is definable if it is

first-order definable in M using parameters. The ring language is the language

Lring = {0, 1, ∗ + ∗,−∗, ∗ · ∗}. A field is regarded as an Lring-structure. P always

denotes a unary predicate symbol not in L. For a formula ϕ, ϕP is the formula

obtained from ϕ by replacing each quantifier occurrence (Qx) with (Qx ∈ P). The

term “algebraic closure” is used both in the model theoretic sense and in the field

theoretic sense. However, after Section 3, it is used only in the field theoretic sense.

2 Basic Facts on Implicit Definability

Let M be an L-structure and A an undefinable subset of M . Then there is an elemen-

tary extension (M ′, A′) of (M, A) in which any L∪{P}-sentence does not implicitly

define A′. More generally, we can show the following.
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Proposition 2.1 For a given structure, there is an elementary extension of the same

cardinality in which every implicitly definable subset is definable.

This proposition is an easy consequence of Fact 2.2 (stated below) which asserts

the existence of resplendent models. So let us recall the definition of resplendent

models (see Poizat [5] or Kaye [4], for details): Let M be an L-structure, and

P1, P2, . . . are new relation symbols not in L. M is resplendent if for every sen-

tence ϕ(Pi1 , . . . , Pik ) consistent with Th(M, a)a∈M , there are interpretations of

Pi1 , . . . , Pik on the domain of M .

Fact 2.2 Let M be an L-structure with |L| ≤ |M|. Then M has a resplendent

elementary extension of the same cardinality.

Proof of Proposition 2.1 Let N be its resplendent elementary extension of the same

cardinality. Let A be an undefinable subset of N , and ϕ(P) any L(N)∪{P}-sentence

such that (N, A) |H ϕ(P). By Beth’s definability theorem, since A is undefinable,

ϕ(P) ∧ ϕ(P ′) ∧ {¬∀x(P(x) ↔ P ′(x))} is consistent with Th(N, a)a∈N . Hence, by

the resplendency of N , there are interpretations of P, P ′ on N such that the expan-

sion of N satisfies ϕ(P) ∧ ϕ(P ′) ∧ P 6= P ′. �

If we apply Proposition 2.1 to structures with categorical theories, we have the fol-

lowing.

Corollary 2.3

1. Let M be a model of a totally categorical theory. Then any implicitly defin-

able subset of M is definable in M.

2. Let M be a model of an ℵ1-categorical countable theory and |M| ≥ ℵ1. Then

any implicitly definable subset of M is definable in M.

3. Let T be a countable strongly minimal theory, M |H T , and dimM (M) ≥ ℵ0.

Then any implicitly definable subset of M is definable in M.

As an algebraically closed field is strongly minimal, from the above we get the fol-

lowing.

Corollary 2.4 Let M be an algebraically closed field with infinite transcendence

degree. Then no undefinable subset of M is implicitly definable in M. In particular,

no infinite proper subfield is implicitly definable in M.

Remark 2.5 In general, if there is an automorphism σ of M with σ(A) 6= A

and σ |B = idB , then A is not implicitly definable in M using parameters from B .

So, if M is a model of a strongly minimal theory T with |acl(∅)| < ω, then any

undefinable (over ∅) subset A of M is moved by some automorphism, hence A is

not ∅-implicitly definable. Of course, a subset fixed by the automorphism group

need not be implicitly definable.

Finally in this section, we consider relative implicit definability of two subsets in a

given structure. Let A, B ⊂ M . Let us say that A and B are interdefinable in M

if A is a definable subset of the structure (M, B), and B is a definable subset of the

structure (M, A). Let us state a trivial example: Let M be an infinite set without

structure and A an infinite coinfinite subset of M . Let B = M . Then A and B are

not interdefinable in M . Also we see that B is implicitly definable in M whereas A

is not implicitly definable in M .
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Lemma 2.6 Let A, B ⊂ M. If A and B are interdefinable in M, then A is implicitly

definable in M if and only if B is implicitly definable in M.

Proof First prepare two predicates P for A and Q for B . Suppose that ϕ(P) defines

A implicitly in M . We show that B is implicitly definable in M . Let θ(x, Q) be an

L ∪ {Q}-formula that defines A in (M, B), and θ ′(x, P) an L ∪ {P}-formula that

defines B in (M, A). Let ψ(Q) be a formula expressing

1. the set {x : θ(x, Q)} is a (unique) solution of ϕ(P) (i.e., ϕ({x : θ(x, Q)})),
2. Q(y) if and only if θ ′(y, {x : θ(x, Q)}).

Then it is easy to see that B is the unique set satisfying ψ(Q) in M . �

Remark 2.7 By Robinson’s result, Q and N are interdefinable in their extension

field. So for Q < K , N is implicitly definable in K if and only if Q is implicitly

definable in K .

3 Undefinability

The theory ACFp of algebraically closed fields of a fixed characteristic admits quan-

tifier elimination. So for any field F , the theory ACF∪Diag(F) is a complete theory.

However ACF ∪ {ϕP : F |H ϕ} is usually incomplete in the language Lring ∪ {P}.
In order to make it complete, we need to add one sentence. The following lemma is

due to Chang and Keisler [1], Theorem 5.4.6.

Lemma 3.1 Let F be any field of characteristic p. Let T be the set

ACFp ∪ {ϕP : F |H ϕ} ∪ {δ},

where δ is an (Lring ∪ {P})-sentence which asserts that there is an element in the

overfield that is not a zero of a polynomial of degree 2 with coefficients in P. Then

T is a complete (Lring ∪ {P})-theory.

Theorem 3.2 Q is not implicitly ∅-definable in any of its (proper) elementary

extensions K ≻ Q. Moreover, for each Lring ∪ {P}-sentence ϕ(P) satisfied by Q in

K , there are F1 and F2 both satisfying ϕ(P) such that F1 ( Q ( F2 ⊂ K .

Proof It is sufficient to show the “moreover” part. By Lemma 3.1, the complete

theory T defined there proves ϕ(P). So by compactness, there is n ∈ ω such that

ACF0 ∪ {P is a field } ∪ {ϕ1, . . . , ϕn} ∪ {δ}

proves ϕ(P), where ϕi is the sentence asserting that every polynomial equation of

degree i with coefficients from P has a solution in P . We can take n ≥ 3. Let F1 be

the closure of Q under the operation of adding roots of polynomials of degree ≤ n.

Then F1 is a nonalgebraically closed subfield of Q such that any polynomial equation

of degree ≤ n with coefficients from F1 has a solution in F1 and (K , F1) |H δ. Then

we have (K , F1) |H ϕ(P). Similarly, by taking the closure of Q(t) where t ∈ K \ Q,

there is a field F2 with Q ( F2 ( K such that (K , F2) |H ϕ(P). �
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Remark 3.3 Assume tr.deg(K/Q) ≥ 2. By Lemma 3.1, we have the elementary

equivalence of two Lring ∪ {P}-structures (K ,Q) and (K ,Q(a)), where a ∈ K \ Q.

So Q is not implicitly definable in K even if we use an infinite set of formulas.

4 Definability

In Section 3, we showed that Q is not implicitly definable in its elementary exten-

sion. In a sense, the proof used the nonfinite axiomatizability of Q. But this is not

exactly true. Recall that Th(Q) is not finitely axiomatizable. Despite this fact, we

show in this section that Q is implicitly definable in any extension field of finite

transcendence degree.

Proposition 4.1 Let K be an extension field of Q with tr.degQ K < ω. Then

1. Q is implicitly ∅-definable in K ;

2. in general, if F < K is a finite algebraic extension of Q, then F is implicitly

definable in K using parameters;

3. furthermore, if F above is normal over Q, then the parameters are not nec-

essary.

For proving this proposition, the following preparations are necessary.

Definition 4.2 Let Larith be the language of arithmetic, and M an Larith-structure.

1. A partial type p(x) over a is recursive if and only if the set

{pϕ(x, y)q : ϕ(x, a) ∈ p(x)} ⊆ N

is recursive, where pϕq denotes the code of the formula ϕ.

2. A partial type p(x) over a is 6n if and only if it consists of 6n-formulas.

3. An Larith-structure M is 6n-recursively saturated if and only if every recur-

sive 6n-type over a finite subset of M is realized in M .

Now recall that I6n is the theory obtained from PA by restricting induction formulas

to 6n-formulas, and note that we can formulate it in the ring language.

Fact 4.3

1. Let M |H I6n be nonstandard. (M 6= N.) Then M is 6n-recursively satu-

rated.

2. For n > 0, I6n is finitely axiomatizable.

For a proof of part 1, the reader can consult [4], p. 150. For part 2, see Hájek and

Pudlák [2], p. 78.

Lemma 4.4 Let M |H I61 be nonstandard. Then M contains countably many

algebraically independent elements over Q in the field theoretic sense.

Proof Suppose M contains b1, . . . , bn which are transcendental over Q. We show

that there is another transcendental element over Q(b̄) in M .

Let S be the set of all nontrivial polynomials with coefficients from Q(b) and

p(x) = { f (x) 6= 0 : f (x) ∈ S}. By transposition and multiplication by common

denominators, we may consider p(x) as the set of Lring-formulas. Obviously p(x)

is a recursive60-type over b in M . Then part 1 of Fact 4.3 above shows that there is

an element which realizes p(x), which is transcendental over Q(b). �
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Proof of Proposition 4.1

(1) Choose a formula θ(x) in the ring language such that θ(x) defines N in Q. Let

ψ(P) be a set of sentences expressing

(a) P is a subfield;

(b) the subset of P defined by θ P(x) satisfies I61;

(c) ∀x ∈ P∃y ∈ P∃z ∈ P[θ P (y) ∧ θ P(z) ∧ z 6= 0 ∧ (zx = y ∨ zx = −y)].

By Fact 4.3, ψ(P) is a first-order sentence. We shall show that ψ(P) implicitly

defines Q in K . Clearly Q satisfies the formula ψ(P). So by way of contradiction,

assume that there is a subset Q∗ ) Q of K with K |H ψ(Q∗). By the properties (b)

and (c) above, θ(x) defines in Q∗ a nonstandard model N∗ of I61. So by Lemma 4.4,

N∗ has infinitely many algebraically independent elements over Q. This contradicts

our assumption tr.degQ K < ω.

(2) Robinson showed in [6] that Q is (first-order) ∅-definable in finite algebraic

number fields. Together with the fact that a finite algebraic number field has a finite

basis over Q, it follows that F and Q are interdefinable in K (using parameters).

Then, by Lemma 2.6 and part (1), we see that F is implicitly definable in K using

parameters. However, we give a direct proof below.

Using part (1), choose an (Lring∪{Q})-formulaψ(Q) that implicitly defines Q in

K . Let θ(x) be an Lring-formula that defines Q in F . Choose a1, . . . , ak ∈ F such

that F = a1Q + · · · + akQ. Now let ϕ(P) be a formula expressing the following:

(d) The subset of K defined by θ P(x) satisfies ψ;

(e) For all x ∈ K , x ∈ P iff there are q1, . . . , qn with θ P(q1) ∧ · · · ∧ θ P(qk)

such that x = a1q1 + · · · + akqk .

Claim 4.5 ϕ(P) implicitly defines F in K .

Clearly ϕ(F) holds in K . Let F ′ be another solution of ϕ(P). By property (d) and

the choice of ψ , we have

Q = {a ∈ F ′ : F ′ |H θ(a)}.

So, by property (e), we have

F = a1Q + · · · + akQ = {a1q1 + · · · + akqk : qi ∈ F ′, F ′ |H θ(qi )} = F ′.

(3) In the above definition of ϕ(P), choose A = {a1, . . . , ak} ⊂ P K so that A is

fixed by any automorphism of K . (This can be done by the normality.) Then A is

∅-definable, hence the parameters in ϕ(P) can be eliminated. �

Combining Proposition 4.1 with Corollary 2.4, we get the following.

Corollary 4.6 Let K be an algebraically closed field of characteristic 0. Then Q is

implicitly definable in K if and only if tr.degQ K is finite.

Remark 4.7 It is known that any Peano field different from Q has infinite transcen-

dence degree over Q. (A field elementary equivalent to Q is called a Peano field. See

Jensen and Lenzing [3].) This fact follows easily from Lemma 4.4. Moreover, from

Lemma 4.4 we can say that if K 6= Q is a field constructed from a model of I61,

then K has infinite transcendence degree over Q.
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As mentioned in the proof of Proposition 4.1, Q is (first-order) ∅-definable in finite

algebraic extensions of Q. Hence trivially Q is implicitly ∅-definable in those ex-

tensions. However, only a little is known about definability of subfields in fields. We

only know some particular cases. Q is not definable in algebraically closed fields,

since algebraically closed fields are stable. Q is not ∅-definable in real closed fields,

since the theory of real closed fields is decidable.

It is also known that Q is ∅-definable in pure transcendental extensions of Q.

(See Robinson [7].) We don’t know whether or not Q is definable in finite algebraic

extensions of pure transcendental extensions of Q. However, a similar argument as

above proves the following proposition.

Proposition 4.8 Let K be a finite algebraic extension of Q(I ), where I is an alge-

braically independent set (a set of indeterminants). Then Q is implicitly definable in

K .

We will consider the following property (†) for an Lring-structure K .

(†) There is a ∈ K such that a2 − a 6= 0 and for each n ∈ ω, there is b ∈ K

with a = bn .

Remark 4.9 Let I be an algebraically independent set over Q. Then Q(I ) does

not have the property (†), since Q[I ] is UFD. Let F be an algebraic number field.

Then F does not have the property (†) by Dirichlet’s unit theorem and the unique

factorization into prime ideals of fractional ideals in the ring of algebraic integers of

F .

Lemma 4.10 Let K be a finite extension of Q(I ). Then K does not have the

property (†).

Proof By way of contradiction, choose an element a ∈ K witnessing the property

(†). By the previous remark, we have a 6∈ K ∩ Q. We can choose a minimal finite

subset {x1, . . . , xk} of I with a ∈ Q(x1, . . . , xk). Let M = K ∩ Q(x1, . . . , xk).

Then M ⊇ { n
√

a : n ∈ ω}. Since I is an algebraically independent set over Q, we

have [M : Q(x1, . . . , xk)] ≤ [K : Q(I )]. Hence [M : Q(x1, . . . , xk)] is finite.

Put F = Q(x1, . . . , xk−1). Then [M : F(a)] is also finite. However, for a prime

m > [M : F(a)], we have [M : F(a)] ≥ [F( m
√

a) : F(a)] = m. This is a

contradiction. �

Proof of Proposition 4.8 Suppose otherwise. By a similar argument as in the proof

of Proposition 4.1, we can show the existence of a nonstandard model N∗ ⊂ K of

I61. Consider the following61-recursive type

p(x) = {x2 − x 6= 0} ∪ {∃y(x = yn) : n ∈ ω, n ≥ 1}.
Then by Fact 4.3, p(x) is realized in N∗. Hence there is a ∈ K which witnesses the

property (†). However, by Lemma 4.10, we know that this is impossible. �

5 Examples

We state some examples.

Example 5.1 Clearly Q is not ∅-definable in R. But Q is implicitly definable in R.

Let τ be the sentence

∀x, y ∈ (P ∧ θ P)[∃z ∈ (P ∧ θ P)(x + z = y) ⇐⇒ ∃z(x + z2 = y)]
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and put ψ ′(P) = ψ(P)∧ τ , where θ(x), ψ(P) is defined as in the proof of Proposi-

tion 4.1. Clearly Q satisfies the formulaψ ′(P). We shall show that ψ ′(P) implicitly

defines Q in R. Suppose otherwise. Then there is a subset Q
∗ 6= Q satisfyingψ ′(P).

So the subset N∗ of Q∗ defined by θ is a nonstandard model of I61. The order struc-

ture ≤ of N∗ (defined by ∃z(x + z = y)) coincides with the original order in R. (This

is guaranteed by the sentence τ .) This shows that R is a non-Archimedean field. A

contradiction.

Example 5.2 In Q, the real closed field R = R ∩ Q is not implicitly definable.

Let A be an arbitrary finite subset of Q. Let n = [Q(A) : Q]. Let us consider the

polynomial f (x) = x p − 2, where p > n is a prime. By Eisenstein’s criterion,

f (x) is irreducible. R has the unique solution, say α1, of f (x) = 0. Clearly α1 does

not belong to Q(A). So the minimal polynomial g(x) of α1 over Q(A) has a root,

say α2, other than α1. Let σ be an isomorphism of Q such that σ(α1) = α2. Then

σ(R) 6= R. This shows that R is not implicitly A-definable in Q.

Finally, we end this paper by stating some open questions.

Question 5.3 By [8], there is an elementary extension M of Q with |M| = ℵ1 in

which Q is implicitly definable. Can we require M to be countable?

Question 5.4 Let K be an algebraically closed field of finite transcendence degree.

Then by Proposition 4.1, any field Q(a) < K with a algebraic is implicitly definable

in K . What happens if we require that a is transcendental?
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