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1 Introduction

Kit Fine’s long article [13], introducing his distinctive take on neo-Fregeanism, has

now been expanded into a short book of the same title. (For those familiar with the

article version, the philosophical material from it appears as chapter 1 in the book,

and the technical material as chapters 3 and 4. According to the book’s preface, “The

major change is the addition of a new part on the context principle.” This addition

constitutes chapter 2 of the book. There is also an index of technical terms, which

would have been more useful if it had been arranged alphabetically.)

The present review of that book is divided into three parts of unequal length.

The long introduction Section 2 surveys recent neo-Fregeanism. Then Section 3

summarizes Fine’s technical contributions, which presumably are what is of primary

interest for readers of the present journal. The brief conclusion Section 4 touches on

more purely philosophical issues.

2 Neo-Fregeanism

The tale has often been told of Frege’s heroic effort to ground mathematics in logic

and of Russell’s devastating discovery of a contradiction in the basic assumption

underlying that effort. Nonetheless, I will begin with a very brief retelling of the

tale. Frege scholars will recognize it as a simplification of the real history. No brief

account can be anything but.

Frege’s most enduring achievement was his first one, the creation of modern logic

in his Begriffsschrifft. But his logical system was a grander affair than the logic

one finds in present-day textbooks, and we must begin with a description of its key

features. Underlying the logic is a logical grammar distinguishing various types of

expressions. Fundamental are sentences (S) and “names” (N) as Frege calls them,

though they included all singular terms, both proper names plus singular definite

descriptions. An expression with k blanks in it, that if filled with expressions of
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228 John P. Burgess

types T1, . . . ,Tk will produce an expression of type S may be said to be of type

T1 · . . . · Tk →S, and similarly for N. Corresponding to each grammatical type T of

expression is an ontological type O of entity to which expressions of type T are taken

to refer. The terminology that will be used here for the types of entity there will be

occasion to mention below is indicated in the adjoining table, as is the distinctive

style of variable that will be used for each type. However, the expression “concept”

is often also used in a more general sense to cover not just one-place, first-level

concepts, corresponding to type N→ S, but for the entities corresponding to any type

of the form T1 · . . . · Tk →S. Context should make plain whether one is speaking of

concepts as opposed to relations and superconcepts, or concepts including relations

and superconcepts.

Type Example Referent Variables

S Socrates is wise truth value

N Socrates object x ,y, . . .

N→ S . . . is wise concept X, Y, . . .

N2→ S . . . taught— relation R, S, . . .

(N→ S)→ S Someone . . . superconcept X, Y, . . .

(N→ S)2→ S Whoever . . . , — superrelation R, S, . . .

Table 1 Partial list of Fregean grammatico-ontological categories.

When, for instance, an expression of type N refers to an object x , and an expression

of type N → S to a concept X , and the sentence obtained by putting the former

expression into the blanks of the latter expression is true, then the object is said to

fall under the concept. If Socrates is wise, then Socrates falls under the concept of

being wise. To indicate that x falls under X one writes X (x). From atomic formulas

of this kind, and their analogues for other types, together with atomic formulas of the

kind x = y, more complex formulas can be built up using the logical operations of

negation, conjunction, disjunction, and the like, as well as universal and existential

quantification over entities of all types.

It is a background assumption, the axiom of concept comprehension, of Frege’s

logic that for every such formula 8(x), expressing a condition that may or may not

hold of an object x , there is a corresponding concept, one under which an object falls

if and only if the condition does hold of it.

∃X∀x(X (x)↔ 8(x)) (1)

An analogous assumption is made for many-place and higher-level concepts. It is to

be understood that there may be parameters in (1), meaning free variables other than

the one displayed, and that what is really being taken as the axiom is the universal

closure of what has been displayed. Thus if there are two object parameters u and v,

and a concept parameter W , the axiom is really the following:

∀u∀v∀W∃X∀x(X (x)↔ 8(x, u, v, W )) (2)

Similarly with other schemes below.

The notion for concepts that is analogous to identity among objects is called coex-

tensiveness. It will be convenient to introduce an abbreviation for this notion, which
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is definable in terms of logical operations for which we already have notations:

X ≡ Y ↔ ∀x(X (x)↔ Y (x)) (3)

The notation may also be used for many-place and higher-level concepts.

Frege also introduces a proof-procedure. When one dispenses with all concept

variables, one has first-order logic, and Frege’s proof-procedure is equivalent to those

in present day logic textbooks. When one dispenses with all but the first level of con-

cepts and relations, one speaks of second-order logic, and when one dispenses with

all but the first two levels of concepts and relations and superconcepts and superrela-

tions, of third-order logic. So far as proof-procedures are concerned—and proof-

theoretic or syntactic deducibility, not model-theoretic or semantic consequence,

which had not been born or thought of in Frege’s day, is all that was of concern

to Frege, and all that will be of concern to us—so-called second- and third- and

higher-order theories are simply first-order theories with several styles of variables,

and the distinctive axiom of comprehension (1) (to which may be added an axiom

of extensionality for concepts and an axiom of choice, details of which need not

concern us here).

To this background logical apparatus Frege adds, for the purpose of developing

mathematics, the axiom of extension existence, to the effect that to any concept X

there corresponds an object ‡X , called the extension of X , in such a way that the

extensions of two concepts are identical if and only if the concepts themselves are

coextensive:

‡X = ‡Y ↔ X ≡ Y (4)

(The operator ‡ is of type (S → N)→ N.) An analogous assumption is made for

many-place and higher-level concepts.

The extensions of one-place concepts were called “classes” by Frege. The con-

nection that holds between one object x and another object y when the latter is the

extension of a concept under which the former falls, amounts in this terminology to

membership of object x in class y, and we may introduce the usual epsilon-notation

as an abbreviation:

x ∈ y ↔ ∃Y (y = ‡Y & Y (x)) (5)

Most writers after Frege have substituted the Cantorian terminology of “set” and “el-

ement” for that of “class” and “member”. Some have used the term “class” in a sense

close to Frege’s “concept”. To avoid ambiguities, I will avoid the term “class” alto-

gether (except as an inseparable part of the set phrase “equivalence class”) and con-

tinue to speak of objects and “concepts”, and to call those objects that are extensions

of concepts “sets”. Fortunately there will be no occasion to mention the extensions

of relations, and there will be no need for a label for them. (Frege had available in

German two common enough but quite different words, the Teutonic Beziehung and

the Latinate Relation, and was able to use one for many-place concepts and the other

for their extensions.)

Note that (1) and (4) (and the definition (5)) together imply the axiom of set-

comprehension, according to which for any condition there exists a unique corre-

sponding set, one of which an object is an element if and only if the condition holds

of it:

∃!y∀x(x ∈ y ↔ 8(x)) (6)

This set y is usually denoted by the term {x : 8(x)}. An alternative formulation

(closer to that of Frege himself) would simply allow the introduction of such terms
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into the official language, and corresponding to (6) would assume the following:

x ∈ {x : 8(x)} ↔ 8(x). (7)

A superrelation R is called an equivalence if it is reflexive, symmetric, and transitive,

so that we have

∀XR(X, X) &

∀X∀Y (R(X, Y )→ R(Y, X)) &

∀X∀Y∀Z(R(X, Y ) & R(Y, Z)→ R(X, Z)). (8)

In Frege’s system one may define for any such R and any concept X the equiva-

lence class—even those who say “set” in ordinary contexts say “class” in this special

context—§RX of X with respect to R, as follows:

§R X = {Y : R(X, Y )}. (9)

One then has the following:

§R X = §RY ↔ R(X, Y ). (10)

Note that ‡X is the same as §≡X .

One could make similar definitions one level down, with equivalence relations

on objects, but it is equivalence superrelations on concepts that do the most work

in Frege’s system. For purposes of developing arithmetic, Frege first defines an

equivalence, here to be written ≈, of equinumerosity, as follows:

X ≈ Y ↔ ∃R(∀x(X (x)→ ∃!y(Y (y) & R(x, y)))

& ∀y(Y (y) → ∃!x(X (x) & R(x,y)))) (11)

Frege then defines the number of a concept X to be equivalence class of X with

respect to this equivalence. Writing #X for §≈X , we then have as a special case of

(10) the following, which has come to be called Hume’s Principle or HP:

#X = #Y ↔ X ≈ Y (12)

In the remainder of the development of arithmetic Frege so to speak “forgets” how

numbers were defined, and uses only (12). (That Frege in fact uses only (12), without

further recourse to (4), in developing arithmetic was first noted explicitly by Charles

Parsons [22]. That Frege self-consciously uses only (12) without further recourse to

(4) has been suggested by Richard Heck. In view of this latter suggestion, the verb

“forgets” should not to be taken literally.)

In general, when one assumes (10) independently of or while forgetting the defi-

nition (9), one avoids the term “equivalence class” and calls §R X the abstract of X

with respect to R. Thus Frege develops arithmetic on the basis of the sole assump-

tion that numbers are abstracts of concepts with respect to equinumerosity. On this

basis Frege defines the specific numbers zero, one, two, and so on, as well as the

general notions of natural number and the successor, and proves the so-called Peano

postulates for these notions. One can then go on to define addition and multiplication

with the usual recursion equations, to prove the usual associative and commutative

and distributive laws, to define exponentiation, to prove the usual laws of exponents,

and so on. Frege does not “remember” the general notions of extension and equiv-

alence class until he wants to go beyond arithmetic to analysis and has to introduce

real numbers, which again are introduced as certain equivalence classes or abstracts.
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Unfortunately, just as Frege was putting the finishing touches on his magnum

opus, expounding all these developments, Russell, who had independently rediscov-

ered some of Frege’s ideas, discovered the famous Russell paradox, that (7) leads to

a contradiction when applied to the condition “x is a set & x /∈ x”.

Looked at from a Cantorian point of view, the problem with Frege’s system ap-

pears to be this. Suppose there are κ objects and write exp(κ) for 2κ . Then (1) seems

to tell us there will be exp(κ) concepts, one for each set of objects (corresponding to

the condition of being an element of that set), while (4) seems to tell us that there will

be at least as many objects as concepts (since ‡ gives a one-to-one function from the

latter to the former). Together, they tell us that exp(κ) ≤ κ . But this is impossible,

since Cantor has proved κ < exp(κ) for all κ . Analyzing Cantor’s proof as it applies

to this situation, one is led to consider the Russell set, and this is in fact how Russell

discovered his paradox. Or so he tells us in an autobiographical sketch ([27], p. 44).

The dream ever since the discovery of Russell’s paradox has been to find some

comparatively simple and natural modification of Frege’s inconsistent assumptions

that would on the one hand render his system consistent, but on the other hand still

leave it adequate for the development of mathematics. Pursuit of this dream is the

project of neo-Fregeanism in the broadest sense of that label.

Some are likely to object that the development of axiomatic set theory has ren-

dered Frege’s work of historical interest only. Set theorists now work, it will be said,

with a well-understood, standard conception of set, the iterative conception, which

motivates a well-understood, standard system of axioms, ZFC, and suggests with

varying degrees of compellingness certain further axioms, called large cardinal ax-

ioms. This being so, it will be said, tinkering with repairs to Frege’s antique system

is pointless. (This hypothetical objection bears more than a passing resemblance to

remarks in the eminent set theorist D. A. Martin’s notorious review [20] of a book on

set theory by the eminent philosopher W. V. Quine. See also the latter’s reply [25].)

In response to this objection it must be conceded that a neo-Fregean project will

be of little interest unless it achieves a reconstruction of a very substantial part of

classical mathematics. But few philosophers who have read philosophical accounts

of the iterative conception of set, or accounts of attempts to motivate large cardinal

axioms, can seriously believe that the iterative conception provides a single, unified

principle clearly sufficient to develop all the axioms of ZFC, let alone large cardinals.

(For a skeptical look at the iterative conception, see [4].)

We know from Gödel’s second incompleteness theorem that we cannot develop

classical arithmetic, let alone analysis or higher set theory, on a basis that is self-

evidently consistent, let alone self-evidently true. Still, it is not obvious that we

cannot hope to do better in the way of providing heuristic motivations for our funda-

mental assumptions than has been done by set theorists in general or large cardinal

theorists in particular. While some of us would not be, many philosophers might be

willing to sacrifice higher set theory if a neo-Fregean system adequate for basic arith-

metic and analysis could be developed that seemed philosophically better-founded.

In considering the issue how substantial a part of classical mathematics a given

neo-Fregean project can succeed in reconstructing, it is useful to have in mind a scale

of more and more substantial parts established by mathematical logicians. Some key

points on such a scale are illustrated in the adjoining table.

The table is perhaps best read from the bottom up. A precise specification of the

weak systems of arithmetic in the table will not be material for our purposes. Suffice
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Theory Name Domain(s)

ZF2 Morse-Kelly set theory Pure sets of all ranks, concepts

ZF Zermelo-Frankel set theory Pure sets of all ranks

Z Zermelo set theory Pure sets of all ranks

Pω Simple theory of types Individuals, sets of, sets of sets of, etc.

P3 3rd order arithmetic Numbers, sets of, sets of sets of

P2 2nd order arithmetic Numbers, sets thereof

P1 Peano arithmetic Numbers

Qω Grzegorczyk arithmetic Numbers

Q2 Kalmar arithmetic Numbers

Q1 Wilkie arithmetic Numbers

Table 2 Partial scale of strength of fragments of classical mathematics.

it to say that in Q1, called in the literature I60, or sometimes PFA for polynomial

functional arithmetic, one can speak of zero, successor, addition, and multiplication,

and prove basic laws for these. But the scheme of mathematical induction,

(8(0) & ∀x(8(x)→ 8(Sx)))→ ∀x8(x),

which is essential for proving many more serious number-theoretic theorems, is only

available for a restricted kind of formula, in which all quantifiers are bounded, so that

one can say “there is a u ≤ t . . .” but not “there is a u . . .” in a condition about which

one wants to do a proof by induction. Q2, called in the literature I60(exp), or some-

times EFA for exponential functional arithmetic, adds exponentiation. Q3, called in

the literature I60(superexp) adds superexponentiation, and so on. Continuing in this

way Qω has all the operations in the series that begins with addition, multiplication,

exponentiation, and so on, a sequence in which each operation is obtained by iterat-

ing the preceding one. This has the effect of making available all primitive recursive

functions; the system is a variant version of the system called Skolem arithmetic or

PRA for primitive recursive arithmetic.

P1, often called PA, is the system of formal arithmetic most often met with in text-

books of intermediate logic. It adds an unrestricted axiom of scheme of induction,

which renders the inclusion of symbols and defining equations for exponentiation

and other primitive recursive functions beyond addition and multiplication redun-

dant. P2, often called analysis, is usually understood today as dealing with natural

numbers and sets thereof rather than concepts applicable thereto, so that the notation

x ∈ X rather than X (x) is used, though so far as what can be proved is concerned,

the difference in notation and terminology makes no difference. P3 adds, on what

is today the conventional understanding, one more layer of sets, or on a Fregean

understanding, superconcepts. With the expansion of the language, there are more

instances of the induction scheme, and appropriately applied these make the intro-

duction of symbols and defining equations for addition and multiplication redundant.

P4 would add another level, and so on.

Continuing in this way one arrives at Pω (which is, by the way, the system for

which Gödel originally proved his incompleteness theorems). This in effect amounts

to a variant version of the theory PM of types as developed by Russell and Whitehead

in Principia Mathematica and simplified by Ramsey. Again today this is understood
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as involving sets of various levels, though on Russell’s original understanding it in-

volved instead “propositional functions”. It is customary in type theory to drop the

assumption that the objects at the bottom level are numbers specifically and to speak

and think of them instead as simply individuals of some unspecified kind. One does

not really need the Peano postulates about zero and successor, but only the assump-

tion that there are infinitely many individuals (which can be expressed by saying

there is a function that, like the successor function, is one-to-one, and there is an

object that, like zero, is not in the range of this function). Type theory is just slightly

weaker than Zermelo’s axiom system Z for set theory, which in turn is significantly

weaker than Frankel’s amendment thereto, ZF, which is required for the develop-

ment of Cantor’s theory of transfinite ordinals and cardinals. ZF2, usually called

MK, is slightly stronger. It is weaker than the theory obtained by adding to ZF even

the weakest of the large cardinal axioms set theorists have investigated, but there will

be no need to enter into the realm of large cardinals here.

A theory T1 is interpretable in a theory T2 when there is a translation, preserv-

ing logical structure, from the language L1 of T1 into the language L2 of T2, which

translates every axiom and hence every theorem of T1 into an axiom or theorem of

T2. Interpretability is easily seen to hold whenever T1 is a subtheory of T2 (using

the identity function as a translation). Interpretability is also easily seen to be tran-

sitive (given that T0 is interpretable in T1 and T1 is intepretable in T2, composing

the translation functions gives a translation function showing T0 is interpretable in

T2). Instead of saying “interpretable” we may say “of lesser or equal interpretability

strength”, and then define “of strictly lesser interpretability strength” and “of equal

interpretability strength” in the obvious way. In this sense each theory in the table is

of strictly greater interpretability strength than the theories listed below it. Generally

one proves interpretability by exhibiting a specific translation. For reasons connected

with Gödel’s second incompleteness theorem, to prove noninterpretability of T2 in

T1 it generally suffices to show that the consistency of T1 can be proved in T2, and

this is generally the method used.

It is important to note that a theory may be interpretable in a proper subtheory

of itself. The best-known case occurs near the top of the table, in connection with

the work of Gödel and Cohen on the consistency and independence of the axiom of

choice (AC), the continuum hypothesis (CH), the generalized continuum hypothesis

(GCH), and the axiom of constructibility (V = L). Each of the theories ZF, ZFC

= ZF + AC, ZFC + CH, ZFC + GCH, ZFC + V = L is a proper subtheory

of the next: AC is not provable in ZF, CH is not provable in ZFC, GC H is not

provable in ZFC + CH, and V = L is not provable in ZF + GCH. Yet ZFC + V

= L is interpretable in ZF (by relativizing all quantifiers to sets for which a certain

condition holds, called “constructibility”).

In the middle of the table, the vague statements that the union Qω of Q1, Q2,

Q3, . . . is a “variant version” of PRA, and that the union Pω of P1, P2, P3, . . . is

a “variant version” of PM, would be put more precisely as statements about inter-

pretability. At the bottom of the table, by a theorem of Wilkie, Q1 is interpretable in

an ostensibly much weaker theory, Robinson arithmetic or Q, in which one cannot

even prove the associative, commutative, and distributive laws. Indeed, a significant

amount of arithmetic, algebra, and analysis can already be carried out, using suit-

able interpretations, at this level of interpretability strength. (For Wilkie’s theorem,

and more generally for precise definitions of and information about weak theories of
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arithmetic, with further references to the literature, the standard reference is [15]. A

significant work too late to be mentioned there is [11].)

The theories on the list constitute targets a neo-Fregean may shoot for, in the

sense that the goal is to develop a neo-Fregean theory in which theories as high up

the list as possible can be interpreted. But generally speaking, the bulk of pure and

applied mathematics can be squeezed in P2 and fit more comfortably into P3. What

lies beyond is higher set theory. Higher set theory does have implications about, for

instance, real numbers and comparatively simple sets thereof, but these are generally

of interest only to specialists in certain areas not quite at the core of mainstream

mathematics. (For an early example of a fairly down-to-earth result requiring higher

set theory, see [14]. The same author has for three decades now been producing

any number of additional examples.) And to return to the objection noted earlier,

philosophical gains may compensate for mathematical losses, so many philosophers

might be content with a weaker theory than the strongest on the list, if it is better-

founded.

What would constitute being philosophically “better-founded” is an issue that

may be postponed until some actual neo-Fregean theories have been produced for

evaluation. But surely the requirement that whatever restriction is imposed on

Frege’s inconsistent system should be a “simple and natural” one is a crucial con-

straint if a neo-Fregean project is to have much philosophical significance. Needless

to say, “simple and natural” is not a precisely-defined technical term like “consistent”

or “sufficient to interpret T ”, where T is any of the theories on our list. Whether or

not the constraint of simplicity and naturalness has been achieved in a given case

will be a matter more of philosophical opinion than of mathematical fact. But the

constraint is no less important for all that.

So much for neo-Fregean targets. Let us now consider strategies for reaching

them. To begin with, note that set comprehension (7), which leads to paradox, de-

rives from two assumptions, concept comprehension (1) and the existence of exten-

sions (4), which latter is one instance of the existence of abstractions (10). There

are accordingly multiple approaches one might take to repairing Frege’s system: (A)

restrict (1) and keep (4) unrestricted; (B) restrict (4) and keep (1) unrestricted; (B′)

restrict (4) and restrict (1) also; or (C) drop (4) altogether, while keeping some other

instance(s) of (12). Actual specimens of each of these strategies are listed in the ad-

joining table, along with an indication of how strong a fragment of classical mathe-

matics becomes interpretable on each approach, before resorting to ad hoc additional

assumptions. In all cases, the background logic is second-order.

The strategy of restricting comprehension was first investigated by Richard Heck,

though it is impossible to do justice to his approach within the simple second-order

framework adopted here. Insofar as the approach of restricting comprehension can

be represented in our framework, the most obvious restriction to impose would be

to assume (1) only for formulas 8(x) that may contain quantifications involving ob-

ject variables but none containing concept variables. This gives what are called the

simple predicative concepts. The Russell paradox is blocked, because when one un-

packs the definition (5) of ∈, the condition of x being a set that is not an element of

itself involves an ineliminable quantification over concepts. If one takes the original

concept variables to range over simple predicative concepts, and adds a new style

of concept variable, assuming for these (1) for formulas that may contain quantifi-

cations involving object or simple predicative concept variables, but not these new
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Kind of Restriction Author Strength

None Frege →←

Restrict Comprehension Heck et al. Q2

Restrict Extensions: Zig Zag

Quine →←

Quine-Wang ?

Restrict Extensions: Limitation of Size

unrestricted comprehension von Neumann-Boolos P2

restricted comprehension von Neumann P

Drop extension, Keep some Abstracts

equinumerosity Wright et al. P2

non-inflating, very nearly invariant Fine P3

Table 3 Partial chart of post- and neo-Fregean strategies.

variables, one gets the second-degree predicative concepts. Continuing in this way,

introducing more styles of variables and more degrees of predicative concepts, pro-

duces the ramified predicative hierarchy of concepts. The full, unrestricted, original

version of (1) is then called impredicative by contrast.

With just simple predicative comprehension and extension existence, one has of

course extensionality, and can at least prove the existence and uniqueness of the null

set and of the result of adding any given element to any given set. This is already

enough to give the interpretability of Q by an old result of Wanda Szmielew and

Alfred Tarski, and therefore of Q1 by Wilkie’s theorem. (The Szmielew-Tarski result

is stated without proof in the same work where the system Q is introduced [30]. A

proof is given in [9]. An alternate proof, showing that extensionality is not needed,

is given in [21]. With ramified predicative comprehension, one can get Q1 without

relying on the difficult proof of Wilkie, by a method due to A. P. Hazen, and one

gets Q2 as well. See [8].) And with this weak arithmetic one also gets the modicum

of algebra and analysis that is interpretable therein. But that seems to be as far as

one can go in terms of our list of fragments of classical mathematics, since the next

item on the list, Qω is strong enough to prove the consistency of the theory. (The

observation is mentioned in [8], and as there stated was first made to the reviewer by

Saul Kripke.)

The work of Heck is set in a more elaborate framework, as is that of Fernando

Ferreira and Kai Wehmeier, but the results obtained remain well below P2, since the

consistency of the theories involved can be proved there. For Heck [18] the question

of interest is as much historical as logical: Could Frege have avoided contradiction by

predicativity assumptions, while still carrying out his derivation of arithemtic? For

this reason Heck employs a framework as close as possible to that of Frege himself,

apart from the predicativity restriction, and this means that his framework in effect

allows terms {x : 8(x)} and objects denoted by them even if 8(x) is impredicative,

though it does not allow the assumption of (7) about those objects unless 8(x) is

predicative. Heck proves the interpretability of Q in the simple predicative theory of

this kind by methods close to Frege’s own derivation of arithmetic from (12) except

at one crucial point, the proof that the successor function on natural numbers is total.

The presence of the terms {x : 8(x)} makes proving consistency harder, but Heck
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also proves the consistency of the corresponding ramified predicative theory, building

on work of Terence Parsons [24].

Ferreira and Wehmeier [12] answer a question left open by Heck, proving the con-

sistency of the related theory that allows (1) provided 8 involves only a single initial

universal quantification over concepts, and is assumed equivalent to some 9 that in-

volves only a single initial existential quantification over concepts. Wehmeier [33]

points out and remarks negatively on the peculiarity of such systems that, while pur-

portedly purely logical, they can prove the existence of individuals, or objects that

are not extensions of concepts.

Turning now to restrictions on (4) and thence on (7), Russell early noted two

possible strategies: limitation of size approaches, which allow the existence of

{x : 8(x)} only if there are not too many objects x for which the condition 8(x)

holds, and zigzag approaches, which allow the existence of {x : 8(x)} only if

the condition 8(x) itself is not too complicated. For Russell’s efforts, eventually

abandoned, to pursue the zigzag approach, see [32] and the editorial commentaries

in [29].

After Russell himself, the most prominent writer to follow a zigzag approach was

Quine. The particular restriction Quine wished to place on 8(x) he called stratifi-

cation, and the resulting system has been called ML. Like other set theorists who

allow anything like Fregean “concepts”, Quine calls them “classes”. Unlike other set

theorists who allow “classes” in addition to sets, Quine does not have two distinct

styles of variables for sets and classes, and does not distinguish between a set and

the class whose members are the elements of that set: sets are simply some among

the classes, namely, those capable of being elements of others. Allowance being

made for both these differences, it may be said that in both editions Quine allows

impredicative comprehension in the sense that any condition determines a “class”;

but there is a restriction on which kinds of conditions are assumed to determine sets.

The difference between editions is that a more severe restriction is imposed in the

second than in the first. The details need not concern us, since J. B. Rosser derived a

paradox in ML (1st edition). A repair, suggested by Hao Wang, produces a system

ML (2nd edition), where the Rosser derivation is blocked. However, the consistency

even of this system remains in doubt. (See the preface to the second edition in [26].)

George Boolos has evaluated what can be accomplished on the limitation of size

approach, if one understands “not too many” to mean “not as many as there are

objects altogether”. Let U be the universal concept, the concept under which all

objects fall, which is to say the concept of self-identity, given by the condition x = x .

Then more formally the proposal is to allow (4) on the hypothesis that one does not

have X ≈ U . This particular understanding of limitation of size is often called the

maximal principle. Boolos himself speaks of the principle of small extensions. The

system that results is strong enough to interpret P2, as he observes in [4].

One does not get more because, unfortunately, the assumption that a concept has

an extension unless the objects falling under it are as many as there are objects

does not imply the conclusion that a concept has an extension unless the objects

falling under it are very, very many without the further assumption that there are

very, very many objects. To get the usual infinity axiom (asserting the existence of

not just infinitely many finite sets but of an infinite set) and power axiom (asserting

the existence of the set of all subsets of any given set) of ZF, one has to keep going

back, so to speak, to the Court of Limitation of Size, to get new rulings about how
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many are too many: that infinitely many are not too many, that as many as there are

subsets of any given set is not too many. With infinity axiom as an ad hoc additional

assumption, one gets P3; with power as a further such assumption, one gets ZF2.

The idea of limitation of size is a borrowing from Cantor, who distinguished the

merely transfinite consistent multiplicities, which form sets, from the absolutely in-

finite inconsistent multiplicities, which do not. And as Boolos notes, the maximal

principle is a borrowing from von Neumann’s attempt to reduce Cantor’s inchoate

theory to rigorous axiomatic form. Von Neumann assumed only simple predicative

comprehension, with the result that in place of P2, or P3 with infinity, or ZF2 with

power as well, his approach yields only P, P2, and ZF.

I have not yet mentioned the approach that has attracted the most attention in re-

cent years, and to which some writers would restrict the label “neo-Fregean”, namely,

the abstractionist strategy of rejecting (4) altogether, and basing the derivation of

mathematics on (12) and/or some further or other special cases of (10). The chief

proponent of this approach has been Crispin Wright, whose book [34] was the work

that ushered in the neo-Fregean era. For the observation of Parsons about Frege’s us-

ing only (12), without further recourse to (4), in developing arithmetic only became

widely known when a sketch of the development of arithmetic in second -order logic

plus (12) was presented by Wright, who conjectured the consistency of the system

just mentioned, and claimed substantial philosophical advantages for basing arith-

metic upon it. Unfortunately, a joint paper of Wright and Neil Tennant, which would

have contained a more rigorous formal development, never appeared, while Ten-

nant’s own rigorous version was set in a context not calculated to attract a broad

readership among those interested in neo-Fregeanism, that of a book-length work on

intuitionistic relevance logic [31]. Meanwhile, that the system proposed by Wright

was indeed consistent as conjectured was noted independently by several writers [7],

[17], [19]. But it was George Boolos [5] who worked out that second-order logic

with (12) is of the same interpretability strength as P2. Collaborators with Wright,

notably Bob Hale, have proposed ad hoc additional or alternative assumptions that

can boost this to P3 or beyond. The joint collection of Hale and Wright [16] includes

both Hale’s technical work on neo-Fregean analysis, as well as much philosophical

discussion by both authors.

3 The General Theory of Abstraction

One way to approach the work under review is through consideration of the most

pressing objection to abstractionism, the bad company objection. The objection is

that no cogent reason has been given for assuming (12), when it is known to be

surrounded by other abstraction principles, other instances of (10), that are untenable

because they lead to contradiction.

A first thought is that one should simply say that only consistent abstraction prin-

ciples are to be admitted. There are however, two insuperable difficulties with this

thought. The first difficulty is that there is no effective procedure for determining

whether a given abstraction principle is consistent. This was shown by Heck, as fol-

lows. For any 2, the condition 2 ∨ X ≡ Y defines an equivalence that will agree

with the universal equivalence (making all concepts are equivalent) if 2 holds, but

will agree with ≡ (making coextensive concepts equivalent) if 2 fails. Hence the



238 John P. Burgess

corresponding abstraction principle

♠X = ♠Y ↔ (2 ∨ X ≡ Y )

will be consistent if and only if 2 is, and there is no effective procedure for deter-

mining that by Church’s theorem.

The second difficulty is that two abstraction principles may be each separately

consistent, and yet assuming them both jointly may be inconsistent. This was shown

by Boolos. A simplified version of his example goes as follows. Call X and Y almost

coextensive, written X ≡0 Y , if for all but finitely many objects x , x falls under the

one if and only if it falls under the other. Then, like (12), the abstraction principle

♥X = ♥Y ↔ X ≡0 Y (13)

is consistent. But whereas (12) has models with an infinite domain of objects (and in

particular one whose domain is 0, 1, 2, . . . ,ℵ0), and none with a finite domain (since

on a domain with n objects it requires n + 1 numbers, 0 through n), by contrast (13)

has finite models (where≡0 coincides with the universal equivalence) but no infinite

ones (where it requires too many abstracts). So while each of (12) and (13) separately

has a model, their conjunction has none. (This is a simplification of Boolos’s original

example.)

A second thought is that, since what goes wrong in the various cases of inconsis-

tency so far is a problem inflation, where we have to introduce too many abstracts

because an equivalence has too many equivalence classes, we should require that an

equivalence first be proved to be noninflationary, to have not-too-many equivalence

classes, before we allow ourselves to assume the existence of abstracts for it. Now

the assumption that 8 is noninflationary can be expressed as follows:

∃R∀X∃x∀Y (∀y(Y (y)↔ R(x, y))→ 8(X, Y )) (14)

This says that there is a relation R such that for every concept X there is an object

x such that X is equivalent to the “section” of R at x , which is to say, the concept Y

under which an object falls if and only if that object is R-related to x . This implies

that there can be no more equivalence classes of concepts than there are objects, and

the converse implication also holds (assuming the axiom of choice). But there is a

serious difficulty with requiring (14) to be proved before the existence of abstracts

for the equivalence defined by 8 is allowed to be assumed. The difficulty is that it

will make it impossible to assume (12) and thus introduce numbers, until it has been

somehow proved that there are infinitely many objects, whereas Frege’s idea was,

and the neo-Fregean idea has always been, to get infinitely many objects from (12).

Even apart from the difficulty noted so far, there is the further difficulty that one

cannot assume, even for equivalence relations on objects as opposed to equivalence

superrelations on concepts, and even for those that have only two equivalence classes,

that abstracts always exist. For the inconsistent naïve theory of sets (7) can be inter-

preted in a theory that allows unlimited object-abstraction, by identifying {x : 8(x)}

and its complement with the two abstracts for the equivalence given by

(8(x) & 8(y)) ∨ (∼8(x) & ∼8(y)) (15)

And a parallel difficulty arises for concept-abstraction, identifying ‡X and its com-

plement with the two abstracts for the equivalence given by

(X ≡ Z & Y ≡ Z) ∨ (∼ X ≡ Z & ∼Y ≡ Z) (16)
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Or at least this is so provided it is assumed that, when dealing with more than one

equivalence, the abstracts with respect to distinct equivalences are distinct, at least if

the corresponding equivalence classes are. (In the somewhat garbled allusion to the

problem in my own review [7] of Wright, I neglected to state this important proviso.)

For in set theory, there is a standard way of providing abstracts for equivalences on

objects, attributed to Dana Scott, that can always be used, namely, taking the abstract

of x to be the truncated equivalence class of x , the set of all y equivalent to x that

are of lowest possible rank. This will, however, in some cases assign x identical

abstracts with respect to distinct equivalences, even though the equivalence classes

are distinct, since distinct equivalence classes may have identical truncations. But

assuming distinctness of abstracts for distinct equivalences, at least when the corre-

sponding equivalence classes are different, one does get an inconsistency, because

there are simply too many equivalences, even considering ones with no more than

two classes. This problem Fine calls hyperinflation.

The main difference between the Scottish School—Wright and associates, work-

ing at the Arché Institute at the University of St. Andrews—and the author of the

work under review is that the former are content to proceed piecemeal, adding spe-

cific abstraction principles one by one, while the latter wishes to develop a general

theory that will, so to speak, admit all admissible abstraction principles at once.

On both approaches there is an awareness of bad company objections, but for the

Scottish School it is dealt with by special pleading on behalf of whatever abstraction

principle(s) they wish to admit, while Fine’s work is essentially devoted to examining

the only obvious simple and natural restriction that can prevent hyperinflation. Thus

the limits of Fine’s approach are likely to be the limits of any form of neo-Fregean

abstraction that takes the bad company objection fully seriously.

The key notion for Fine is invariance, which is defined as follows. A permutation

of a domain of objects is a one-to-one function π from that domain onto itself. Such

a permutation induces a permutation, by abuse of language also denoted π , on con-

cepts (and on relations) applying to objects in the domain: x falls under π X if and

only πx falls under X (respectively, x and y fall under π R if and only if πx and πy

fall under R). A concept X (respectively, relation R) is invariant if X is coextensive

with π X (respectively, R is coextensive with π R) for all permutations π . A little

thought shows that there are only two invariant concepts (the universal and null con-

cepts), and four invariant (two-place) relations (the universal, identity, distinctness,

and null relations). In general the number of invariant n-place relations for n ≥ 1 is

exp(exp(n − 1)+ 1).

Things will turn out to be much more interesting one level up, so let me set down

the relevant definitions. A superconcept X is invariant if π X falls under X whenever

X does, for all concepts X and permutations π of objects. (Note that it is only those

permutations on concepts that are induced by permutations on objects that are being

considered. If one allowed arbitrary permutations of concepts, the situation would be

the same as it was one level down.) A superrelation R is invariant if π X and πY fall

under R whenever X and Y do, for all concepts X and Y and all permutations π of

objects. A superrelation R is doubly invariant if π X and ρY fall under R whenever X

and Y do, for any concepts X and Y and any permutations π and ρ of objects. These

last two notions are of most interest when R is an equivalence. (Double invariance

for an equivalence amounts to the ostensibly weaker requirement that X is always

R-equivalent to π X , for any concept X and permutation π .)
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In general, a concept, relation, superconcept, or superrelation definable in purely

logical terms (without parameters) will be invariant. At the second or super level

there will be more invariants than these, but in abstract logic and model theory, in-

variants are regarded as “logical” in a generalized sense. It is this fact that would

make an invariance restriction on abstraction arguably a principled rather than an ad

hoc one. (However, even if one grants that logic must not distinguish among objects

in general, so that permuting them would make no difference, it is not obvious that

an exception should not be made for logical objects, if one assumes there are such

things.)

We can now introduce a preliminary version of Fine’s general theory of abstrac-

tion. The theory, when being considered in itself, is naturally formulated as a third-

order theory, with axioms being universal statements of the form ∀R(−R−). But for

purposes of comparison with other approaches, it may be reformulated in a second-

order version, replacing such a single axiom by an axiom scheme, according to which

for every formula 9(X, Y ) it is an axiom that −9(X, Y )−. The third-order version

involves a new predicate which may be written @(R, X, u) and is intended to mean

“u is the abstract of X with respect to R”.

A slightly redundant list of axioms may be given as follows. To avoid trivialities,

we assume there are at least two objects. Then the first substantive axiom says that

if any concept has an abstract with respect to R, then every concept has an abstract

with respect to R.

∃X∃u@(R, X, u)→ ∀X∃u@(R, X, u) (17)

The next axiom says that the abstracts of two concepts with respect to the same

superrelation are identical if and only if the concepts fall under that superrelation.

@(R, X, u) & @(R, Y, v)→ (u = v↔ R(X, Y )) (18)

A little thought shows that this implies that abstracts exist only for equivalences, and

that when they exist they are unique. When it exists, the unique abstract u of X

with respect to the equivalence R may be denoted §R X , and we will then have (10)

for any R for which abstracts exist. The next axiom says that abstracts of an object

for different equivalences are distinct, at least unless the corresponding equivalence

classes coincide:

§R X = §S X → ∀Z(R(X, Z)↔ S(X, Z)) (19)

This might be strengthened in either of two incompatible ways:

§R X = §S X ↔ ∀Z(S(X, Z)↔ S(X, Z)) (19a)

§R X = §SX → R ≡ S (19b)

The final axiom asserts the existence of abstracts for all doubly invariant, at-most-

two-class equivalences.

R is an equivalence &

R is doubly invariant &

R has at most two equivalence classes→

∀X∃u@(R, X, u) (20)
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Later we will consider strengthenings of the theory by weakening the second and

third hypotheses—the invariance and noninflating conditions—of (19). But first let

us see that even with the present version third-order arithmetic is interpretable in the

general theory of abstraction.

Proof Let us first note an equivalent version of the general theory of abstraction in

the form under consideration. Given any invariant superconcept X, it is easily seen

that the following condition defines a doubly invariant, at-most-two-class equiva-

lence RX:

RX(X, Y )↔ ((X(X) & X(Y )) ∨ (∼X(X) & ∼X(Y ))) (21)

Obviously the complement of X would give rise to the same equivalence RX. In-

versely, given any equivalence R that is doubly invariant and has at most two equiv-

alence classes, it is equally easily seen that the following conditions, wherein U is

the universal concept, define complementary invariant superconcepts:

X+
R
(X)↔ R(U, X) (22a)

X−
R
(X)↔∼R(U, X) (22b)

Assuming the existence of abstracts for doubly invariant, at-most-two-class equiv-

alences is in effect equivalent to assuming the existence of extensions for invariant

superconcepts.

Now invariant superconcepts amount to what in abstract logic and model theory

are called generalized quantifiers. These include, for instance, none, some, all, at

most one, exactly one, at least one, at most two, exactly two, at least two, finitely

many, infinitely many, most, evenly many, oddly many, and so on. The assumption

of the existence of logical objects corresponding to these quantifiers at once gives us

surrogates for natural numbers, in the form of the objects corresponding to exactly

zero, exactly one, exactly two, and so on. Recognizing these objects corresponds to

the historical step, first taken according to some accounts by the Pythagoreans, of

switching from the adjectival use of numerals as in “Six disciples conversed with the

master”, to the nominal use of numerals as in “Six is a perfect number”.

Having surrogates for numbers among our objects, concepts applying to them

give us surrogates for sets of natural numbers, and we can therefore interpret P2 in

our theory. But actually we can do better, since the quantifier-objects themselves

already include surrogates for sets of natural numbers. For instance, the objects

corresponding to evenly many and oddly many can serve as surrogates for the sets of

even and of odd numbers. Then using the concepts as surrogates for sets of sets of

numbers, we can interpret P3. �

We may now consider how far the invariance and at-most-two-class conditions in

(20) can be relaxed. The first notions we need are the following. Some objects are

few if they are fewer than (not equinumerous with) all objects, and are very few if

they are fewer than some objects that are themselves few. A concept Y or a set y

is (very) small if the objects that fall under Y or are elements of y, as the case may

be, are (very) few. An equivalence R is (very) nearly invariant if there are a (very)

few objects such that R(π X, πY ) holds whenever R(X, Y ) holds, for all concepts

X and Y , and for all permutations π that leave the given objects fixed. We can then
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strengthen (20) to the following:

R is an equivalence &

R is very nearly invariant &

R has no more equivalence classes than there are objects→

∀X∃u@(R, X, u) (23)

Even with this strengthening, the general theory of abstraction is consistent.

Proof In order to prove the consistency of the general theory of abstraction in the

version with (23), one constructs a set-theoretic model. Objects will be represented

by the elements of some set M . Then concepts will be represented by some subsets of

M , two-place relations by some sets of ordered pairs of elements of M , and so on—

and change “some” here to “all”, and you get the definition of a standard model. To

begin with, I assume GCH and show how, for any successor cardinal ℵα+1, to get a

standard model with cardinality(M) = ℵα+1, where “(very) small” means (<)ℵα.

We begin with a series of reductions of the problem. First, to obtain a standard

model it will be enough to show that the number of very nearly invariant, not-too-

many-class equivalences, and the number of equivalence classes for such equiva-

lences, are ≤ ℵα+1. For in that case, the number of pairs consisting of such an

equivalence and one of its classes will be ℵα+1 · ℵα+1 = ℵα+1. Then fixing a one-

to-one function taking the set of such pairs (or alternatively, simply the equivalence

classes) into the set M , we may let the abstract of X with respect to an equivalence

be the object of M corresponding under this function to the pair consisting of the

equivalence in question and the equivalence class of X with respect to it (respec-

tively, simply to that equivalence class). This will make not only (19) but (19a)

(respectively, (19b)) true.

Second, it is actually enough to show that the number of very nearly invariant

equivalences ≤ ℵα+1. For then, for any such equivalence that has no more equiv-

alence classes than there are objects we will have ≤ ℵα+1 equivalence classes, and

the total number of equivalence classes will be ≤ ℵα+1 · ℵα+1 = ℵα+1. Third, it

is actually enough to show for that every very small set s the number of s-invariant

equivalences is≤ ℵα+1, where s-invariance means invariance with respect to all per-

mutations that fix all elements of s. For every very nearly invariant equivalence is

s-invariant for some such s, and GCH implies the total number of such s is ≤ ℵα+1.

Fourth, it is enough to associate with each s-invariant equivalence a subset, to be

called its signature, of some set P of cardinality ≤ ℵα , in such a way that distinct

equivalences have distinct signatures. For then the number of s-invariant equiva-

lences will be ≤ exp(ℵα), which by GCH means ≤ ℵα+1.

In pursuit of a suitable definition of signature, let us define for any subsets C and

D of M their s-profile to be the sextuple consisting of C∩s and D∩s and a sequence

of four cardinals ≤ ℵα+1. Writing Ms as short for the difference M − s, the four

cardinals in question are to be the cardinalities of the following four disjoint sets,

whose union is Ms :

C ∩ D ∩ Ms , (C − D) ∩ Ms , (D − C) ∩ Ms , Ms − (C ∪ D).

Let P be the set of all sextuples consisting of two subsets of s and four cardinals

≤ ℵα, so every s-profile is an element of P .
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The key observation is that for any two pairs (C, D) and (C ′, D′) that have the

same s-profile, there is a permutation π that leaves the elements of s fixed, and

has πC = C ′ and π D = D′. This π is obtained by piecing together the identity

function on s, a one-to-one function from C ∩ D ∩ Ms onto C ′ ∩ D′ ∩ Ms , such as

must exist since the two sets have the same cardinality, and similar functions for the

obvious further three pairs of sets. The existence of such a π guarantees that, for any

given equivalence, if any pair C , D with a given s-profile are equivalent, then every

pair C , D with that s-profile are equivalent. And this means that the equivalence is

completely determined by the set of s-profiles for which we do have a pair with that

profile that are equivalent. This subset of P may be taken as the signature of the

equivalence.

To complete the proof it will be enough to show that cardinality(P) ≤ ℵα . To see

this, we note on the one hand that since the cardinality of s is < ℵα, by GCH the

number of subsets of s is ≤ ℵα, and on the other hand, that the number of cardinals

≤ ℵα+1 is always, even without GCH, ≤ ℵα. The number of sextuples in P is thus

≤ ℵ6
α = ℵα.

This completes the proof of the existence of a standard model on a domain of κ

objects for any successor cardinal κ = ℵα+1, assuming GCH. The proof does not

work for limit cardinals, since for such a cardinal κ , either there will be too many very

small subsets s, or else there will be too many cardinals ≤ κ . (For the cognoscenti,

the former problem arises if κ is singular, and the latter if κ is regular.) For κ = ℵ1,

where “very small” means finite, and “small” means countable, the foregoing proof

gives a standard model assuming only CH.

It is, however, a well-known consequence of Gödel’s proof of the interpretabiliy of

ZFC + CH and ZFC + GCH in ZFC that any purely arithmetical theorem that can

be proved to follow from the extra assumption CH or GCH by accepted mathematical

means (as codified in ZFC), actually can be proved without the extra assumption.

And the statement that the general theory of abstraction is consistent is reducible, by

the kind of coding used in the proof of Gödel’s incompleteness theorems, to a purely

arithmetical statement. �

A somewhat different-looking though essentially equivalent way of putting the mat-

ter would be to say that, even without CH we get a nonstandard model, in which the

concept variables, instead of ranging over arbitrary subsets of M , will range over

constructible subsets of M . Looking closely at the proof formulated this last way, it

appears that the second-order, schematic version of the general theory of abstraction

is interpretable in the theory ZF∗+ V = L, where ZF∗ is ZF minus its power set

axiom, but with the assumption that at least the power set ℘(ω) of the set ω of finite

ordinals exists, and where V = L is as always the axiom of constructibility. This

latter theory itself is interpretable in ZF∗, which in turn is interpretable in P3. The

end result is that the general theory of abstraction appears to have exactly the same

interpretability strength as P3, though the reviewer has not dotted every i nor crossed

every t in the proof.

Obviously the assumption of having no more classes than there objects cannot

be dropped from the hypothesis of (23). What about the assumption of being very

nearly invariant? Can this be weakened to the assumption of being nearly invariant?

Unfortunately, if the assumption is thus weakened the proof breaks down, because

unless s is very small, we cannot be sure the number of subsets C ∩ s that appear in
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profiles will be ≤ ℵα as needed for the proof.1 The long and the short of it is, we

appear to have reached the “limits of abstraction”.

Apart from the material in the two immediately preceding paragraphs, essentially

everything in this section has been distilled from the book. The treatment there is

considerably lengthier—enough so as to have made the process of distillation seem

worthwhile undertaking—for two reasons. First, Fine seeks complete generality in

the statement of results. Thus, for instance, where I have considered only the ques-

tion of the existence of a model, Fine seeks to characterize (without reliance on

special assumptions like CH or GCH) all cardinals ℵα such that there exists a stan-

dard model of size ℵα. Second, he devotes a good deal of attention to two subsidiary

topics.

One of these additional topics is the special kind of equivalences he calls internal,

where the issue whether X and Y are equivalent depends only on what objects fall

under X and under Y , and not on what or how many other objects there may be

beyond those. For example, being equinumerous is internal, having equinumerous

complements is not. Another of the additional topics, not at all unrelated, is how to

generate a minimal model “from the bottom up”, rather than just prove the existence

of some model “from the top down”, as in the foregoing consistency proof. Though

this topic has some intrinsic interest, Fine hints that his real motivation for entering

into details about the construction is closely bound up with work in progress on what

he calls “procedural postulationism”, on which he has given public lectures but has

not yet at the time of this writing published, and on which it would therefore be

premature to comment. Setting details about minimal models and related additional

topics aside, therefore, I here conclude my account of the technical results of the

book.

What those results suggest is a limit well below higher set theory for what can be

obtained by abstraction if one takes the bad company objection fully seriously. An

abstractionist who concedes to the author that the objection ought to be taken fully

seriously, must then either devise some other way than through imposing invariance

restrictions to deal with the problem of hyperinflation, or else argue that abstraction-

ism offers philosophical benefits worth sacrificing higher set theory to obtain.

But actually, there is some question whether even Fine has taken the bad company

objection as seriously as it should be taken. For it would seem that any philosophical

account that would justify admitting abstracts of concepts with respect to equinu-

merosity≈ would equally justify admitting abstracts of relations with respect to iso-

morphism∼=. And certainly the one equivalence is just as invariant as the other. But

inconsistency results from admitting abstracts for isomorphism as A. P. Hazen [17]

and Harold Hodes [19] both observed, since such abstracts or isomorphism-types

include order-types, which include ordinals. And with the ordinals comes a contra-

diction, the Burali-Forti paradox.

The restriction of Frege’s assumption of the existence of abstracts to the case of

logical equivalences has some intuitive appeal, as does the construal of logicality as

invariance. By contrast, stopping at equivalences that apply to first-level concepts of

one place only, seems unprincipled. Boolos has a device, plural quantification, that

if concepts of any level were dropped—and with them, I suppose, any aspiration to

have the resulting theory called “neo-Fregean”—would provide a substitute for the

one-place concepts X , and none for the two-place concepts R, so the issue of why

to assume the axioms for the former and not the latter would then not arise. But
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unfortunately, the two-place concepts are crucially needed to express the notion of

invariance.

So far as I can see, in the present context there are just two strategies that might

be used to defuse the paradox. One would be to motivate independently somehow

the assumption of pairs of objects as objects, and then do away with relations, using

concepts (or plural quantification) applying to pair-objects. The other would be to

argue somehow that the correct two-place analogue of permutation-invariance is not

isomorphism-invariance but some much coarser equivalence with far fewer equiva-

lence classes (perhaps one that gives as the only two-place analogues of quantifiers

combinations of one-place quantifiers, such as for every x there is some y, for most

x there are exactly two y, for some x there are infinitely many y, and so on). But it

is not at all clear that either strategy can be made to work.

The Burali-Forti paradox was historically the very first of the set-theoretic para-

doxes to become public, years before the Russell paradox. This paradox—or rather,

the failure to deal adequately with it—remains the skeleton in the abstractionist

closet. Fine mentions it at the very end of his book as another area where more

work is needed. It will be very interesting to see what future work of Fine and others

will make of it.

4 Purely Philosophical Issues

It remains to consider the alleged philosophical benefits of abstractionism, for which

sacrifices may be required. Now the underlying assumption of discussions about the

philosophical benefits of introducing natural numbers—I mean introducing them into

discourse, not necessarily introducing them into reality—in one way rather than in

another, is that even when two theories are interpretable in each other, and to that ex-

tent from a mathematical point of view equivalent, from a philosophical point of view

it may be preferable to regard one of them as primary and the other as derivative,

with the former being justified directly, and the latter justified by its interpretability

in the former.

In this connection the first thing to note about Fine is that, unlike the Scottish

School, he is not especially concerned to advocate the abstractionist way of intro-

ducing numbers. His article began with the words, “This paper has been written

more from a sense of curiosity than commitment,” and the same disclaimer, with

“present monograph” substituted for “paper”, is the opening line of the introduction

to the book version. Fine’s concern is more to evaluate claims Wright and others

have made about the supposed benefits of introducing numbers as abstracts than to

make any such claims himself.

There are two problems, especially, that Wright in his book claimed abstraction-

ism could help solve. Each problem was in a sense raised by Frege, and each has

also been made the topic of an influential paper by Paul Benacerraf. We begin with

Frege’s question, “How do we know that the number two is not Julius Caesar?” or

“How do we know that Julius Caesar is not a number?” To this Fine adds “And how

do we know that the number two is not a Roman?” or “How do we know that no

Roman is a number?” Frege held that introducing numbers as equivalence classes,

rather than simply as abstract, which is to say, identifying a number with a set

#X = {Y : X ≈ Y } (24)
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and then demonstrating (12), as opposed to taking #X as a previously undefined term,

and introducing it by an undemonstrated assumption of (12), had the advantage of

providing an answer to the Julius Caesar problem. Most of Frege’s readers, however,

have had difficulty seeing why this step doesn’t just push the problem back a stage,

leaving us with the question, “How do we know that Julius Caesar is not a set?”

But be that as it may, there is a problem with the identification (24) itself. For

many of Frege’s readers have had difficulty believing that a number could turn out to

be a set. Russell, in the period before he discovered his paradox, independently re-

discovered several of Frege’s ideas, and among them the idea of identifying a number

with a set. But where Frege identified a number with the extension of a superconcept,

making the number two the set of all concepts under which exactly two objects fall,

Russell identified a number with the extension of a concept, making the number two

the set of all sets in which there are exactly two objects as elements. This difference

in identifications between two independent investigators counts against both identi-

fications, each of which is in any case implausible, as Russell, at least, if not Frege,

acknowledged, lamely excusing himself by saying, “It is . . . more prudent to con-

tent ourselves with the class of couples, which we are sure of, than to hunt for a

problematical number 2 which must always remain elusive” ([28], p. 172). The ar-

tificiality is more conspicuous with later set-theoretic identifications of number, like

Zermelo’s, which makes the number two to be the singleton of the singleton of the

empty set {{{}}}, or von Neumann’s, which makes it to be the unordered pair of the

empty set and its singleton {{}, {{}}}. Those definitions provoked a classic paper of

Paul Benacerraf [2] urging that whatever numbers may be, they are not sets. (While

Benacerraf starts with von Neumann and Zermelo, his remarks are clearly meant ot

apply to Russell and Frege as well.)

Since that paper philosophers of mathematics have pretty generally turned against

any such identification, and in that sense have rejected the question, “What are num-

bers?” There are, however, three forms this rejection may take. Nominalists reject

the question’s existence presupposition, that there are such things as numbers. Fine

ignores them, and I am prepared, in the present context, to join him in doing so.

Structuralists reject the question’s uniqueness presupposition, that there is such a

thing as the number zero in the system of natural numbers. According to structural-

ism, an assertion about “the natural number system” and “the number zero” is to

be understood as a generalization about any system of objects that is ordered in an

ω-sequence, and about the initial object in any such system. On this view, there is no

more such a thing as “the” number zero in “the” natural number system than there

is such a thing as “the” identity element in “the” group of order two. Fine dismisses

structuralism with a brief critical remark, and I am prepared, in the present context,

to concur in its dismissal.

That leaves a third way to reject the question, namely, by answering, “Everything

is what it is, and not another thing.” In other words, one dismisses the question “What

are numbers?” by answering that numbers are objects sui generis. Underlying this

position is the assumption, diametrically opposed to Frege’s, that the category N is

divided into any number of sorts Ni , and that an identity a = b involving two terms

of category N is automatically accounted false (if not ill-formed and without truth-

value), unless the terms are of the same sort. (As Fine points out, some provision will

have to be made in a more refined statement of this position for the use of nonsortal

terms like “What Paul is thinking of”.) And it would seem that the grammatical point
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about sortal divisions within the category N is all that is needed to provide an answer

to the Julius Caesar problem (and the Roman problem).

This leaves us, however, with the problem, “How do we know that ‘two’ and

‘Julius Caesar’ are expressions of type N of different sorts?” Wright’s suggestion, to

put it in my own words, and very roughly, is that different sorts come with different

identity criteria for the objects denoted by expressions of type N of those sorts, and

the fact that the identity criteria provided by (12) for numbers are obviously very

different for those for human beings is what indicates that the terms “two” and “Julius

Caesar” are of different sorts.

But supposing we accept that objects introduced as abstracts in general, and num-

bers as introduced by (12) in particular, are not to be identified with any objects not

introduced as abstracts, there still remains the question how we know that numbers

as introduced by (12) are not to be identified with any abstracts introduced by any

other abstraction principle? Or do we in fact know that much? Fine’s formal system

certainly assumes that abstracts with respect to different equivalences are different

if the corresponding equivalence classes are different. But what about cases where

the equivalence classes are the same? The formal system is equally compatible with

assuming, as per (19a), that in such cases, too, the abstracts are still always different,

and with assuming, as per (19b), that in such cases, rather, they are always the same.

It is also compatible with assuming that they are sometimes the same, and sometimes

different.

Fine produces one example where one may be strongly tempted to identify ab-

stracts with respect to distinct equivalences. Do we really want to distinguish the

number two as introduced by (12), involving ≈, from the “number two” as intro-

duced by a variant (12*), involving a variant≈∗, which holds between two concepts

when they are both finite and are equinumerous, or are both infinite? That is to

say, do we really want to distinguish the number two that is part of the system of

cardinal numbers, finite and transfinite, from the number two that was part of the

pre-Cantorian system, with just one infinity∞ rather than a series of transfinite ℵs?

It would perhaps not be a fatal objection to the sui generis theory to have to con-

cede that two grammatical categories Ni and N j may sometimes overlap, but the

first line of response would surely be to question whether we must identify the two

twos. After all, we do distinguish the natural number 2 from the positive integer +2

and the rational number +2/1 and the real number 2.000 . . . and the complex num-

ber 2.000 . . .+ 0, 000 . . . i and so on. Or at least, logicians make these distinctions,

as do symbolic computation programs such as Mathematica. So why not make a

distinction in the other case as well? But indeed, Fine does not insist that we must

identify the two twos. Merely the fact that we can raise the question whether we

should, and that no technical results push us one way or the other suggests that a

complete solution to the Julius Caesar problem has not yet been found.

Another and much larger problem is one made prominent by another paper of Be-

nacerraf [3]. This is the problem of how we can have knowledge of numbers, which

was already of concern to Frege in the form of the question, “How can we apprehend

logical objects?” One reason Wright’s book made as great an impression as it did is

that it suggested a solution. Again in my own words, and again very roughly, the pro-

posed answer is that the objecthood of numbers consists in the singular termhood of

numerals, or more precisely, of expressions of the form #X , while the apprehension

of them consists in the apprehension of the truth of statements involving such terms.



248 John P. Burgess

And this last is no more problematic than the apprehension of the truth of certain

statements without such terms, namely, the statements about concepts and equinu-

merosity to which the statements with such terms are equivalent by (12). Such was,

to a first approximation, Wright’s interpretation of Frege’s “context principle” to the

effect that it only makes sense to ask after the meaning of an expression in the context

of a sentence.

At one extreme, no nominalist will think Wright’s answer sufficient. An account

of numbers giving a central role to their introduction through (12) will, for the nom-

inalist, only be an account of the introduction of numerals, and of terms of the form

“the number of”. The nominalist will never admit that the numbers themselves have

been apprehended through the introduction of numerals and other terms unless it can

be shown that the numbers themselves caused the introduction of those linguistic

items. At the other extreme, no pragmatist will think Wright’s answer necessary.

Wright may or may not be correct about how number terms were or could have

been or could be introduced, but for the pragmatist, however they were introduced,

since positing them has proved useful in the development of commonsense and sci-

entific theories with practical applications, no further justification of their retention

is needed. Even if their genealogy proves to be quite sinister, that is irrelevant from a

pragmatist point of view. The fact that they now are governed by a definite usage and

have shown a definite utility is enough to legitimize them, be their origins however

base.

Debates over the context principle take place in the space between the two ex-

tremes of nominalism and pragmatism. What tends to make such debates inconclu-

sive is that the anti-nominalist and anti-pragmatist presuppositions of the debaters are

often not made explicit. In reading Fine’s long discussion of the context principle,

the reviewer throughout had the feeling that each point made would be telling against

one or another class of opponents, with one or another kind of presupposition, but

that it would be hard to locate a philosophical position from which all the points

made would seem pertinent. This is not to say that Fine ever claimed otherwise.

And be all that as it may, a confirmed pragmatist like the reviewer is perhaps not

the best person to attempt an evaluation of Fine’s contributions to the on-going—

I almost wrote “interminable”—debate on this topic. Neither is a journal devoted

to formal logic the best place for such an attempted assessment. Moreover, even if

I were the person and this were the place, this is not the time. For as Fine himself

hints both in his preface and at the end of chapter 2, the real point of Fine’s critique of

Wright and associates on the context principle cannot be expected to become wholly

clear until such time as his own, rival positive views on “procedural postulation” are

made available in print. Let us hope that that time will not be long in coming.

Note

1. On this point, as observed by the reviewer and acknowledged by the author in corre-

spondence, there is a misstatement in one lemma in the text (Theorem 5 p. 159 in the

book, p. 598 in the article), and this affects a number of propositions that depend on this

lemma, which need to be amended. In the terminology used here, the amendment would

consist essentially just in inserting “very” appropriately.
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