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The Fibrαtionαl Formulation of

Intuitionistic Predicate Logic I:

Completeness According to Gόdel,

Kripke, and Lάuchli. Part 2

M. Makkai

Abstract This is the second, concluding part of a two-part paper. After the
mainly preliminary work of the first part, the present second part contains
the treatment of the fibrational versions of the Kripke and the Lauchli com-
pleteness theorems.

The Introduction to the first part (Makkai [4]) covers the present second part
as well. The numbering of the sections continues that of the first part.

4 Free objects Free objects will appear in the sequel on three levels. We
will use free objects of the category car(B, Set) in the formulation of the "ca-
nonical" Kripke completeness theorem for a general Heyting(~) fibration. We
will need free cartesian categories as base categories for the fibrations in our for-
mulation of Lauchli's completeness theorem. Finally, in the same result, the
h~-fibration itself has to be free over its base category, in an appropriate sense.
In this section, I am going to explain all these various notions of freeness, and
I will give a few elementary results concerning them. The contents of this sec-
tion are entirely elementary.

Let B be a small cartesian category, L G car(B,Set). Given any set Xin the
form of a disjoint union X = OAGB%A > indexed by the objects of B9 and a map-
ping φ:X-* \L\ =0AGBL(A) such that ^(Λ^) CL(A) f or all ,4 G£(sucha
map is called proper), we say that L is free on X via φ if for any K G car (B, Set)
and any proper ψ :X-> \K\, there is a unique arrow 2 :L -* K in car(B9Set)
such that φ = h ° φ where the composite h ° φ is defined in the natural way:
(hoφ)(χ)= hA (φ(x)) for x G XA. We say that L G car(#, Set) is free if it is free
on some set X.
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For any X = OAGBXΆ there is a free L E car(ZJ,Set) on X, and this L is
unique up to isomorphism. Although this fact follows from any number of gen-
eral theorems in category theory, we need a certain concrete way of looking at
these free objects, and in fact, of the whole category car(B, Set).

Lawvere's well-known identification of (many-sorted) equational theories and
(small) cartesian categories [3] runs as follows. Let us fix a small cartesian cat-
egory B9 and consider the many-sorted language £B defined as follows. The
sorts of £B are the objects of B. Every arrow/: A -> B is (corresponds to) a
unary operation symbol, with argument-sort A and value-sort B. Besides, we
select a specific terminal object (from among the possibly several (isomorphic)
candidates), and call it 1, and, to each pair (A,B) of objects, we select a par-
ticular product . 4 x 5 , with projections πAtB:A x B-+A, πAxB:A X 2?-• B;
finally, we introduce, into £B, the nullary operation (individual constant) ! of
sort l,and, for each pair (A,B), the binary operation symbol < , )AfB:"A X F ' - >
A x B (the first "product" "A x B" is symbolic; it signifies that < , ) A f B has two
arguments, the first of sort A, the second of B; the value-sort of < , ) Ά > B is the
objects x B).

Note that any L E car(B, Set) gives rise to an JC^-structure, also denoted
by L: the sort A is interpreted as the set L(A), the unary operation symbol
f:A ->2?is interpreted as the function L(f) :L(A)-+L(B), L(!) is the unique
element of L(l) (here it is used that L preserves the terminal object), and fi-
nally, L« , )AyB)(a,b) is the unique c E L(A x B) for which L(πΆtB)(c) = a
and L(πAB)(c) = b ( w e u s e that L preserves binary products). Conversely, if L
is an i^-structure, then L is (corresponds to) a (unique) cartesian functor if and
only if L satisfies the following identities:

Va E A.g(f(a)) = h(a) (A ^ B 4 C, h = g of);

Vα E A.Vb E B.irΆtB(a,b)ΆfB = a

Va E A.Vb E B. π^B(a,b>AyB = b9

VcGA X B.(ττAfB(c),τr^B(c))AiB = c;

where, in the last three identities, (A,B) is an arbitrary pair of objects of B.
Let us call the set of all the listed identities TB.

We have established a bijective correspondence between the cartesian func-
tors B -> Set and the algebras of the equational class given by the similarity
type £B and the set TB of the identities. It is immediately seen that arrows in
the category car(B, Set) correspond bijectively to homomorphisms of algebras.
In other words, we have an isomorphism of categories between car(B, Set) and
Mod£B(TB), the category of (£B, 7^)-algebras. Henceforth, we do not distin-
guish between those two isomorphic categories.

Turning to free objects, the free algebra L on X = OAGBXA is given in the
following, well-known, manner. Let Ύx denote the set of all closed (variable-
free) terms built up from the symbols of £B and the elements of X as individ-
ual constants; x E XA is treated as a constant of sort A. One defines, for every
A E B9 an equivalence relation ~ A on the set T^ by

s ~A t <* TB h s = t
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(here TB t= s = t means that s = t holds in any (£B U A")-algebra satisfying TB).
For the free algebra L on generators X, the elements of L(A) are the equivalence
classes of ~A; the operations are defined in the evident manner by formally
applying the operation symbols to the representing terms.

We will also use free extensions of given algebras. If L E car(/J, Set), and X
is above, then / G car (B, Seί) is a free extension ofL on X via k:L->J and the
proper map φ :X-+ \J\ if for all i :L -• AT and all proper ψ: X-+ \K\ there is a
unique j :J-+Ksuch that 2 =jok and φ = φ °k. Again, we have the fact of exis-
tence and uniqueness of these free objects, in the straightforward senses. It is easy
to see that if L is itself free, and K is free over L (on some X), then K is free too.

Let us now turn to free cartesian categories. The definition follows a general
pattern, applicable to other notions of structured category; in fact, free b i ( - )

cartesian closed categories, defined along the lines under consideration, were
introduced and used in Harnik and Makkai [1]; later in this paper, the defini-
tion of free h^-fibration will be a suitable variant. The definition is in two
steps, both of which are described in Lambek and Scott [2], in the respective
sections 1.4 "Free cartesian (closed) categories generated by graphs" and 1.5
"Polynomial categories".

Let X be any set (discrete category), and let F: X^> B be any functor (map-
ping X-* Ob(/*)) into a cartesian category B. We say that B is free on X (via F)
(as a cartesian category) if for any G: X-+ C there is a cartesian functor H:B^C
making

X H

commute, and in fact, H is unique up to isomorphism: if both H and H' are as
H above, then H = Hr (in the category [B, C] of all functors from B to C).

It is easy to see that this determines B up to an equivalence of categories;
more precisely, if both F.X-+B and F' :X-+B' satisfy the above, then there
are H and H' as in

X H H'

such that Ff = HF,F = H'F, HΉ = IdB, HH' = IdB..
It is clear that we may assume that the mapping F is an inclusion, and we may

consider X as a subset of the set Ob (B) of objects of B; X is a set of free gen-
erators for B. We will use the phrase B is free cartesian on X in the sense that
X C Ob(U) and B is free as a cartesian category on X via the inclusion X-+B.

The second construction we need is that of "polynomial categories",
described in Section 1.5 of loc. cit.9 for the case of the simultaneous adjoining
of a set of "indeterminate" arrows (in place of just one arrow as in 1.5) to a given
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S

cartesian category. Let ί b e a cartesian category, and Λ = (A =• Ob(B)) a

set A with two functions s91 as shown; the intention is to adjoin each a E A as
a new arrow #: s(a) -> ί (tf) to the category Λ. Suppose we have F: B-+ C, a car-
tesian functor, and an assignment of an arrow a (a): F(s(a)) -• F(t(a)) in C to
each a E A. We say that C is free cartesian on B and Λ via F and a if the fol-
lowing holds: for any cartesian functor G:B-+D into a cartesian category D,
and any assignment of an arrow β(a): G(s(a)) -+ G(t(a)) in D to each a EL A,
there is a unique cartesian functor H:C^D such that

F^C

B H

commutes and H(a(a)) = 0(tf) for all α G ^ . (Note that, by the commutative
triangle, at least the domain and codomain of H(a(a)) and β(a) match.)

Cis determined up to isomorphism of categories; we write B(Λ) (or more
specifically, B^iΛ) for C; Fis referred to as the "canonical functor". The rea-
son why in this case we have a stronger uniqueness condition in the universal
property than in the previous definition is that the free construction in question
does not introduce new objects; in fact, F:B^>B(<A) may be taken to be the
identity on objects.

We have the following additional property of B(<A), making the universal
property for the polynomial categories work for arbitrary natural transforma-
tions.

With F:B^> Bcaτ(Λ) the canonical functor, suppose we have the further
cartesian functors as in

GF

B \k ^ D
^ HF y/

Then, for any k as shown, with the additional property that the diagram

GF(s(a)) ^ -HF(s(a))

GF(t(a)) ~HF(t{a))
kt{a)

commutes for all a E A, there is a unique I as shown such that k = iF. (Note
that the additional property is necessary for the existence of £.)

We call a cartesian category Cfree cartesian if it is obtained, up to equiva-
lence of categories, by the above two free constructions; that is, if there is B9 free
cartesian on a set X of objects, and C - Bcaτ ( Λ ) for a system Λ of indetermi-
nate arrows.
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Let £ be any (small) many-sorted similarity type with finitary (sorted) oper-
ation symbols, without relation symbols. Then <£ gives rise to a free cartesian
category B as follows.

By a context we mean a finite tuple of (not necessarily distinct) sorts. A tuple
x of distinct variables denotes the context A if x = <*/>/<„, A = (>4/>/<Λ, and
each Xj is a variable of sort Ah The objects of B are the contexts. To define
arrows, let us say that the expression (y -• ΐ: x) is well-formed if x = <*/>/<„, j>
are tuples of distinct variables, ?= </, >, <Λ a tuple of terms, /, of the same sort
as xh and all variables in ts are among the variables in y, for all / < n.

Two well-formed expressions {y ~ί:x) and (u ^ s:v) are identified iff J?
and u, as well as x and v denote the same context, and tζ = s (the expression
on the left of the last equality means the result of substituting each yj for Uj in
all terms in ?). The entities given by the well-formed expressions (y -> ΐ:x)
after the identification are called tuples of terms in context. The arrows of B are
the tuples of terms in contexts.

The composition operation in B should be clear: in the situation

A f-Q-ΐ .xy^ β g = <x~s:2>y c

we have g of =f < y -> sf: z) : A -• C; it is well-defined as a tuple of terms in a
context. The identity lΆ is (x«- x: x) (x denotes A); the associative law is eas-
ily seen.

The (specified) terminal object is the empty context (empty sequence of sorts).
The product of A x B is the concatenation of the sequences A and B; if x9 y
denote A9B, respectively, and x Π y = 0, then xy denotes A x B, and T Γ ^ =
{xy -> x: x>, τr,4>5 = (xy - j : y) are the (specified) product projections; it is left
to the reader to verify that we have indeed given a finite product structure this
way.

We claim that B = B£$o constructed is a free cartesian category, and in fact,
up to equivalence of categories, all free cartesian categories are obtained in this
way. Most importantly for us, car(B£,Set) is equivalent to the category of all
<£-algebras, with ordinary homomorphisms as morphisms. All these assertions
are of a very elementary nature; no more details will be given on them.

With B being a small cartesian category, let us call an arrow k: L -> / in
car (B, Set) a pure monomorphism if each component kΛ of k is a one-to-one
mapping (this much says that k is a mono), and for every f:A -> B in By the
square

L(A) L{f) >L(B)

kA kB (1)

J(A) J{/) >J(B)

is a pullback.

Lemma 4.1 Let Bbea small free cartesian category. Let t:L-+Kbean arrow
in car(B,Set). Then there exists a commutative diagram
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A"- '- L

in car (B, Set) such that k is a pure monomorphism, Jis a free extension o/L via
k, and j is surjectiυe {each component of j is surjective). In addition, if B, L,
and K are also countable, then so is J.

Proof: As described above, A = car (B, Set) can be identified with the category
of all <£-algebras, with <£ an "algebraic" similarity type. Given L G A, the free
extension of L on a set X of (additional) generators (with each x G X, a definite
sort Sx is associated) is obtained as an appropriate term-algebra. For any sort
S G <£, we have the set Ts of all terms of sort S built up from the symbols of <£,
the elements (appropriately sorted) of L9 and the elements of X9 the latter two
kinds as individual constants. Let us take the subset J(S) of Ts for which t G Ts

belongs to J(S) iff either t is a mere constant from L, or else it contains at least
one occurrence of a constant from X. The J(S) 's form an algebra / in which,
for each operation symbol f:Sχ x . . . x Sn -> S, and elements tt G /(S, ),
J(f)(h> , tn) is the term f{tx,..., tn) if at least one tt contains at least one
occurrence of an x G X, and it is the value L(f)(t{,..., tn) in L(S) in case tt is
inL(Si) for all /. The homomorphism k:L^Jis the inclusion; it is a monomor-
phism. Every object in B is a product Πf=i S, of sorts. To see that k is a pure
mono, it suffices to consider arrows/: A -> 2? for which 4̂ = Πf=i S, and B = S,
a single sort (the general case B = T1?L\ Sj being easily reducible to this special
one). Any arrow/: Πf=i S, -• S is given by a term u with free variables jt, of sort
Sj. In this case, diagram (1) being a pullback amounts to saying that if at least
one ti G J(Si) is not in L, then J(f)(Uih<n) = wUi> Ό i s n o t i n ^ either,
which is obviously true.

Now, if we have, in addition to L, also l\L-+K, then let us use as many free
generators in X for each sort S as there are elements in K(S); by the freeness of
/there isy: /->Kmapping each J(S) surjectively on K(S) and making the dia-
gram of the lemma commute.

Lemma 4.2 Let B be a free cartesian category. Then for every diagram
Φ: Γ -• car(B, Set), with Γ aposet, such that each arrow Φ(γ! < y2) in car(B, Set)
is a pure mono, the coprojections of colim Φ are all pure monos as well.

Proof: Consider the special case of a 3-element Γ = (1,2,3), with 1 < 2, 1 < 3,
2, and 3 incomparable. We are saying in this case that if

F J^J

is a colimit (pushout) diagram, and/,g are pure mono's, then so are h andy;
this is the "pure" version of the amalgamation property. Let us first show that
the special case implies the general case.
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First, we show the assertion for finite Γ, by induction on the cardinality #Γ.
The assumption ensures the truth of the assertion for all Γ with #Γ < 3. Let Γ
be any finite poset, let γ be any maximal element in it. By adjoining an initial
object to Γ (which step makes no difference in the colimit), we may assume that
there is 7' < γ in Γ; let y' be a maximal such. Let Γ' = Γ - {γ}. Now, the colimit
of Γ can be obtained by first computing colim Γ", and then taking the colimit of

* > , ^ colim Γ"

Here, φ is the appropriate coprojection for colim Γ'. Also, the coprojections for
colim Γ are obtained as composites of the coprojections in the two colimits taken
in the alternative process. Thus, by the induction hypothesis and the pure amal-
gamation property, we get what we want.

Let now Γ be an arbitrary poset. We can write Γ as a directed union (Jiei Γ,
of finite posets Γ, . The colimit of Γ is the directed colimit of the colimits of the
Γ, , along arrows that themselves are coprojections for finite colimits. Since
coprojections for a directed colimit of pure monos are pure monos under very
general conditions, the assertion follows.

It remains to show the "pure" amalgamation property for car(Λ,Set), for B
free cartesian. According to what was said before 4.1, the assertion becomes the
one saying that, for an equational class with the empty set of identities as axi-
oms, but with an arbitrary (algebraic) similarity type, the pure amalgamation
property holds. This is quite elementary to verify, by representing the pushout
as an appropriate term-algebra; the details are omitted.

Let B be an arbitrary small cartesian category. We introduce the concept of
an h^-fibration over B being B-free (or, free over B).

Given the h^-fibration C1 over B and X — {XB)B(ΞB> & family of subsets
XB C Ob(β 5 ) of the object-sets of the fibers of β, we say that C is free on (the
generators in) X over B if the following holds: for any h(~}-fibration 3) 1 over
B and any assignment of an object X E 3) to each X E XB> for each B E B,
there is an h^-morphism Φ: 6 -> 3) over B, unique up to isomorphism, such
that Φ(X) = X for all B E (B and X E XB.

Given C±,3D i, both h(~}-fibrations over B, an h^-morphism Φ : C -» 3)

over B, a system Λ = (AB H5 Ob(C ))BGB °f indeterminate arrows for the
tβ

fibers of C, and arrows a{a): Φ(sB(a)) -+ Φ(tB(a)) in the fiber X>B (BGB), we
say that 3D is B-free on Q and cA via Φ and a if the following holds: whenever
we have Ψ : 6 -+ δ, an h^-morphism over B, with an assignment of an arrow
β(a) :Ψ(sB(a)) -• Ψ(tB(a)) to each a E ABi for each B E B, then there is a
unique h(~}-morphism Σ : 3D -> δ over B such that ΣΦ = Ψ and Σ(a(a)) = β(a)
for all B E B and a E AB. In this case, we write C(eA) for 3).

We say that C is h^-free over B, or C is a B-free h^-fibration, if there is
6 0 , h^-free over B on some set of objects, such that β = Co (e/V) for some sys-
tem eA of indeterminate arrows.
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We call a functor F:D^> E surjectiυe if it is full and surjective on objects
(for any E G E, there is D E D such that F(D) = E (it would be sufficient to
require F(D) = E)). We say that the h^-morphism Ψ: £) -> S is surjectiυe if it
induces surjective functors GB:£)B-+ 8>B on the fibers (BeB). The h(~}-fibra-
tion C is B-projectiυe if for any surjective h^-morphism Ψ: X) -> δ and any
h^-morphism Σ: (3 -> ε, both over 2?, there is an h^-morphism 2 : (2 -• S over
5 making the diagram

H _ ^ \ ^

£> j -ε

commute up to an isomorphism Ϋ o g s Σ .

Proposition 4.3 Every B-free h ~-fibration is B-projectiυe.

Of course, this proposition is an analog of a well-known fact from algebra.
The proof is essentially identical to that for the similar statement for bi ̂ Car-
tesian categories given in section (2.4) of [1]; the (elementary) argument will not
be repeated here.

Finally, we say that the h^-fibration G is free if its base category B is a free
cartesian category, and β is free over B as an h^-fibration. The main result of
the paper, Theorem 6.1 below, is an embedding (representation) theorem for free
h~-fibrations. In Makkai [6], I will show that the free h^-fibrations are pre-
cisely the ones that are obtained from the proofs of an arbitrary theory in intu-
itionistic predicate logic.

5 Kripke completeness With JC^a c(~}-fibration, let c/r~e<3C,(P(Set)> de-
note the full sub-prefibration of c ^ K ^ ί S e t ) ) with base category the full
subcategory of car (2?, Set) on the free objects of car(B, Set) (see the previous
section); c/Γ^?[JC,(P(Set)] is the total category of c^<JC,(P(Set)>.

Theorem 5.1 (Kripke-Joyal completeness for Heyting(~} fibrations) Given
JC, a small h^^-po-fibration, the eυaluation morphism

e: X -v <cfce

)<3C,(P(Set)>,(P(Set)>

(see Section I) is a conserυatiυe h^-morphism.

Proof: The proof is similar to the proof of 6.3.5 in Makkai and Reyes [3],
although certain subtleties enter due to the lack of a "standard" equality in the
logic of Heyting fibrations. In particular, the straightforward version, without
the restriction to free cartesian functors on the level of the base category, seems
to fail.

By 3.3, it is easily seen that e is a c^-morphism. The conservativeness of e
is a consequence of the Gόdel Completeness Theorem 2.1, with 3.9. That is to
say, the conservativeness of e is equivalent to saying that for any Λ", Γin a fiber
KA of 3C such that Xφ Y, there is Ne 4^[JC,(P(Set)] such that NXφNY. By
2.1, there is (L,M) E c(-}[5K:,(P(Set)] withMX^MY. Let t :K-+L be a surjective
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arrow in car(B, Set) with K free (let K be free on the set of elements of L), and
let N= k*M(in the fibration <3C,(P(Set)». By 3.9, 7VE 4^[JC,(P(Set)]. There
is a E MX - MY; then for any b E KA such that lA (b) = a (tA is surjective),
we have b E tA

ι(MX) - lA

x (MY) = NX - NY, as required.

It remains to show that e preserves V/s and Hey ting implications in the fi-

bers. Let JC be 3C J , let/: A -> B be a product projection in #, ̂ TE JC^4, (L,M) G

Λf = f Cfrei [3C,P(Set)]. We want to show that

(e(V/I))(M) = (V e ( / )(e(*)))(M).

The left-hand side here is M(vfX); the right-hand side is given by 3.6'. We are
reduced to establishing the following equality:

M(\ffX)= Π ti(>iL{f)(N(X))).
(e,m):(L,M)->(K,N)GM

Here both sides are subsets of L(B). The fact that the left side is contained in
the right is clear. The reverse containment amounts to the following claim:

(*) Given anybeL(B)-M( VfX), there are(e,m):(L,M)-> (K, N) in Mand
aeK(A)-N(X)suchthateB(b)=K(f)(a).

Proof: The claim is proved by the method of diagrams of model theory, with
an application of the compactness theorem.

First of all, one can construe a c^-morphism (L,M): JC -• (P(Set) as a struc-
ture of a specific multi-sorted similarity type £ as follows. £ is obtained from
£B (see the last section) by adding some unary predicate symbols. Each object
X of a fiber KB corresponds to a unary predicate on the sort B; for simplicity,
we write X for the predicate symbol as well. This ends the description of £ .

If (L,M): 5C -* (P(Set) is a c^-morphism (we may write just Mfor (L9M)
since L may be recovered from M), then L gives rise to the £#-algebra as
explained in the last section, and the unary predicate X of sort A has the natu-
ral interpretation as the subset M(X) of L(A). In other words, every c^-mor-
phism M: 3C -> (P(Set) is (gives rise to) an £-structure. Note that all data needed
for a morphism M: 3ί -> (P(Set) are present in Mas an £-structure; of course,
the ^-structure Mhas to satisfy some conditions to be a c^-morphism M: 3C ->
(P(Set). We claim that, in fact, these conditions can be stated as a set Γof first
order axioms in the language <£. Since the exact identity of Γdoes not matter
for us, and since the construction of Tfollows the pattern established, e.g., in
[3], the detailed description of Γwill be omitted. We note only that TB C Γ(for
TB, see Section 4), that the arrows in the total category translate into axioms
asserting that arrows in the base category map one unary predicate into another,
that T is in logic with equality, and that the equivalence

M N T&Mdefines a c(-)-morphism JC -> (P(Set)

is true with the understanding that a model of T has to interpret the equality
symbol as true identity.

Under this correspondence of models of Γand c^-morphisms, the arrows
(2,m)\ (L,M) -> (K,N) between c^-morphisms correspond to homomor-
phisms of structures.
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Given any term t of <£, and a tuple x of (sorted, distinct) variables, (x ~ t)
will denote the natural interpretation of t "as a function of ϊc" in /ί, defined as
follows. First of all, for any term t,\t\ denotes the (value-) sort of t (an object
of B)\ for x = <*/>;<„, \x\ =f Π/<#f |x/|; here, Π/<0 A* = 1 (the distinguished ter-
minal object), and Γ\i<n Aj={ (Π, <π_i A ) X An_λ if H > 0, where the distinguished
binary product is used; also, τf :Γ\i<nAj -> Λi is the canonical projection,
derived in the usual manner from the various TΓB,C> K'B,C involved. We will have

(x~t>:\x\ - > | / | ;

the definition is a straightforward recursion;

(x *-> ΛΓ/> : Ix\ -> \Xi\ is the appropriate projection TΓ"

(x is as above; / < n);

{x »-+ ! > is the unique arrow |j?| -> 1

<x >-> <5,ίX4ts> is the unique arrow/: |ΛΓ| -*>4 x B for which
πA,Bof=(X"S}9 -κ'AiB°f=<$» t);

for/M ->5 in Λ, (x^f(t)) :\x\-> B is the composite/<> <jc^ O

Let M be any JC-structure, t a term, x a tuple of variables containing all
variables in t. The usual (Tarski) semantics assigns an interpretation Mχ(t) to
t in M, "as a function of the variables x"; the domain of M%(t) is the cartesian
product Π, <Λ Af (| JC, |) of sets (again, x is as above). Assuming that M V T, we
slightly modify this interpretation by changing the domain to M{\x\). Note that
since M preserves the products in B we have a canonical bijection i :M( | jc|) ->
Π/ojAf (|JC, |) (not just any bijection). We define

Mϊ(ty.M(\x\)-+M(\t\)

as the composite of i with the old Mχ{t). This trivial "normalization" of the
semantical definition results in the equality

Afs(t) =Af«*->f»;

the reader will have no difficulty in verifying it.
Let us turn to interpretations of formulas. For any formula φ (in any "logic"

over <£) with free variables among x, the Tarskian definition gives an interpre-
tation (extension) M^(φ), a subset of Π, < π M( |*, |). Again, we make

Mχ(φ)CM(\x\),

by defining the new M$(φ) as the image of the old M$(φ) under i given above.
Using the assumption that MYT (that is, M is a c(~}-morphism JC -> (P(Set)),
we can write down certain equalities for interpretations of formulas. For in-
stance, let R be over A in C, t a term of sort A, x a tuple of variables as above;
let B = I jf I let/: B -* A be the arrow f=(χ~t); then

Ms(R(t))=M(fR).

Turning to the proof of (*), let/ = τ'CtB:C X B -+ B be a product pro-
jection in B; X over C x B\ M, or (L,M),'in c^ [3€,(P(Set)] b G M(B) -
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M(VfX); we will show the existence of NG c("}[JC,(P(Set)] (although not yet
NG c/r^?[3C,(P(Set)]), of I :M-+N, and of a = <c9b)GN(C x B) such that
eB(b)=N(f)(a).

Let £/ = 0A(ΞB UΆ be such that L is free on U; for simplicity, we also write
ufθΐφ(u), with <ρ: l/-» |Λf | the function given with Mbeing free on £/. More-
over, we extend the language £ by adding an individual constant correspond-
ing to each uGU. For simplicity, we write u for this constant as well; if uG UAi

u as a constant is of sort A. Let us write £(U) for the resulting language. Finally,
we add one more constant c of sort C Let £(U,c) be the name of the resulting
language.

For any D GB and R over D, and for any closed (variable-free) term / of
£(U)9 we may ask if the sentence R(t) is true in (M,u)uGU. That is, for the
interpretation t of t when each constant u is interpreted as u itself we may ask
whether we have t G M(R). Let Δ be the set of all such R(t) that are true
in (M, u)u(ΞU. Since L is free on U, L is generated by U; there is a closed term
s of £(U) such that the value § of 5 is the given b (see Section 4). Finally, con-
sider the specific sentence X((c,s)CfB), abbreviated as X(c,s), and consider
the set

Σ = Γ U Δ U h J ( c , 5 ) ) ,

I claim that, for the purpose at hand, it suffices to show that Σ has an
(£(U,c) — )model. Indeed, assume (N9ύ,c)uGU is such a model, with TV the
<£-part, ύ the interpretation of u, c the interpretation of c. Then, by the presence
of T, TV is a c^-morphism JC -> (P(Set); let iΓ: £ -> Set be the underlying carte-
sian functor of N. Since L is free on C/, there is a unique arrow i\L-*K such
that £(w) = ώ for all u G U. If f denotes the interpretation of t in (TV, ή,c) ω e ί / ,
then clearly, £(?) = f. I claim that £ extends to a necessarily unique arrow
(£, m): (L,M) -+ (K,N). Indeed, all that is needed for this is that for each D G
B, R over D and d G M(D), ΊidG M(R), then £(d) G N(R); but any such d
is the value Γfor a suitable t9 and if dG M(R), then R(t)G Δ. Hence, t(d) =
tGN(R). Finally, as a consequence of (N,ύ,c)usU f= ~^X(c,s), a = <c,6> G
N{CxB)-N(X).

Let us prove that Σ is satisfiable. By the compactness theorem, it suffices to
show that any finite subset of Σ is satisfiable. Let Δ' be a finite subset of Δ, and
assume, for contradiction, that ΓU A' U {-ιX(c,s)} is unsatisfiable. Δ' has the
form Δ' = {Rj(tj) :j <m], with some m < ω; let ύ = <«,•>,•<„ be a finite tuple of
distinct elements of U so that every (/-constant in any of the tj is among the
Uι\ let Xj be a variable of the same sort as M, (the JC, should be distinct); let x =
(xi>i<n- Let /•/ be the result of replacing ut by JC, in ίf . Let/? result in the same
way from s. And let y be a variable of sort C. Our assumption is equivalent to
saying that

r h v x o . . . ^ - ! ^ j\Rj(rjή-+X(y,p)y (1)

meaning that all models of T satisfy the displayed sentence. In other words, all
c^-morphisms M: JC -• (P(Set) satisfy the sentence in (1).
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Assume Rj is over Dj(j < m). Let D = \x\\fj:D-> Dj the arrow fj =={

(x -> rj); Yj =ffj(Rj) an object over D; and Y =f Λj<mYj. Yis over Zλ Let
g: Z> -• i? be g = <j? ~ /?>. We also consider the projections C+- CxD^ D9 and
the objects TΓ'* Y, ( 1 C X g)*Xoveτ C x Zλ By what we said above on the mean-
ing of formulas in c^-morphisms M: JC -> (P(Set), (1) allows us to conclude
that for every such M,

M(<jr'*Y)CM((lcXg)*X).

Hence, by the completeness theorem 2.1, we infer

τ r ' * r < ( l c X S ) * X (2)

At this point, one should consult the diagram

CxD l c X g -CxB

*' f

D ~B

(2) implies that

Y^^(lcxgrx = g*^fX9 (3)

where the last equality is stability applied in the situation of the last diagram.
Let <i/> be the element of M(\x\) for which (Λftr/1)««» = w, for all / < n.
Looking at how Yis derived from the Rj(tj), and considering that each Rj(tj)
is true in (M9u)UGU, we immediately infer that (u) G M(Y). Hence, by (3), we
have <2> G M(g*VfX) = (Mg)*(M(VfX)), that is, (Mg)«u)) G M(VfX). But
because of the way g is obtained from s we have (Mg)«2» = s = b. Finally,
this means that b G M{VfX), in contradiction to the initial hypotheses in (*).

This completes the proof of (*) with the weaker condition (K,N) G
c(-\K,(?(Set)) in place of the desired (#,Λ0 G Λf. To obtain the result as
needed, we use an argument that we will state so that we can quote it another
time.

Let us say, with given (L,M) G [ JC,(P(Set)], / : A -> B, X over A, and b G
LB - M{VfX)9 that (i,m): (L,M) -* (K,N) is a witness for (VfX,b) if there
is a G #,4 - iV^such that £B(b) = (Kf)(a).

Claim 5.2 Let f = τ'cy.A = C X B-+B. Suppose that (e,m): (L,M) ->
CK,JV) is α witness for (vfX,b), and we have the commutative triangle

TV- M K* '- — L

p Sn in [3C,(P(Set)] over j Sk

in car(Λ,Set), with j surjective. Then (k,n): (L,M) -• (J,P) is a witness for
(vfX,b) as well.

Proof: Consider



FIBRATIONAL FORMULATION OF INTUITIONISTIC LOGIC 483

a = {c,d)\ -tf- yb

KA =KC XKB K(f) >K(B)* - L(E)>'

JA = jC X jB JB ^S y^

JA=JCx JB J{/) > J{BY /"^

a' = (c',d')\ ~d''

We have b and a = (c9d) by assumption. Using the fact that j c : JC-+LC is sur-
jective, we choose c' so that jc(c') = c. Define d' = kB(b). Since a G KA - NX,
and jΆ(a') = α, it follows that α' = (c\d') G JA - PX(sincepx:PX-+NXis
a restriction ofX4). Also, £#(£) — d' — (Jf)(αf).

Let us continue the proof of 5.1. We now have (£,m): (L,M) -> (K,N),
a witness for (b,VfX). Let k:L -+ J be a. free extension of L, on the set of
generators of the elements of # (see Section 4). We have a surjective mapping
j:J-^K so that

* ^ ί L

j/

commutes. Take P=j*N, with n = nΐ \M-+ P Then, sincey is surjective, by
S^PGc^ie.CPίSetM.ByS^, (k,n): (L,M)-+ (J,P) is a witness for (b,VfX).
Finally, as a free extension of the free algebra L, P is free itself. This completes
the proof of (*).

We have verified that e of the proposition preserves all V/. The preservation
of implication is similar; we deal with it briefly.

Assume X, Y are over A in <B. Using 3.6', we need to show, for any
(L9M)eM,

M(x^Y)= Π tX (NX) - ex (NY) .
(£,m):(L,M)-(/«:,;V)eM

Here, on the right side, implication is the Boolean operation on sets. Since the
left side is obviously contained in the right, what we need is to establish the fol-
lowing claim

(**) Given any aELA- M(X^ Y), there is (2,m): (L9M) -> (K,N) in
Msuch that 2A (a) G NX - NY.

The proof of the existence of such items, but with (K,N) G c^X^iSet)]
instead of (K,N) G Λf, is similar to the corresponding part of the proof above
for V; it is omitted. To complete the proof, one needs an analog of 4.2, viz.

Claim 5.3 As Claim 5.2, but with (a,X-+ Y) replacing (b,VfX) (and the
meaning of "witness" modified in the appropriate way), and with the additional
assumption p:P-+N being cartesian over j .
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Proof: Let us define P asj*N, and n = m* (as before). By the description of
j*N (3.3), P(X) and P(Y) are obtained by pulling back N(X) and N(Y) along
JU Since jAkA(a) = £4(0), it follows that kA(a) E P(-Y) - P(Γ).

In the remainder of this section, we give variants of the "canonical" Kripke
completeness theorem just proved, in preparation for the application in the last
section.

Proposition 5,4 (a) Suppose 3C± is a countable h~-po-fibration (both its
base and total categories are countable) having the disjunction and existence
properties (see Section 2), and such that B is a free cartesian category. Then there
exists a countable subprefibration cM i o/cf7ee<3C,(P(Set)> such that;

Mcontains an initial object of c~[JC,(P(Set)]

all arrows in L are pure monomorphisms;

and the evaluation morphism e:X-+ <cM,(P(Set)> is a conservative h~-
morphism.

(b) Variant of (a) obtained as follows. Drop the assumption ofX having the
disjunction and existence properties; instead, letAGB andX,YG XA be given.
In the conclusion, weaken "initial object" to "weak initial object", and conser-
vativeness of e to conservativeness of e at (X, Y).

Proof: (a) Let Lo be the subcategory of car(B, Set) with the countable free
algebras in car(B, Set) as objects, and the pure monomorphisms as arrows. Let
cMo * ° be the subprefibration of c~~<3C,(P(Set)> whose base category is Lo, and in
which the fiber over any L E Lo is the same as in c~<5C,(P(Set)>. We first claim
that the evaluation morphism e 0

: & ~* cMo is a conservative h^-morphism.
The proof of 2.1 gives us "models" M e c^tJC.CPiSet)] witnessing the con-

servativeness of the evaluation that are countable in case JC is countable. Then
the free witnesses, coming from an application of 3.9 (see the beginning of
the proof of 4.1), are also countable. This shows that e0 is a conservative c (" }-
morphism.

To see that e0 preserves V/s we inspect the proof of 5.1. Given that (L,M)
is countable and free, the issue is to make, in (*), the arrow £ a pure monomor-
phism and K countable and free, in addition to the other requirements in (*).
As in the proof of 5.1, first we have (e,m):(L,M)-+ (K,N) satisfying (*), with
(K,N) E c("}[JC,(P(Set)]. Note that (K,N) can be made countable in the con-
struction in the proof of 5.1 through the compactness theorem. We apply 4.1;
we get the commutative triangle

K~ '- L



FIBRATIONAL FORMULATION OF INTUITIONISTIC LOGIC 485

with k a pure monomorphism, and / a countable free extension of L. Hence /
itself is free. Now we apply Claim 5.2 as in the proof of 5.1, to see that (*) is
satisfied by

(k,n): (L,M) -> (J,P), with P=j*N, in place of (£,m): (L,M) - (K,N).

It is similar to show, using 5.3 and 4.1, that implications in the fibers are pre-
served by e0. This shows that e0 is indeed a conservative h~-morphism. The final
argument is a downward Lόwenheim-Skolem type argument, to show that cM0

can be cut down to a countable subprefibration cΛΛ, with retaining the property
of e0. The conservativeness of the evaluation e: JC -• <cM,(P(Set)> is ensured
once enough witnesses are thrown into cM. Since we require one witness for each
pair (X, Y) with Xφ Fin a fiber of JC, and JC is countable, countably many wit-
nesses are sufficient. To make e preserve fy's, with any given (L,M) GMwe
need to throw into Mat least one arrow (ί,m): (L,M) -> (K,N) for each b as
in (*). Since each (L,M) in Mis countable, there are only countably many b9s
to take care of, hence only countably many (£,m) need be added. Mis obtained
as a countable union of countable sets, each containing witnesses for the require-
ments resulting from items thrown in at the previous stages.

(b) The proof is similar. One starts by putting into Man object (L,M) wit-
nessing conservativeness at (X, Y). Observe that every time we want to put in
a new object (K,N) in Mto make sure of the preservation of V/s and Heyting
implications, the required object (K,N) comes (by induction) naturally with an
arrow (L,M) -• (K,N), thus making (L,M) a weak initial object in M.

For the final, specific, form of the Kripke completeness theorem, we let
N denote the partial ordering of the natural numbers under divisibility; that is,
the underlying set of N is IN, the set of all natural numbers (including 0), and
m < N n <=> m \ n «=» there is k G IN such that n = km. The minimal, resp. maximal
element of N is 1, resp. 0.

Recall the notion of "quite surjective" functor from Section 3.

Proposition 5.5 Let M be a countable category, with a weak initial and a
{non-weak) terminal object. Then there is a quite surjective functor N ->M taking
the least (greatest) element o/N to a weak initial (terminal) object ofM.

Proof: The proof is given in [1], see 3.7.

Given any functor F: B -> [N,5] (where, for the moment, U,N, S could be
any categories), one has, by exponential adjunction (CAT is cartesian closed),
a functor F~:N-> [B9S]; F~(n)(B) = F(B)(n), etc. If B, S, and Fare car-
tesian, then in fact F~ : N -* car(B,S). p

For any category P,P denotes the prefibration £ldP.

Proposition 5.6 (a) Let 3O be a countable h~-po-fibration with the dis-
junction and existence properties, and with a free cartesian base category B. Then
there is a conservative h~-morphism (F,Φ): JC -> <N,(P(Set)> with the additional
property that, for each A GB and p < q in N, F~(p < q) :F~(p) -+F~(q) is
a pure monomorphism.

(b) Variant of (a) obtained as follows. Drop the assumption of3£ having
the disjunction and existence properties, and let X,YG 3ZA be given. In the con-
clusion weaken conservativeness to conservativeness at (X, Y).
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Proof: (a) Take all those items given by 5.4. Let us add, purely formally, a new
terminal object, denoted *, to the category M, obtaining the category M*. By
5.5, there is a quite surjective functor σ: N -> M* mapping the least element of
N to the initial object of Λf, and mapping 0 (the maximal element of N) to *.
Now let us consider the subset P of N on which σ is not *; P is a downward
closed subposet of N; let p2 be the restriction of σ to P.

Clearly, p 2 ' P -+ M is quite surjective. Hence, with px = cM ° p 2, and p =

(Pi>P2) denoting the map U ±cM of prefibrations, by 3.6" (ii) we have that

p* : <cM,(P(Set)> -> <P,(P(Set)> is a conservative h -morphism. Thus, we have
the composite

r = (T!, r2) =f p* o K = (A: p ) * e : ft -> <P,(P(Set)>,

and r is a conservative h~-morphism; moreover, τ~(/? < #) is a pure mono for
a l l /?<#inN.

Consider the colimit L* = colimcM ° p of cM ° p : P -» car(B,Set) (recall
that L is a subcategory of car(#,Set)). Let 0!: N -• car(B,Set) extend p:P-+L
so that

(M/?) =L* for qeN-P;

θι (p < q) = the colimit coprojection ρ(p) -+ L* corresponding
to p, for p G P, q G N - P, /? < (7;

0! (# < r) = W *̂ for q < r, both in N - P.

Note that all the arrows θλ(p < q)(p,q G N) are pure mono's by 4.2.
Let M* : # - • P(Set) over L* in <5C,(P(Set)> be "the constant-true evalua-

tion" defined by

M*(X) = \L*(Ά) for A E B and X over ,4

OzΛΛ) is the maximal element of the fiber over L*(A) in (P(Set); the definition
of M* on arrows is thereby forced). Note that M* is a c~-morphism (but it does
not preserve initial objects in the fibers, thus it is not a c-morphism).

Let θ2: N -• c~[3C,(P(Set)] be defined so as to extend τ 2, to be over θ{ in
<N,c"<JC,(P(Set)», and defined on each q e N - P as Θ2{q) = M* (θ2 is
uniquely determined by this description). Let

0=(0i,02):N-*c-<3C,(P(Set)>;

finally,

η = f0*oe:JC^<N,(P(Set)>.

η d= (F,Φ) is an extension of r, by "adding the identically-true model at the end";
in particular, with the inclusion / : P ^ N , r = /*or/.?yisa c~-map because e is.
The fact that η is a conservative h~-map can be seen easily using the same fact
for T, and using the facts that r = i* <> η and Φ(X)(q) = lF(A) for Jf over A,
q EN - P. It also follows that F~(p < ^) is a pure mono for all p < # in N.

(b) The proof is similar, using 5.4(b) instead of 5.4(a).



FIBRATIONAL FORMULATION OF INTUITIONISTIC LOGIC 487

6 Lάuchli completeness Let us call a functor Φ: C -> S weakly full if
C(Q C) being empty implies that S(ΦQΦC') is empty; clearly, if Φ is full, then
it is weakly full. A morphism (F,Φ): 6 -> S of prefibrations is full (weakly full)
if each induced functor ΦA : QA -• SFy4 is full (weakly full).

Set2 denotes the category of Z-sets, with TL the additive group of integers.
Set2 can also be described as the category of sets with a distinguished permuta-
tion, with mappings respecting the actions of the distinguished permutations.
Set2 is an atomic Grothendieck topos.

Set2 being atomic means that every object of it is the coproduct of a small
family of atoms, objects with exactly two distinct subobjects. The atoms of
Set2 are, up to isomorphism, the following: the transitive Z-set Ap with p ele-
ments, for any positive integer/?, and the transitive Z-set Ao with countably infi-
nite number of elements. Note that, for any given p,qGJN, there is a mapping
Aq -> Ap in Set2 if and only if p \ q.

The functor | - 1 : Set2 -> Set mapping a Zζ-set S into its underlying set \S\ is
a conservative logical functor, preserving all small colimits; this says that Set2

is, to a great extent, like Set. The fibration T(Set2) was defined in Section 1.
The main result of the paper is the following theorem.

Theorem 6.1 Let Q be a countable free h ~-fibration. Then there is a weakly
full h~-morphism (F,Φ): 6 -+ ̂ ((Set 2/) with a small set I. If 6 has the dis-
junction and existence properties, then there is a weakly full h "-morphism
CF,Φ):e->T(Set2).

Proof: The test of this section is devoted to the proof of the theorem.

We are interested in identifying the po-reflection of T(Set2). From the last sec-
tion, recall N, the poset of the natural numbers with divisibility. Both TL and N
are categories; the first is a group, the second is a poset. Consider the category

ZxN

TL x N, and the prefibration cl\[ I , with M the second projection, and consider
the fibration <d\ί,(P(Set)>; this is a fibration over Set2. The po-reflection of Set2

will be identified as a suitable sub-prefibration of <cW,(P(Set)>.
ZxN -̂> P(Set)

An object i ι of [<ΛI, (P(Set)] is the same as a Z-set S, the value of the
TL —• S e t

functor S at the single object of 1, together with U, which is an assignment/? ~
U(p) of a sub-Z-set U(p) of S to each/? EN satisfying U(p) C U(q) for/? < q.
U(p) being a sub-Z-set of S means that it is a subset of (the underlying set of)
S closed under the group-action. We use " < " here and below in the sense of N,
that is, it signifies divisibility: /? < q «=>p\q.

Let f:S -> T be an arrow in Set2, J,Γ, objects of <cM,(P(Set)> as just
explained. As we know, there can be at most one arrow l/-> Fover/; there is
one precisely if

s e U(p)=>f(s)<Ξ F(/?)forall/?GN.

As before, let us write U </ Fto indicate that there is an arrow ί/-> Fover/.
Let S be any Z-set, x E S. Let us denote by O(ΛΓ) (or os(x)) the order of x

(in S), that is, the cardinality of its orbit O(x) = Os(x) = [σkx :kGΈ] (σ denot-
ing the generator of TL) in case this cardinality is finite, 0 if it is infinite. Let
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( R i z be the sub-prefibration of <<J\(,(P(Set)> with the same base category Setz

such that if in <cN,(P(Set)> belongs to (R iff the following holds: for all/? E Ns

and s E S,

s E £/(/?) => os(s) < p (i.e., σΛs = 5). (1)

Proposition 6.2 ΓΛe po-reflection off Set1 fe (R.

Proof: I f / : S -> Γ is a map of Z-sets, then clearly, for any s E S, o5(s) >

o^(/(5)). Given any family £i in T(Setz), let, for any/? E N,

£/(/?) = {sES: there is xEξ'Hs) such that o^(x) </?};

condition (1) above holds. Also, U(p) C U(q) for/? < #. Thus, we have an

object 1 of (R. We send ξ to C/by the collapsing map 7: TίSet1) -* (R; we writes
y(ζ) for £Λ Let 4̂» denote the atomic (transitive) Z-set of/? elements if/? ^ 0,

c/
the infinite atom if p = 0. Given any 1 in (R, define ^ 5 = Σ5Gt/(/?) ̂ 4/?J a coprod-

uct (disjoint union) of Z-sets, for each s E 5. If s E (/(/?) then 05(5) < /?; hence
there is a mapping ^4P -> O5(5 ) of Z-sets; it follows that we have a mapping
ξs: Bs -* Os(s). Let Xbe the disjoint union Σises&s (or the similar sum with s
ranging over a set of representatives of the orbits in S). Let £ : X-+ S be the map-
ping that agrees with ξs on Bs. It is clear that 7 (ξ) = CΛ We have shown that 7
is surjective on objects.

Consider the commutative square

X -y

5 j -Γ

in Setz, i.e., an arrow in TίSet1). Let 1,1 be the respective collapses of ξ,η.

Then, if s E £/(/?), then there is x E Xsuch that £(x) = s and o^(x) </?; look-
ing at

xi *y

n ~f(s),

we see that oγ(y) </? and y E ^"^/(ί)), hence f(s) E K(/?); we have shown
t h a t t / ^ K ^ y

Conversely let ξ ι,ηi be in T(Set z); / : S -• Γ in TL\ and assume that for
s 1

^ = τ(£)> F = 7(ry), we have t/</ K Let us define the mapping g: A"-• 7over
/ as follows. With xE X9 consider s = £(x) and/? = O^(AT); since s E U(p), we
have that t =^f(s) E F(/?); hence, there is j E ywithι/(j) = ^and Oy(j') </?;
let« = oγ(y). Consider the orbits Oχ(Λ:),Oy(jO; they are atomic Z-sets on their
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own right, and since the size of the second is a divisor of that of the first («</?),
there is a map gx: Ox(x) -> Oγ(y) of Z-sets such that gx(x) = y. The diagram

Ox(x) «ϊ yθγ{y)

S v I

* j J
in which the two /'s are inclusions and the two triangles commute, has an out-
side quadrilateral which commutes on the element x by definition; since x gen-
erates Oχ(x), the quadrilateral commutes.

The mapping g is defined as the disjoint union of all the gXi with x ranging
over a set of representatives of all the orbits (atomic summands) of X; that is,
making the top quadrilateral of the above diagram commute for each x in the
set of representatives chosen. Clearly g is a map of Z-sets, g:X-> Y, and g is
over /.

We have shown that, for any ξ over S and η over Γin T(Setz), and any
/ : S -» T, there is a mapping ξ -> η over/ if and only if γ(£) </ y(η). This,
together with the surjectivity of y on objects proved above, shows that 7:
T(Setz) -> (R is (isomorphic to) the po-reflection of T(Setz).

Comments 6.3 Let us remark that although both <cJ\[,(P(Set)> and (R are
Heyting fibrations with equality (see Section 1), and the latter is a subprefibra-
tion of the former, the latter is not even a subfibration of the former. For later
reference, we calculate the h~-fibration structure of (R.

Let f:S^>Tfrom Set2, Vover Tin (R./*(V) is the maximal Uover S in (R
such that U <y V; this means that

* e ( / * F ) ( / ? ) — > o 5 ( s ) </?&/(*) E V(s). (2)
V/7GN

(Indeed, the right-hand-side does define an element U of the fiber over S such
that U </ V; once that is seen its maximality is obvious. Note that the clause
05(5) < p is necessary; this is what makes / * V calculated in (R different from
that calculated in <eJ\ί,(P(Set)>.)

Turning to the operations in the fibers, let S G Set2; then Is, the maximal
element of (Rs, is clearly given by

sels(p)*^>θs(s)<p; (3)
V/7GN

hence again, it is different from the same in <cJ\ί,(P(Set)>. The binary meet and
join are calculated as in <cM,(P(Set)>; for U, Fover 5,

(UΛV)(P) = U(p)Π V(p)9

(UvV)(p) = U(p)U V(p).
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The same is true of cocartesian arrows (the existential quantifier). For/: S-» T
and U over S,

(3/U)(p) =/((/(/?)) (= the image of the set U(p) under the function/).

Implication in the fibers behaves like 1 an additional clause of an inequality is
needed. For U, VOVQT S,

s G (U-+ V)(p)*^>os(s) < p & V# > p [s G U(q) =* s E V(q)].
v/?eN

For the universal quantifier, we have, for/: S -> Tin Set1, and Uover S in (R,

f G (V/l/)</>)<=>o7 <0 < P & V? > p.V5 G 5[/(5) = ί^ s G t/(?)].
V/?€N

Let us now take a look at the plan of the proof of 6.1. With Ci as in 6.1,
we first pass to the po-reflection y: G -• JC. Next, we take the morphism η =
(F,Φ): 3C -> <M(P(Set)> given by 5.6(a) or (b). Using F:B-+ [N,Set], a carte-
sian functor, we produce the pullback-fibration £) = F~ι «A ,̂(P(Set)>, a fibra-

def

tion with base category B, and the pullback Σ j= i 7 " 1 (Φ) 3C -> 3) (see Section 1
for these general concepts). By the properties of η and 1.4, Σ is a conservative
h~-morphism over B. In the next proposition, we construct a conservative
h~-morphism a: 3D -> (R, with (R the po-reflection of Setz (see 6.2). With α, we
will have constructed a weakly full h "-morphism α°Σ°γ:G->(R.A reference
to the projectivity of e (4.3) will finish the proof.

The next, somewhat technical, proposition contains perhaps the most spe-
cific argument in the paper.

Proposition 6.4 With N,d\[,(R the specific items introduced above, let B
be a free cartesian category, F:B -> [N,Set] a cartesian functor such that
F~(p < q) :F~(/?) -• F~(q) is a pure mono for all p < q in N. Let 3D =f

F~1«iV,(?(Set)». Then there is a conservative h~-morphism a : 3D -* (R.

In what follows, until the end of the proof of 6.4, the data and conditions
of 6.4 are assumed. Note that in particular, F(A) (p-<q): F(A) (p) -* F(Λ) (q)
is a one-to-one function for all A G B. We clearly may assume (for the sake of
simplicity of notation only) that each function F(A)(p < q):F(A)(p) ->
F(A)(q) is an inclusion of sets. Thus, noting that 0 is the maximal element of
N, we always have F(A)(p) c F(A)(q) C F(^)(0) whenever p< q.

We denote F'ι((N,(P(Set))) by 3D?. First, we directly point out the mor-
phism (i/,Λ):3D->(R:

D—A-—»R

B -g -Z-Set

of prefibrations by writing
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ψ —»[p\ -R(p)CF(A)(u)]

Λ\ H -F(A)(0)

here, the set F(A)(0) is understood as the Z-set with the trivial Z-action: for all
a G F(A)(0), σa = a. Although (H,A) is, as the desired (G,Γ) is to be, a mor-
phism from 3D to (R, it does not satisfy all the needed properties; among others,
it fails to preserve 1 in the fibers.

For later use, let us note however that (H,A) does preserve binary meets and
joins in the fibers, and it preserves cartesian arrows. Leaving the meets and joins
to the reader, we verify the assertion for cartesian arrows; this is the main case
where we use the purity of appropriate arrows. Having a cartesian square

R\ c- ~P

I I
A - ~B

in 3D means having, for each p G P, the upper pullback square in the diagram

R(P) ~P(p)

F(A)(p) ^—-F(B)(p)

F(A)(0) jijz -F(B) (0)

(the vertical arrows are inclusions). As F~(p < 0) is a pure mono, the lower
square is a pullback as well; hence, so is the outer quadrilateral. This means that
(//,Λ) takes the cartesian square (4) to a cartesian square in <J\ί,Setz>. But,
since the order of every element in the Z-sets H(A),H(B) is 1, the minimal ele-
ment in N, the square in question is cartesian in (R too.

In the next two lemmas we refer to the items discussed in the last few para-

graphs.

Lemma 6.5 Assume that B is a free cartesian category. There is a cartesian
functor G:B-+ Setz together with a natural transformation k:G->Hsuch that
the following holds:

for any A GB,xG H(A) and p G N,
there i s^ G kjι(x) with oG{Λ)(y) =p

if and only if x G F(A){p).

Proof: We have a category Bo which is free cartesian on a set X C Ob (/Jo)

(see Section 4), and we have that B is free cartesian on Bo and M Z5θb(/*0)
 γ i a

φ:B0-+B and a:M-+ An(B). Since, without loss of generality, φ is the iden-

tity on objects, and (as easily seen), it is one-to-one on arrows, we may take φ

to be an inclusion, and neglect it in the notation; similarly for a.
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Let X G X be arbitrary, and let x G H(X) = F(X) (0). Consider the set P
of all p G N such that x G F(X)(p); we construct the Z-set G0(X) over

Go(X) _t Go(X)

H(X)9 ί k x , so that its fiber kx

ι(x) over x is ΣPepAp. Clearly, i kxis
well-defined as an arrow in Z-Set, and the condition of the lemma is satisfied
with X for A and Go for G (although Go and k are not quite defined yet). Let
us carry out the construction of the items G0(X) and kx for each XEX.

By the freeness of Bθ9 there is G0:B0-+ Z-Set and £: Go -»i/ ° ψ such that
G0(X) and kx are as specified above, for all l e i

We claim that the condition of the lemma holds with reading Go for G, for
all A G Bθ9 that is, for all AGB. Indeed, every object A in B is a finite product
ΠJVOJ-X/ of generators Xt G X; also, kΛ = Γ\i<n kXr Note the simple fact that,
for any element s = <5v>/<Λ in a product 5 = Π,<Λ S, of Z-sets, p = os(s) =
lnbi<n(Pi) for Pi = oSι(Si) (lub = lcm = least common multiple). Thus, if
Si = G0(Xj)9 and kA(s) = x = <#,•>,•<„, that is kXi(Si) = #/, then, by the con-
struction, Xi G F(XiHPi) C F(Xi)(p)9 and since F(Λ)(p) = Π/^FίAiX/?),
we have that JC G F(^4) (p) as desired for the "only if" part of the condition. For
the converse, if x = <JC/>/<Λ G F(^4)(/?), then #/ G F(Xi)(p)9 thus there are
5, G (ko)χj(Xi) with 05.(5-/) =/?, from which it follows that s G (ko)Al(x) and
o5(s) = p .

Next, let a G M with σ(a) = A9 τ(a) = B9 we claim that there is an arrow
G(a): G0(A) -+ G0(B) making

G0(A) ^ ^ »G0(B)

kA kB

H(A) ΉζS) ~H(B)

commute. Indeed, let x G G0(A) be arbitrary; for/? = O(ΛΓ) and s = (ko)AM>
we have 5 G F(i4)(p); for t = H(a)(s)9 it follows that ί G F(B)(p) (consider
F(a)p:F(A)(p) -+F(B)(p))9 hence there isy G ̂ ( 0 with o(y) =p. G(a)
will send xtoy; more precisely, we let x range over a set of representatives of
the orbits of G0(A) and send each such x to any one y as just specified; this
determines G(a) as desired.

Finally, by the freeness of B (see Section 4), there is a cartesian functor
G:B-+ Z-Set which extends Go, whose effect on the arrows aGMare as spec-
ified, and for which k as defined above is a natural transformation k:G^H.

Let us return, besides k: G -> H, to Λ defined above; Λ is above H in the
fibration <3D,(R>. Let us form the pullback Γ = k*(A):

D \κ " 7 & Γ —-Λ

Λ : :

G \ I I
B \k ~7Z-Set G Γ~^H

H

K is a cartesian arrow over £ in <3D,(R>.
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Lemma 6.6 (G,Γ) is a conservative h~-morphism from 3D to (R.

Proof: Unfortunately, 3.9(i) is not applicable, since the components of k are not
cocartesian. Still, we can use 3.9(ii). Since (Z/,Λ) preserves binary meets and
joins in the fibers, and cartesian arrows, so does (G,Γ).

For the remaining verifications, first let us spell out the definition of Γ. Given
R over A in ΐ>,T(R) is over G(A) in (R so that we have the cartesian square

T(R) -A(A)

G(A) £ — H(A)

in (R. By (2), this means that for x E G(A) and p E N,

x<ΞΓ(R)(p)&oG{Ά)(x)<:p&kΆ(x)eR(p);

also note that R(p) C F(A)(p).
To see that (G,Γ) is conservative, assume R,R' are both over A E B in (R,

p EN and R'(p) φ R(p); let y^R'(p) - R(p) CF(A)(p). By 6.3, there is
x E GA with kAx = y and O G Λ M = P\ by the description of T(R)(p), x E
ΓCR'M/?) - Γ(#)(/?); this suffices.

Let 1̂4 be the maximal element of the fiber over A E B in 3); we want to see
that ΓO^) = 1G{A). We obtain that, for any/? E N and x E G(^4)(/?),

x GT(lΆ)(p) <* oGiΆ)(x) < p & kA(x) G lA(p).

Since for all x E G(v4)(/?), A^(x) EFM)(j9) = lA(p), we get that

xeT(lA)(p)^oG{A)(x) < p ^ x G 1 G M ) ,

the last equivalence by (3). We have shown that (G,Γ) preserves the terminal
objects in the fibers.

Let

R - P = 3fR

A j ^B

be a cocartesian square in 3D, with A = C X B, and/ the second projection. Let
p E N we have the commutative square

R(P) »P(P)

F(A)(p) F(f)p >F(B)(p)

in which the vertical arrows are inclusions, and the upper horizontal arrow is sur-
jective. We claim that in the diagram
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T(R)(p) -T(P)(p)

G(A) δ ϊ ? ί _ ^ G ( B )

in which the vertical arrows are inclusions, the upper horizontal arrow is surjec-
tive. Note that G(f) is the second projection taking (z,y) to y, for any z G
G(C), y G G{B). Let y G Γ(P)(p). By the definition of Γ we have that
OG(B) (y) ^ P> and for t = kB(y) we have t G P(p). Hence there is s G R(p)
such that F(f)p(s) = H(f)(s) = t. Moreover s G F(A)(p) = F(C)(p) x
F(B)(p), and //(/) is the second projection, thus 5" = (w,0 with u G F(C)(p).
By the defining property of G in 6.3, there is z G G(C) such that oG ( C) (z) = /?
and kc(x) = u. Then for x = (z,y)9 we have oG(A)(x) — p and Λ^(Λ:) = S E
R(p); hence, by the definition of Γ, we have x G T(R)(p). Since x is mapped
by G(f) (the second projection) to y9 we have now proved the claim.

The claim amounts to saying that

T(R) -T(B)

G(Ά) σ ( / ) »G(ϋ)

is cocartesian in <cM,6>(Set)>; hence by what we said about the structure of (R
above, we have that the same is cocartesian in (R as well, and this is what we
desired.

Let us turn to Heyting implications. Let P and R be over A in 3). Accord-
ing to what we calculated above as the meaning of the Heyting implication
T(P) -• T(R) over G(A) in (R, what we want is the equivalence

x ET(P -+ R)(p) & oG(A)(x) < p & Vq > plx eT(P)(q) => x GT(R)(q)]

(5)

for all xeG(A) and p G N. But

x eT(P-* R)(p)* oG(A)(x) < p & kΆ(x) <E (P-* R)(p)

**oGiA)(x)<:p&kA(x)eF(A)(p)

& Vq>p[kA(x) G P(q) => kA(x) G R(q)].

By 6.5, the second clause in the last conjunction is a consequence of the first;
that is,

xeT(P-+R)(p)**oGiA)(x)*P

& Vq>p[kA(x) G P(q) =* kA(x) G *(?)]. (6)

Applying the definition of Γ two more times, we get that the right-hand-side in
(5) is equivalent to
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oG(A)(x) ^P& Vq >p[[oG(A)(x) <q&kA(x)G P(g)]

=> [oGiA)(x) <q&kA(x)e R(q)]]. (7)

The right-hand-sides of (6) and (7) are visibly equivalent. This shows (5), and
deals with implication.

Finally, let us verify the preservation of fy's. Let/: A -> B be a second pro-
jection/: C x B -+ B in B, and let R be over A in 2). According to the meaning
of VGf(ΓR) in(R,

jGVG/(Γ/?)(/7)<=>oG5(j)<^&V^>/7.VΛ:GG^[(G/)x = j^Λ:e(Γi?)(^)]

(8)

for any y G Gi? and p E N. By the meaning of fyi? in X),

* e (vfR)(p)**te (FB)(p) & vs e H(A).vq >p

[[s e (Λ4)(p) & (///)(5) = / ] 4 j e Λ(^)]

for all f G //5 and p G N. Note that, since

(Λ4)(p) -(FB)(p)

incl incl

/£4 ^ ^HB

is a pullback ("purity"),

te (FB)(p) and (i//)(5) = /imply s G (i^)(/?).

Hence, we can simplify the above to

te(yfR)(p)**te(FB)(p)&VsGH(A).Vq&p[(Hf)(s) = t**seR(q)].

(9)

We want to show

Γ(V/Λ)(p) = VG/(Γ/?)(/7). (10)

Suppose first that y G T(VfR)(p). This means that

θG*(.y)^A (H)

and for t = kB(y), we have t G (VfR)(p). To showĵ  G VGf(TR)(p) look at (8)
and take any # > /7 and x G Gv4 such that

(Gf)(x)=y; (12)

let 5 = kA(x). We have (Hf)(s) = t, since, by the naturality of k

GA ^ -GB

kA kB

HA ^ *HB

commutes. As t G (VfR)(p), by (9) we havesG R(q). By (11) and (12), oGy4(x) <
OG ί̂J7) ^ /?• From the last two conclusions and the definition of TR we have
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x G (TR)(p). Looking at (8), we see that this is what we needed to show that
yevGf(ΓR)(p).

Conversely, assume

yevGf(TR)(p) (13)

and let t = kB(y). By 6.3,

te(FB)(p). (14)

With an eye on (9), let s G HA such that (Hf) (s) = t. We want x G GΛ such that
the following relations hold:

χ\ ^y

GΛ ^ — - G B '"

kA kB

HA TTΓ-+HB
rij

s\ *t

Here we use that/is a second projection. Wehave5"= (u,t) with uEF(C)(p).

Hence, by 6.5, there is z G GC such that oG C(z) = p and ιkcl let x = (z,.y).
Then x satisfies the requirements.

By (13) and (8), x G (TR)(q), hence s G R(q). According to (9), together
with (14), this is what we need to have that t G (VfR)(p). By (13) and (8),
oGB(y) ^ A Hence, y G T(VfR){p).

This completes the verification of (10), and that of Lemma 6.6.

Proof of Proposition 6.4: By Lemma 6.6.

Proof of Theorem 6.1: We deal with the second assertion first. We continue the
tale started in the paragraph after 6.3. As promised there, 6.4 gives us a conser-
vative h~-morphism a = (G,Γ) : 3) -> (R. Let us denote the composite α » Σ o
γ : e - > ( R b y h = (huh2): β -+ (R:

C * ~R

e <R

B Tι - S e t 2

h is a full h~-morphism. We apply a pullback along h\ to have fibrations over
B; we construct the following diagram:

^ N ^ ΛΓ1 (Λ) — ^ ^ - ( R

Nv = 7 ' 7

Af^TίSet1)) ^—T(Setz)
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π and p are projections in pullbacks; they are maps of fibrations over hx\
clearly, they are both full h~-morphisms. g is obtained by the canonical factor-
ization of h9 and it is a full h~-morphism since h is one. 7' makes the square
commute; in the pseudo-functor view of fibrations, it is just the restriction of
7 to B9 hence it is surjective since 7 is. We can apply the projectivity of 6 over
B (4.3) to conclude the existence of k such that 7' ° k = g. The fullness of g
gives the fullness of 7' ° k9 and, hence, the weak fullness of k. The composite
p °k:Q -+ T(Setz) is the desired weakly full h~-morphism.

To prove the first assertion of 6.1, note that the assertion is equivalent to
saying that for any AeBandX9 YG QΛ such that C(X9 Y) = 0 , there is an
h"-morphism σ : β -> T(Setz) such that (Setι)'"'(σX9σY) = 0 . The proof
of the latter is a variant of the proof given above. We fix X9Y E <5A with
C(X9 Y) = 0, and using 5.6(b) get (F,Φ) as before except that now (F9Φ) is con-
servative at (yeX9yeY) only. With a given by 6.4, and h defined as before we
now have R(tι2X,h2Y) = 0 . Repeating the remaining steps gives us a mor-
phism G -• T(Setz) that is weakly full at (X9 Y).

Let us denote the free extension of β, an arbitrary h~-fibration, to a fibra-
tion of the form T(/s)> the fibration of families in a Boolean topos E satisfy-
ing the (internal) axiom of choice by 7AC 6 -* TAcίβ); y£c is initial among all
h~-morphisms from β into a fibration of the form T(/s) with E is a Boolean
elementary topos satisfying the axiom of choice. The existence of 7AC follows
from general principles.

Corollary 6.7 For any h~-fibration C,7AC & weakly full.

Proof: The proof of the Corollary is rather immediate from 6.1, and follows
the same pattern as the proof of the main result in Section 4 of [1]. The Intro-
duction to the first part [5] contains a commentary on the meaning of the Cor-
ollary.
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