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Abstract Whereas Zermelo’s foundational program is implicitly reductionist,
the precise character of his reductionism is quite unclear. Although Zermelo
follows Hilbert methodologically, his philosophical viewpoint in 1908 is
broadly at odds with that of Hilbert. Zermelo’s interest in the semantic par-
adoxes permits an intuitive concept of mathematical definability to play an
important role in his formulation of axioms for set theory. By implication,
definability figures in Zermelo’s philosophical concept of set, which is seen
to be nonstructural in character. Zermelo’s advocacy of universal definabil-
ity is intended to blunt tensions between platonists and constructivists.
Finally, the method of justification of mathematical axioms is taken to be of
an empirical and public character, at least in part, and, as a consequence,
threatens Zermelo’s foundational program.

What foundational role, if any, is set theory to play? One relatively straight-
forward answer has come to be called reductionism. Let us take reductionism
to encompass the following claims:

(R1) All mathematical objects are sets.
(R2) All mathematical concepts are definable in terms of membership.
(R3) All mathematical truths are set-theoretic truths.

Reductionism embraces set theory as the metaphysical foundation of the math-
ematical sciences: mathematical objects, being sets, have whatever sort of real-
ity sets have. We note that, at least according to one common understanding of
what it is for a proposition to be true, (R3) is not independent of (R1) and (R2):
it is not clear that it makes any sense to affirm (R3) while denying (R1) and (R2),
or vice versa. Also, as it stands, (R2) remains vague in that the nature of the
definability involved here is left entirely open.

At the other extreme is the view —now widely if not universally accepted —
that set theory, despite its important subject, can be foundational only in that
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mathematical theories are interpretable in models of set theory in the usual sense
that (1) the objects about which such a theory T purports to speak can be ten-
tatively identified with elements of the domain of the set-theoretic model M and
(2) the nonlogical predicates of 7 can be tentatively understood in terms of the
membership relation of M in such a way that the theorems of T come out true
in M. Adherents of this more modest view deny (R1) through (R3) but readily
grant the truth of analogues:

(R1’) All mathematical objects may be understood as sets.
(R2’) All mathematical concepts may be understood in terms of membership.
(R3’) All mathematical truths may be understood as set-theoretic truths.

One is careful to distinguish definability ((R1) and (R2)) from mere interpretabil-
ity ((R1’) and (R2")). (R1’) through (R3’) are uncontroversial in themselves.
Moreover, (R1) through (R3) presuppose (R1’) through (R3’) but not vice versa.

It is striking that Zermelo’s early papers on set theory contain no clear reduc-
tionist statement. Nonetheless, Zermelo’s goal is clearly a foundational program,
and this program is implicitly reductionist in character. The present paper is an
investigation of Zermelo’s views on the philosophy of mathematics with empha-
sis upon his earliest publications. As shall become clear, I shall place consider-
able weight upon his discussion of the paradoxes and, in particular, of the
Richard paradox. I shall begin by considering briefly the nature of Zermelo’s
reductionism. A second paper will explore the philosophical viewpoint discern-
able in the papers of the 1930’s.

I would claim that Zermelo’s axioms for set theory are intended (1) to lend
a new rigor to set theory by revealing the assumptions underlying earlier work
and (2) to provide a foundation in the sense of Descartes for set theory and, via
reductionism, for mathematics (arithmetic and analysis) as a whole. This is to
place reductionism at the very center of Zermelo’s foundational program; in writ-
ing about the Grundlagen der Mengenlehre, he would be, by implication, speak-
ing of the Grundlagen der Mathematik. If Zermelo never states (R1) through
(R3), this is in part because he takes the work of Cantor and Dedekind (together
with some set-theoretic definition of the natural numbers) to have already dem-
onstrated reductionism at least with respect to finite numbers (see Gillies [6]).
The task that Zermelo then sets for himself, on this interpretation, is the pro-
vision of a secure foundation for set theory so that the reduction of his prede-
cessors, regarded as a fait accompli, can be seen to have merit.

What has just been presented is probably the accepted view of Zermelo:
questing for rigor and certainty while assuming an inherited reduction of finite
number. Clearest support for a reductionist interpretation of Zermelo’s thought
is to be found in Zermelo’s objection to what we would now view as metatheo-
retic definitions by induction.! The Accepted View, as I shall refer to it, none-
theless requires some qualification in the face of apparently disconfirming
evidence. This evidence involves (1) the central concepts of order and function,
(2) the indeterminate role of number objects in Zermelo’s system, and (3) anom-
alous features of Zermelo’s axiomatization. I consider each in turn.

The concepts of order and function present apparent obstacles to attribut-
ing to Zermelo either objects- or concepts-reductionism, since, in the period
before the Hausdorff-Wiener-Kuratowski definition of the ordered pair, both
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concepts would present prominent counterexamples to (R1’) and (R2’) and hence
to (R1) and (R2). Zermelo’s position would at best be analogous to that of the
modern physicalist who feels confident that future advances in neurobiology will
ultimately reveal the physical basis of all mentalist concepts despite the present
unavailability of the required reduction.

Further, the precise role, if any, of number objects in Zermelo’s theory of
sets is less than clear; this unclarity in turn obscures the character of his reduc-
tionism. It is true that certain of Zermelo’s remarks around 1908 indicate an
overall intention to eschew number objects: thus versions of the principle of
mathematical induction are presented starting from the definition of finite set
rather than finite number (see Zermelo [18]). But other remarks from the same
period point in another direction. For example, Zermelo’s discussion of the
paradoxes in his [16] assumes real number objects, at least on the face of it.?
Also, the conclusion of Zermelo’s [17] has him characterizing reals, in the usual
way, in terms of sets of rationals:

In practice, every irrational is determined by a “cut,” that is, by an infinite set
of rational numbers. Similarly, the limit of a function can always be defined by
an infinite set of arguments and values.

One has no choice but to conclude that the role of number objects in Zermelo’s
set theory is largely an unsettled matter.? But this almost certainly means that
Zermelo’s attitude toward reductionism —and in particular (R1)—is unsettled as
well, since the inherited reduction of the Accepted View consists largely of set-
theoretic definitions of these very number objects. This point concerns not
whether Zermelo is a reductionist but, rather, the nature of any reductionism
which may be attributed to him. In any case, the Accepted View, which may be
an adequate description of Zermelo’s ultimate position, does not reflect the
ambiguous character of his early thought. This is not to suggest that Zermelo
doubts the possibility of a successful reduction of finite number. Rather, it may
be only that such a reduction appears to him to be quite useless in the absence
of any corresponding reduction of ordinal and function.*

Finally, Zermelo’s own definite properties pose a problem for (R1’) and
hence for (R1). His own manner of proceeding indicates that they form part of
the subject matter of set theory and yet they are sets only on pain of contradic-
tion. Of course, one can deny that they are mathematical objects, and this is per-
haps Zermelo’s point of view. But if they then offer no challenge to (R1), they
do present a counterexample to (R2’) and (R2), since the definiteness concept
itself represents the limiting case of an informal mathematical concept that, from
Zermelo’s point of view, would, in all probability, not itself be characterizable
set theoretically. Another issue for (R1’) and (R1) would be the status of the
domain of sets itself. Zermelo discusses this domain as if it were indeed a math-
ematical object. But once again it cannot be a set.

One must conclude that Zermelo’s reductionism is programmatic in charac-
ter, consisting of the view that the needed reduction, while not yet in place, is
yet feasible (see Hallett [7]). The analogy to physicalism, previously mentioned,
is useful here. Zermelo’s inclusion of urelements within the set-theoretic domain
is not really hard to square with anything like (R1). Although it is not clear why
Zermelo feels that he needs urelements, ultimately no mathematical object will
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be reduced to an urelement. At worst, mathematical objects will be reduced to
sets with urelements in their transitive closures. So there seems to be no conflict
with (R1). Finally, Zermelo explicitly asserts:

(N1’) The set . . . contain[ing] the elements { }, {{ }}, {{{ }}}, and so forth,
. . may be called the number sequence, because its elements can take the place
of the numerals. ([16], p. 205)

This is, of course, a considerable understatement if Zermelo in fact subscribes
to (R1) or the analogous claim concerning the natural numbers. But given that
the remark appears during the same period during which number objects are in
fact not clearly a part of Zermelo’s conception, there is an obvious, alternative
reading of Zermelo’s remark that leaves room for (R1). I conclude that, despite
the cited problems, Zermelo should be regarded as a programmatic reductionist.

As my discussion turns now to other issues that arise within the philosophy
of mathematics, it must be noted that Zermelo is hardly a philosopher of math-
ematics. In fact, Zermelo is usually content to produce technical results and usu-
ally shuns philosophical discussion. When he does engage in philosophical
discussion, this is often in order to bolster support for such a result, as in his phil-
osophical defense of the use of impredicatively defined objects in his proofs of
the well-ordering principle. But there are other instances in which it is philosoph-
ical issues that motivate Zermelo’s mathematical program. Here I am thinking
in particular of Zermelo’s late theory of mathematical systems based on a gen-
eralized notion of well-foundedness, where the motivation is a philosophically
based rejection of finitary first-order systems of the sort to which Gédel’s incom-
pleteness and undecidability results apply. I shall take Zermelo’s starting point
in his earliest period to be not reductionism per se but rather a technical quest
for rigor and certainty —in particular, a quest for results that could lend support
to a feasible philosophical reductionism. This seems to be the most plausible
reading of Zermelo’s various remarks to the effect that what he is doing is pro-
viding a foundation for mathematics. Although Zermelo in his early period surely
cannot hold reductionism to have been demonstrated, at the same time he is no
doubt inclined toward reductionism: clearly his own work on the foundations
of set theory would gain in importance if (R1) through (R3) were true. Moreover,
reductionism sometimes provides a plausible explanation for Zermelo’s point of
view on a given issue.

1 Hilbert and Zermelo: A Shared Methodology The methodological con-
text of Zermelo’s [16] is the axiomatic method described by Hilbert, according
to which the principal foundational task of the mathematician is the introduc-
tion of axioms for given conceptual spheres. Mainstream mathematical activity
then consists of the investigation of the consequences of the adopted axioms. The
axiomatic method, which forms the methodological component of Hilbert’s early
program, falls naturally into four parts according to his conception (see Hilbert
[11]). First, one determines the intuitive nature of the intended objects of study,
and this involves fixing upon some (typically small) network of concepts and
operations applicable to and constitutive of these intended objects. One next goes
about the presentation of central propositions (axioms) that collectively “define”
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these concepts and operations. In the typical case, a certain adjustment is then
required whereby the initially chosen axioms, having turned out to be derivable
in fact from certain deeper propositions, are replaced by the latter. Finally, one
must demonstrate that the axioms yield neither too much (consistency) nor too
little (completeness). One also establishes that each axiom is independent of the
others as well as that there are but finitely many axioms (schemata). Thus, put-
ting a conceptual sphere in order takes the form: (1) intuitive concept identifi-
cation, (2) initial axiomatization, (3) modification of initial axiomatization, and
(4) demonstration of adequacy of modified axiomatization. In general, step (1)
may serve later as justification for the axioms of (2) and (3), but in Hilbert’s own
case this role for (1) must not be exaggerated. In the particular case of sets, where
there is potential for paradox, (1) will presumably speak both to the nature of
sets as well as to the issue of which sets exist. The contemporary philosopher of
mathematics is likely to feel the absence of a step between (1) and (2) here,
whereby one settles upon a certain language or symbolic notation in which to
present the axioms. However, Hilbert during this period places relatively little
importance on symbolic notation, when compared with the Peano school, and
Zermelo follows Hilbert in this regard.

In his [9], Hilbert completes this task for Euclidean geometry. During the
same period, he offers a set of axioms for the real number system in Hilbert [10].
Zermelo in [16] sets out to accomplish for Cantorian set theory what Hilbert has
accomplished for geometry and the reals. The paper’s very title suggests this. As
for content, it consists of the presentation of a collection of seven axioms and
the derivation of several consequences significant for Cantor’s theory of equiv-
alence. Zermelo’s remarks in [16] do indeed reflect adherence to the Hilbert meth-
odology. Thus, he expresses concern that he has been unable as yet to prove the
consistency of his postulates, and he raises the issue of completeness as well.’
There is little doubt that Zermelo is following Hilbert methodologically. 1t is
equally clear, however, that he takes nothing from Hilbert philosophically.

2 Hilbert and Zermelo: Diverging Philosophical Viewpaints To comple-
ment the axiomatic method, Hilbert espouses a philosophical conception of
axiom systems that is an early prototype of our own model-theoretic viewpoint.
According to Hilbert’s conception, axiom systems have models, and this in turn
leads him to certain important new ideas concerning mathematical existence and
truth. Thus, given a plurality of models of the axioms, it no longer makes any
sense to speak of a mathematical object existing independently of the domains
of those models: so an existence theorem is now interpreted as meaning only that
an object of some description exists in every model of the axioms. Similarly, it
now makes no sense to speak of a proposition being frue independent of those
models. In this manner, questions of mathematical existence and truth cease to
be central and are replaced by the issues of consistency and completeness of for-
mal systems. The consequences of fully embracing the model-theoretic viewpoint
are just such “deductivist” views.

The plurality issue is worth emphasizing. Even if Hilbert’s conception is not
fully model-theoretic in certain respects, still his correspondence with Frege from
the years 1899-1900 as well as his unpublished lectures on geometry from the
1890’s indicate that Hilbert is resolutely committed to the view that axiom sys-
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tems in general admit a plurality of models. In this regard Zermelo is really quite
different, since he permits but a very limited plurality: in essence, domains may
vary according to Zermelo only with respect to urelements. But more impor-
tantly, Zermelo’s conception in [16] is not that of any truly model-theoretic view-

point.%
Zermelo plainly parts company with Hilbert when he mentions that “the fur-
ther, more philosophical, question about . . . the extent to which [these axioms]

are valid will not be discussed” ([16], p. 200). Similarly, when Zermelo asserts
that axioms are justified by their being shown to be intuitively evident and nec-
essary for the development of mathematics (see Zermelo [15], p. 187), he
expresses a view that Hilbert can hardly share. If Zermelo does subscribe to any
truly model-theoretic conception, then such remarks are strangely misleading.
For such a conception, as described above, entails a certain disengagement with
regard to mathematical truth, while Zermelo’s remarks suggest no such reserve.
Zermelo is hardly dismissing the truth issue. On the contrary, he shuns Hilbert’s
agnostic construal of mathematical axioms in favor of the ancient doctrine that
mathematics is an a priori science resting upon self-evident truths ([18]). The
platonism implicit —on one reading —in the quoted remark concerning validity
can, of course, be squared with the model-theoretic viewpoint if we assume an
intended model whose domain is precisely the sets (or so one hopes). With this
remark Zermelo would thereby be raising the question whether the domain of
this intended model is in fact just the sets. This “intended model” reading is out
of place, however, since the bulk of his remarks in no way suggests the model-
theoretic conception. Note, in this regard, that Zermelo’s remark suggests no link
between truth and consistency, as urged by Hilbert.

Zermelo tells us that “set theory is concerned with a domain (Bereich) B of
individuals, which we shall simply call objects and among which are the sets”;
that “certain fundamental relations of the form aeb obtain between the objects
of the domain B”; and that “[these] fundamental relations of our domain B . . .
are subject to [certain] axioms or postulates” ([16], p. 201). It is tempting to con-
strue Zermelo’s intentions as model-theoretic in Hilbert’s sense, whereby the
seven axioms would define a certain class of Cantorian structures. Again, how-
ever, this would be a mistake. For one thing, Zermelo in [16] allows nothing more
than the limited domain variability mentioned earlier, speaking always of a
domain and the domain. Given the period in which Zermelo is writing, this man-
ner of speaking is likely to mislead readers: if he indeed intends any real plural-
ity, he might be expected to emphasize this. After all, the idea is relatively new.’

In the end, Zermelo’s conception in 1908 is anything but model-theoretic,
despite his use of the term “domain,” since the model-theoretic conception surely
presupposes plurality. Zermelo’s conception is rather algebraic in the sense that
the typical axiom expresses a closure condition on a domain of initial objects.
Thus we start with some collection of urelements. Axiom I (Extensionality) estab-
lishes identity conditions for sets. Axioms II (Elementary Sets) and VII (Infin-
ity) postulate the presence of the null set and w, respectively. In addition, Axiom
II closes under the taking of singletons and pairs. Axioms IV and V close under
the taking of power sets and sumsets, respectively. Axiom VI, which postulates
the existence of a single choice set for any given set of nonempty, disjoint sets,
expresses something like a closure condition. But since we do not assume all/ pos-
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sible choice sets for a given set, Axiom VI is not a closure condition in the full-
est sense. We shall see below that Axiom 111 (Aussonderung) is also anomalous
in this regard.® It is worth noting at this point that in presenting the individual
axioms, Zermelo never engages in anything like the description of a hierarchy
or structure that might serve as an intended picture or diagram of the domain
he is describing. In this regard, there is a marked contrast to Russell and White-
head’s way of proceeding in presenting the system of Principia Mathematica —
a point to which I shall return later when discussing Zermelo’s philosophical
concept of set.

Zermelo’s algebraic conception suggests an unstated “terminal” axiom assert-
ing that nothing is a set except what is obtained from urelements and “base” axi-
oms by closure under the set-forming operations of the others. His discussion
of the way in which his Axiom III (Aussonderung) prevents paradox presumes
the minimality of the domain in just this sense. It is then unclear how one is to
square this with his explicit allowance for non-well-founded sets: no axiom bans
them, but how might they find their way into the domain in the first place?
Zermelo’s algebraic conception appears to break down at just this point. A more
model-theoretic conception would help and is perhaps suggested. Nonetheless the
overall conception is definitely not model-theoretic.

Zermelo’s not committing himself to the new model-theoretic conception is
merely a consequence of the fact that it would in no way facilitate his reduction-
ist program. If in defining the natural numbers as certain sets we are saying what
the natural numbers are, then what sense is to be made of the claim that set the-
ory can have multiple models? Is 0 the empty set of model M, or is it rather the
empty set of alternative M,? Making out a case for the metaphysical status of
the definition of 0 as { } is most natural if some single model is our reference.
The alternative —to assume that (pure) sets can be identified across models —is
philosophically problematic if not altogether incoherent. Alternatively, one might
choose to regard “e” as something like a logical constant that always denotes the
membership relation on the domain (assumed to be a class or set). In that case,
there is no obvious harm in assuming that the null set of M, and the null set of
M, are identical. So there are ways to make out the metaphysical claim, but they
are all highly contrived as an interpretation of Zermelo.

To sum up, we have seen that Hilbert’s early program consists of a method-
ological part and a philosophical part. The methodological part is just steps (1)
through (4) above. The philosophical part that complements this methodology
is a model-theoretic viewpoint. In fact, what Zermelo takes from Hilbert is a
methodology and nothing more. This methodology is reflected in his decision to
proceed axiomatically in a quest for rigor while avoiding the paradoxes. On the
other hand, Hilbert and Zermelo share nothing philosophically just because it
is unclear how the model-theoretic conception of the one is to be squared with
the reductionism of the other. In general, Hilbert in his thinking about founda-
tional issues is much in advance of Zermelo, who cleaves to a traditional con-
ception of mathematics as a priori science (see also Breger [2]).

I shall turn now to Zermelo’s Axiom III and the issues that it raises. It is at
the heart of his solution to the set-theoretic paradoxes. It is also the locus of the
definability concept that, together with the size-limitation idea, forms the core
of his thinking about sets.
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3 Avoiding the Semantic Paradoxes: The Bounds of Definability For set
theory, unlike other areas of mathematics such as number theory or abstract alge-
bra, the concept of mathematical definability has been central. Comprehension
principles, which state which properties or predicates define sets, serve as a start-
ing point in the early investigations. Such principles might be fully unrestricted
(Frege), or they might be in some measure restricted (Cantor). Zermelo’s Aus-
sonderungsaxiom (Axiom of Separation) is a quasi-comprehension principle:

Whenever the propositional function F(x) is definite for all elements of a set M,
M possesses a subset M containing as elements precisely those elements x of
M for which F(x) is true. ([16], p. 201)

Two very different sorts of restriction are introduced here. First, there is a
restriction upon the size of the set defined. Thus the axiom requires that one start
with a collection M assumed to be a set. The result, My, of applying the axiom
to M will be no greater in size than M obviously. Consequently, since M is not
“too big” to be a set, neither is Mg. The second restriction introduced in Aus-
sonderung seeks to limit the conceptual resources made available for “separat-
ing out” Mp. Here Zermelo’s source is the semantic paradoxes—in particular the
Richard paradox. Since it is well-known how size limitation is useful in eliminat-
ing the various set-theoretic paradoxes, my discussion will focus upon this sec-
ond sort of restriction.

Zermelo’s concept of definiteness is the locus of his efforts to restrict con-
ceptual means. The philosophical source of the concept of definiteness is an intu-
itive concept of logical definability relative to the new set-theoretic context:

A question or assertion F is said to be definite if the fundamental relations of
the domain, by means of the axioms and the universally valid laws of logic,
determine without arbitrariness whether it holds or not. Likewise a “proposi-
tional function” [Klassenaussage] F(x), in which the variable x ranges over all
individuals of a class K, is said to be definite if it is definite for each single indi-
vidual x of the class K. Thus the question whether aeb or not is always definite,
as is the question whether M € N or not. [Italics in original] ([16], p. 201)

Zermelo’s concept of logical definability is of a nonlinguistic character. Thus,
rather than looking to syntax to decide definiteness, Zermelo instead makes an
appeal to relations holding within the domain. Moreover, application of Aus-
sonderung always involves a demonstration of definiteness in which one seeks
to show that the given assertion is true or false solely on the basis of the mem-
bership relation, the definitions of certain set-forming operations, and logic.
(Zermelo in the quoted passage speaks of using the axioms. However, the axi-
oms of [16] are extended affairs that incorporate definitions of sumset, power
set, and so forth.)

Definiteness in [16] has precious little to do with language.’ Zermelo’s idea
is rather that of concepts being definable in terms of other concepts. We start
with a certain “conceptual sphere” (Denkbereich, Begriffssphdre), to introduce
a very Cantorian terminology, which in this case is just the set-theoretic sphere.!°
Now Zermelo wishes to proscribe foreign elements by marking off those prop-
erties that are “germane” to this sphere. The appeal to the fundamental relations
reflects Zermelo’s desire that we restrict our attention to properties character-
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izable or definable by means of the conceptual resources of the given conceptual
sphere. In the case of set theory with urelements, this means membership and
equality. Again, the restriction is not to any particular vocabulary, for the idea
is that of concepts being definable in terms of other concepts.

The envisioned application of logic is clear enough. More complex concepts
are constructed from the fundamental ones by way of familiar Boolean opera-
tions on concepts. Suppose that concepts ¢ and ¥ are given. Then a new con-
cept x can be composed of these as their union: an object x will fall under
concept x if x falls either under ® or under ¥ or under both. To see how gen-
erality can be handled, suppose that concept & and two-place relation A are
given. Now define concept ¥ with the stipulation that an object x will fall under
V¥ provided every object y falling under ® stands to x in the relation A. Here we
have generalized objects. It is also possible, of course, to introduce generality
with respect to (first-order) concepts themselves so as to obtain more complex
higher-order concepts. This is all familiar to Zermelo from the work of Frege.
Unfortunately, Zermelo says nothing at all to indicate how far we are permit-
ted to go in constructing concepts. His own practice in demonstrating definite-
ness in [16] never takes him beyond first-order concepts. So it is possible, but
not likely, that this is the intended limit. More probably, given his views on defin-
ability, Zermelo envisions no restriction whatever on logic. So it is no accident
that he speaks of “universally valid laws of logic” without characterizing logic
more closely. Thus, whereas the intended application of logic is clear enough,
the extent of logic is not. This, in turn, renders the definiteness concept some-
what murky so that the role of Aussonderung is itself less than clear ultimately.
Setting that issue to one side, let us see how Zermelo wishes to use definiteness
to resolve the Richard paradox. We shall see that Zermelo’s solution may pre-
suppose reductionism in the sense of (R2), i.e., concepts-reductionism.

Suppose that we are given an enumeration E of all the real numbers between
0 and 1 that are definable in finitely many English words. Included in the enu-
meration will be numbers defined by expressions such as “point zero one” and
“one-half the square root of two.” Now consider the following definition of the
real number N:

Let N be the real number between 0 and 1 whose nth decimal digit is the cyclic
sequent of the n'® decimal digit in the #*" number in enumeration E.

(We let I be the cyclic sequent of 0, 2 be the cyclic sequent of /,..., and 0 be
the cyclic sequent of 9.) It follows that N must be different from every number
in E. Hence N must not be finitely definable. And yet the given definition of N
consists of but finitely many words.

Although Zermelo does not say how individual reals are to be construed set
theoretically, he assumes in his discussion of the Richard paradox that the reals
collectively form a set. However, says Zermelo, definiteness and Aussonderung
prevent the finitely definable reals from forming a set, since the property of finite
definability is not definite. So the Richard paradox is eliminated.

What is the source of Zermelo’s claim that finite definability is not definite?
Zermelo assumes apparently that the concept of finite definability (via natural
language) outstrips the conceptual resources of set theory and, hence, by (R2),
of mathematics. Expressed bluntly, Zermelo assumes that the concept of finite
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definability has nothing to do with membership. This is presumably because he
assumes that definability in natural language has nothing to do with member-
ship. About this he may be right.!! But he merely assumes this.'> He does noth-
ing to demonstrate, even roughly, that the finite definability concept is not
definite. This introduces a certain disanalogy, since Zermelo insists upon dem-
onstrations of definiteness in positive cases; it is reasonable to expect a refuta-
tion of definiteness in the case of finite definability. Moreover, such a refutation
is readily available to Zermelo. One proceeds indirectly by supposing that finite
definability is definite. Accordingly, a (denumerable) set S of finitely definable
reals is separated out. An enumeration E of S may be assumed. Now Richard’s
Nis both in S and in the complement of S. Clearly Zermelo could reason in this
way. But, in any case, he does not do so, and his remarks concerning the Rich-
ard paradox indicate that he is not assuming such an argument either. Again, he
merely takes it to be obvious, requiring no demonstration, that finite definabil-
ity transcends the conceptual resources of set theory. From this we should con-
clude two things. First, we see once again that Zermelo’s conception of set theory
is hardly model-theoretic. The symbol “€” is just the name for the real member-
ship relation holding within the given domain of sets. If “c” were capable of dif-
ferent instantiations, Zermelo’s assumption that finite definability transcends
set theory would make no particular sense. Second, Zermelo appears to take
some understanding of the conceptual “stretch” of the membership relation to
come with the domain, so to speak. Alternatively, one might say that he assumes
an intuitive understanding of the membership relation that makes it manifest that
the finite definability concept will not be logically definable in terms of mem-
bership.

On Zermelo’s algebraic conception, Aussonderung expresses a limited sort
of closure condition. Zermelo’s idea is not closure under the inclusion relation,
as has sometimes been claimed (see Drake [5], pp. 12-13). His brief discussion
of the Richard paradox makes this apparent. Rather we close under included col-
lections that are logically definable in terms of the conceptual resources at hand.
The problem, as noted above, is that “logically definable” here is left largely
unspecified.

What is the relation between the definiteness concept and the concept of
mathematical definability? Both may be regarded as higher-order concepts in that
only concepts fall under them. Are they extensionally identical? By (R2) all math-
ematically definable concepts are definable in terms of membership and hence
definite. (Note that we are being just as vague regarding definability as is
Zermelo.) Thus concepts-reductionism has as consequence that the definite con-
cepts subsume the mathematically definable concepts. The other direction is triv-
ial so long as we follow Zermelo in taking axiomatic set theory to be part of
mathematics. If this is correct, then Zermelo can be taken to assert that finite
definability is not merely not definite but not mathematically definable either.!?
Thus definiteness turns out to be nothing more than a technical term for math-
ematical definability. And this is important, since it is clear that Zermelo’s goal
is not merely to show that the Richard paradox does not arise within set theory.
The larger goal is to demonstrate that the paradox is eliminated from mathemat-
ics altogether. This probably means that (R2) is a key underlying assumption.
Zermelo seeks to show that the finite definability concept is illegitimate, not by
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citing some circularity as had Richard himself and Poincaré, but rather by assert-
ing that it is not definite in his new sense. In the absence of (R2), however, this
assertion would be of no interest from the point of view of eliminating the par-
adox from mathematics, since definiteness, on the face of it, is a matter of log-
ical definability starting from the membership relation whereas finite definability
concerns the most general (informal) means of specification. Even if one grants
that finite definability is not a definite concept, this by itself shows only that
the Richard paradox is not a problem for Zermelo’s system. In order for this to
have any implication for mathematics generally, (R2) is required. For (R2) and
the assumed nondefiniteness of finite definability together entail the desired ille-
gitimacy of finite definability as a mathematical concept, and the paradox is
blocked.

It is worth commenting on Zermelo’s concept of set at this point. His
assumption of (R2) has as a consequence that, in the guise of definiteness, an
intuitive concept of mathematical definability is at the root of his concept of set.
Size limitation is not an adequate explanation of Zermelo’s intentions, as has
been assumed, although there is no denying it an important role. Thus Zermelo
writes:

By giving us a large measure of freedom in defining new sets, [Aussonderung]
in a sense furnishes a substitute for the general definition of set that was cited
in the introduction and rejected as untenable. It differs from that definition in
that it contains the following restrictions. In the first place, sets may never be
independently defined by means of this axiom but must always be separated as
subsets from sets already given; thus contradictory notions such as “the set of
all sets” or “the set of all ordinal numbers”, and with them the “ultrafinite par-
adoxes”, to use Hessenberg’s expression, are excluded. [italics in original] ([16],
p. 202)

Here the issue is undoubtedly size. However, Zermelo continues:

In the second place, moreover, the defining criterion must always be definite in
the sense of our definition . . . (that is, for each single element x of [set] M the
fundamental relations of the domain must determine whether it holds or not),
with the result that, from our point of view, all criteria such as “definable by
means of a finite number of words”, hence the “Richard antinomy” and the
“paradox of finite denotation”, vanish. ([16], p. 202)

Again, the role of mathematical definability has been underappreciated because
Zermelo’s interest in the semantic paradoxes has rarely been stressed. In fact, that
interest is the very genesis of definiteness. Ultimately, Zermelo’s restricted com-
prehension principle must be explained, at least as far as his own intentions in
1908 are concerned, both in terms of size limitation and mathematical definabil-
ity. Zermelo’s exposition in the two passages just quoted is probably intended
to suggest this directly. Describing Zermelo’s 1908 axioms as a size-limitation
theory as does Hallett [7], while correct as far as it goes,'* omits fully half the
story.!® In particular, Aussonderung is not functioning as a size-limitation prin-
ciple in its application to the Richard paradox. In that case, it is a limitation on
conceptual resources rather than on size that prevents the paradox from arising.
Moreover, it is apparent that this limitation on conceptual resources is every bit
as important for Zermelo’s theory as is the limitation on size.
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4 Propositional Functions and Logic Definiteness may appear to have lit-
tle to do with any concept of definability and to be rather only a clumsy way of
getting at well-formedness in a formal language. To conclude this would be to
assume an object-language/metalanguage distinction that is alien to Zermelo’s
thought in [16]. Reading Zermelo’s remarks on definiteness as merely syntactic
in spirit may be good mathematical logic but it is very bad history. Skolem’s later
construal of definiteness as well-formedness, replacing an informal element with
a formal element characterizable in the meta-language, was a much-touted
advance just because it was not obviously contained in Zermelo’s remarks con-
cerning definiteness. Indeed Skolem’s characterization of definiteness is a land-
mark along the road to the model-theoretic conception of formal theories.
Zermelo’s presentation of axioms for set theory without consideration of lan-
guage ensures that well-formedness cannot be his intent already in 1908. It
appears likely that the tendency to underemphasize Zermelo’s desire to place lim-
its upon conceptual resources finds its source in a disposition to interpret defi-
niteness as well-formedness.

Zermelo eventually does come to view definiteness in a manner more in
keeping with the model-theoretic viewpoint, i.e., more in terms of some sort of
syntactic definability. And no doubt this change is attributable to Skolem’s influ-
ence. In a paper (Zermelo [19]) published in 1929, Zermelo presents an induc-
tive definition of proposition definite relative to R, where parameter R is the
“system” of fundamental relations of a given theory. Definiteness has come to
mean propositional connectives and first- and second-order quantifiers, which
may or may not be an extension of [16] (viewed syntactically). Since that short
paper is intended as a response to years of criticism of the very concept of def-
initeness, this notion rather than set theory is the focus. Consequently, no refor-
mulation of Aussonderung is explicitly provided.

Only one year later, in Zermelo [20], Aussonderung is given an explicitly
second-order formulation. Now there is no reference to definiteness at all.

Every proposition function [Satzfunktion] f(x) separates out of any given set m
a subset m; which contains all elements x for which f(x) is true. Alternatively:
to every part of a given set there corresponds another set which contains all of
the elements belonging to this part. ([20], p. 30)

Zermelo says in a footnote that f(x) is here a perfectly arbitrary propositional
function but again says nothing about language. At this point in the evolution
of his thought it is natural to read “arbitrary function” here as “arbitrary func-
tion definable in the language of second-order logic.” But this reading found-
ers. For the two formulations taken together entail that every part of an infinite
set correspond to a function, which means that mere cardinality considerations
block the second-order reading. Perhaps Zermelo is assuming only that the func-
tions are expressible in some infinitary language.'® The alternative formulation
of Aussonderung would seem to reflect an intention to close under subsets. As
a consequence of this, Sumset and Aussonderung-Subset in ZF? together should
now yield any choice set, thus obviating the Axiom of Choice (henceforth AC).
But Zermelo’s remarks regarding AC, which is not included among the axioms
of [20], suggest that he himself sees things differently somehow. This may mean
that, despite the alternative formulation, he does not see himself as having closed
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under subsets. However that may be, taking both formulations with equal seri-
ousness raises an interesting question. For, taken together, they imply that every
subclass of an arbitary set is the extension of some propositional function. In par-
ticular, each choice set then corresponds to some propositional function which
might be thought to define it. Of course this by itself does not yet mean that one
can construct the choice set, since, in order to do that, one must have its defi-
nition in hand, so to speak; it is not enough to know only that a definition exists
in principle. For his part, however, Zermelo tends to draw some stronger and
unwarranted conclusion. One can see this in his earlier work.

5 Mathematical Existence and Mathematical Definability Objects-plato-
nism, or simply platonism, is that philosophical doctrine according to which
mathematical objects, although abstract and nonphysical in character, exist com-
pletely independent of human reasoning about them. Zermelo’s AC is the par-
adigm platonist existence principle. The axiom is nonconstructive in that it asserts
the existence of particular choice sets even in the absence of any ability to char-
acterize them conceptually. We saw in [20] what looks like a covert attempt to
say that such choice sets are constructible after all.

In [15] Zermelo presents the classically platonist defense of a certain sort of
impredicative definition —so-called “definitions from above”:

Once such [an objective] criterion is given, . . . nothing can prevent some of the
objects subsumed under the definition from having in addition a special rela-
tion to the same notion and thus being determined by, or distinguished from,
the remaining ones —say, as common component or minimum. After all, an
object is not created through such a “determination”. ([15], p. 191)

However, whereas this classical platonist defense tells us something important
about Zermelo’s views, a competing view is present in his published writings.
Zermelo’s early platonism must be set alongside strong views concerning math-
ematical definability.

Immediately after the quoted defense of impredicativity, Zermelo goes on
to assert that “every object can be determined in a wide variety of ways” ([15],
p. 191). To be sure, such “determinations” (Bestimmungen) should not be con-
strued as definitions in any linguistic sense. But they surely do signify some extra-
linguistic accessibility to the mind via concepts. Indeed, the remark may be
regarded, on some such reading, as a consequence of Cantor’s 1895 definition
of set together with reductionism —in particular (R1). Since Zermelo appears to
defend impredicative definition on the grounds that alternative predicative “deter-
minations” are always available, it is unclear what force his claim can have if such
determinations cannot be associated with corresponding (predicative) definitions.
Again, however, this will be a matter of concepts being defined in terms of other
concepts. Language is not the issue.

The assumption is that absolutely all mathematical objects are capable of
(predicative) “determination” and, hence, are more or less definable. It is clear
enough that Zermelo sees universal determinability/definability as tempering the
debate between platonists and constructivists despite the fallacy mentioned at the
end of the last section. Can one speak of a constructivist thread in Zermelo’s
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thought? Of course constructivism, as usually understood, entails some restric-
tion as to means of construction. In this regard, it makes no difference that
Zermelo’s concept of definiteness, which might serve here, remains an informal
concept in 1908. Zermelo seems to suggest that the controversy surrounding AC
would disappear if everyone could only recognize the truth of universal defin-
ability. Of course, mere definability is not going to satisfy certain parties unless
it is a matter of the right sort of definability — the restriction of means issue again.
However, Zermelo’s remark about the “wide variety” of possible determinations
of any object suggests that this is not really a problem either. First, it must be
pointed out that Zermelo never appeals to universal definability in defending AC
itself. Rather, the doctrine is used to defend impredicative definitions only; but
it is not clear that the two cases are very different. Zermelo counsels construc-
tivists to countenance impredicative definitions because, although possibly cir-
cular, they may in principle be replaced by predicative alternatives.!” One can
easily imagine Zermelo defending AC by analogous reasoning, appealing to the
availability in principle of definitions for arbitrary choice sets.

Before continuing, we might ask how Zermelo’s treatment of the Richard
paradox is to be squared with universal definability. For is not the collection of
finitely definable reals a mathematical object and hence definable? At this point
one might, of course, take the paradox itself to show that this collection is not
a genuine mathematical object and/or that “definable in finitely many words”
corresponds to no genuine “determination.” Zermelo’s remarks in [16] certainly
suggest the latter. The assumption that “definable in finitely many words”
involves extra-mathematical concepts would imply, by Aussonderung, that no
set exists. If the collection of finitely definable reals is nonetheless a mathemat-
ical object, then there is an apparent conflict with universal definability. Appeal
to (R1) would eliminate this conflict.

The doctrine of universal definability may not be unique to Zermelo. Others
who use the “finite definability” concept are probably drawn to the idea. For
why add the adjective “finite” unless there is another sort of “infinite” defin-
ability that is being taken seriously? Further, it might be thought a small step
from infinite definitions to universal definability. Zermelo’s later denial that
“every mathematically definable notion is expressible by a ‘finite combination
of signs’” demonstrates that he has no prejudice against infinite definitions (see
Dawson [4]).

Those who responded to the paradoxes in the early years of this century can
be divided into two groups. First, there are those such as Poincaré and Russell
for whom definability is central to any solution. Since Poincaré takes the Rich-
ard paradox as paradigm, it is not surprising that definability is the core of his
vicious-circle principle. Influenced by Poincaré, Russell “ramifies” definability
through the introduction of the notion of order. Others in this first group include
Richard himself and Peano. For a second group, definability plays no role in the
solutions proposed. Here we find the set-theorists Jourdain, Bernstein, Hessen-
berg, and Mirimanoff, all of whom focus on the Burali-Forti paradox. For them,
the key issue is not definability but rather size.

Despite his philosophical and mathematical affinities with the second group
and despite the fact that the axioms of [16] are describable in part as a size-
limitation theory, it has been largely overlooked that Zermelo has strong affin-
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ities with the first group as well. Commentators have ignored his stated interest
in the semantic paradoxes and have construed definiteness as a prototype of well-
formedness. Via definiteness, definability becomes central. For this reason, the
concept of set that is embodied in the Zermelo axioms is yet a logical set con-
cept —logical in that (definite) concepts play an important role. (This is another
way to describe the link between Zermelo and those in the first group.) More-
over, Zermelo wants it both ways with regard to mathematical existence: math-
ematical objects (sets) exist independent of human reasoning, and yet each object
is ever accessible to the human mind through any one of a “wide variety” of
“determinations.” Thus, the conflict between platonism and constructivism loses
some intensity at least. More to the point, constructivist criticisms of Zermelo’s
methods of proof and of AC, in particular, are blunted. By 1930, as we have
seen, Zermelo might appear to have migrated into the second group: definabil-
ity has vanished from his formulation of Aussonderung. However, the change
is more apparent than real. Taken together, his 1930 formulation of Ausson-
derung as Aussonderung-Subset continues to urge a convenient coincidence of
existence and definition.

One might speculate that it is Zermelo’s desire to blunt tensions between pla-
tonists and constructivists that underlies both his advocacy of universal defin-
ability and his abiding interest in infinitary logic. He is probably not so unusual
in this regard either. It is possibly the effort to reconcile the two philosophical
tendencies that motivates those few who take infinite definability with any seri-
ousness after about 1920. Gradually, of course, the two tendencies come to be
viewed as utterly incompatible. Perhaps the ultimate turn to finitary logics as the
standard of the mathematical community, although attributable to a variety of
other philosophical and technical issues, is also in part just the result of a new
philosophical clarity regarding this incompatibility. Infinite definability repre-
sents a last-ditch effort to prevent the splintering of the mathematical commu-
nity into constructivist and nonconstructivist factions.

6 Zermelo and the Concept of Set Zermelo regards Aussonderung as a
replacement both for the naive concept of set and for Cantor’s 1895 definition
of set (see [16], p. 202). Since Aussonderung speaks of a given set M, it obviously
cannot function as a definition independent of the other axioms. We saw that
the set concept underlying Zermelo’s axioms incorporates two essential compo-
nents. First, there is some idea of limiting the size of sets. Second, even in cases
where size is not a problem, a set may fail to exist because we can access it con-
ceptually only by means of concepts that are nonmathematical (not logically
definable in terms of membership). Here I have spoken of placing limits on the
conceptual resources available for defining sets.

One way in which the size-limitation idea might be realized is the so-called
iterative concept of set. One can find in the literature attributions of the itera-
tive concept to Zermelo—even to Zermelo in his earliest period. (See, for exam-
ple, Kitcher [12], p. 295 and Kreisel [13], pp. 82-83.) However, at least in this
early period Zermelo’s concept of set is clearly not the iterative concept, as shall
be shown. At best, Zermelo, who may be an iterativist by 1930, is a latecomer.
Most likely, Zermelo never adopts the iterative concept.
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It is useful to distinguish three related ideas: (1) the iterative concept(s) of
set (henceforth IC), (2) the notion of well-foundedness as applied to sets, and
(3) the cumulative hierarchy of sets (henceforth CHS). IC is by nature philo-
sophical. As a concept of set, it attempts to say what sort of things sets are by
showing how they are built up in stages, starting from the null set (or some ure-
lements). At the same time, this genetic characterization and the resulting hier-
archy give a certain transparent structure to the entire world of sets. (In this
respect, IC is quite different from other set concepts.) IC is closely related to and
justifies the notion of well-foundedness in the sense that it implies that every set
is well-founded. It is justified, in turn, by well-foundedness in the sense that a
set is well-founded only if it can be built up in stages from the null set. Finally,
CHS is a technical construction within axiomatic set theory. It can be taken to
realize IC in any model of the axioms including Regularity.

CHS is presented rigorously for the first time in [20]. This may well be the
source of the frequent assumption that Zermelo already in 1908 starts from IC.
However, it is obvious that he does not have in mind either IC or CHS in 1908,
since he explicitly allows for the possibility of sets that contain themselves. In
the end, it is impossible to find any “structural” concept of set in [16]. Zermelo
may well conceive of set theory as the theory of a particular domain. However,
it is equally clear that set theory for Zermelo is not the theory of a determinate
structure. In fact, the hierarchy concept is quite alien to Zermelo’s early thought.
To see this, consider, in the light of Russell’s work of the same period, the fol-
lowing defense of impredicativity:

It is precisely the form of definition said to be predicative that contains some-
thing circular; for, unless we already have the notion, we cannot know at all
what objects might at some time be determined by it and would therefore have
to be excluded. ([15], p. 191)

One might also have expected an appeal to IC, if Zermelo were an iterativist,
in his discussions of the paradoxes. For example, Zermelo specifically cites Aus-
sonderung and the concept of definiteness as eliminating the Burali-Forti par-
adox. If Zermelo had indeed intended IC, then he might be expected to cite it
at this point (however, see below). Zermelo’s discussion of the Richard paradox
is also noteworthy in this regard. As discussed earlier, Zermelo uses definiteness
to block the Richard paradox. The collection of all reals is a set. On the other
hand, Richard’s E (the collection of all definable reals) will not be a set accord-
ing to Zermelo because the function “x is a real number definable in finitely many
words” is not definite. Obviously, if Zermelo is thinking along the lines of IC,
we should expect the set of all reals to appear at some stage of the iterative hier-
archy. Richard’s E would appear at that stage as well. However, at least accord-
ing to the maximal iterative concept, both sets would then be available at the next
stage, contradicting Zermelo’s assertion that E will not belong to the universe of
sets.

Consider also that Zermelo describes Aussonderung as “giving us a large
measure of freedom in defining new sets” and states that, using Aussonderung,
sets must always be separated “as subsets from sets already given” ([16], p. 202;
emphasis added). Since x and any subset of x appear at one and the same stage
under IC, the remark is at least vaguely at odds with that conception. There are,



ZERMELO AND REDUCTIONISM 555

of course, ways in which we might interpret Zermelo’s remarks so as to square
them with IC, but it seems natural to conclude that IC simply does not under-
lie Zermelo’s thinking about sets.

Another point concerns Zermelo’s defense of AC in [15]. IC is normally
thought to provide a very natural justification of AC. If Zermelo were an iter-
ativist, he could be expected to appeal to IC, which he does not do.!® By 1930,
however, it is most tempting to regard Zermelo as an iterativist, since his [20],
in which CHS is first articulated, certainly suggests IC. But, in fact, not all of
Zermelo’s remarks even in this period point in the direction of IC. Thus, in [20]
he motivates Regularity not by an appeal to IC, as one might expect of a believer,
but rather pragmatically by noting its consistency with set-theoretic practice to
the present. In itself, this fact cannot be decisive, however, since it assumes that
in adopting new axioms, Zermelo, if he is an iterativist, has as his paramount
goal a certain fidelity to an intuitive concept. However, the fact that Zermelo has
by this time incorporated Fraenkel’s Replacement Axiom, itself short on itera-
tive justification, indicates that his attitude toward IC can hardly be so straight-
forward, assuming for the moment that he is an iterativist. Another issue would
be his 1929 objection, cited previously, to Skolem’s inductive characterization
of definiteness as presupposing finite number ([19]).'> Would IC not similarly
presuppose number? One might then speculate that, whatever the degree of his
belief in IC, Zermelo is not open to appeals to IC in justifying the axioms —the
issue to which we now turn.

7 Justifying the Axioms Zermelo tells us that mathematical axioms are to
be justified “by analyzing the modes of inference that in the course of history
have come to be recognized as valid and by pointing out that the principles are
intuitively evident and necessary for science” ([15], p. 187). Thus two criteria for
adopting axioms are proposed:

(SE): An axiom must be intuitively self-evident.
(NEC): An axiom must be necessary for mathematics.

The analysis of historical reasoning is the method whereby one comes to see that
both criteria (SE) and (NEC) are satisfied by a given proposition. Moreover,
Zermelo emphasizes that establishing (NEC) is a completely objective procedure.
Thus Zermelo’s methodology for selecting axioms is historical and ultimately
pragmatic. His defense of AC consists in showing that AC satisfies both (SE) and
(NEC). The example establishes the consistency of the two criteria: they can be
simultaneously satisfied by one and the same proposition. It is easily seen that
they are independent of one another as well.

Zermelo does not think that (SE) can be shown to hold directly in the case
of AC.% It is not through some intuition or perception of sets that (SE) is estab-
lished.?! Moreover, if we have some sort of indirect acquaintance with the world
of sets, no appeal to such acquaintance is made in establishing (SE). Rather, one
examines community practice. If many mathematicians appeal to a given prop-
osition, then this is taken to establish (SE). Thus (SE) is established for a given
proposition if we have:
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(APP): Mathematicians regularly appeal to the proposition in proofs, whether
explicitly or only implicitly.

Criterion (APP) requires refinement.

Suppose that a mathematician proves a given proposition by an appeal to the
Axiom of Inaccessibles. Suppose others do likewise. Since no one takes the
Axiom of Inaccessibles to be intuitively evident, would such proofs not present
counterexamples to Zermelo’s method for establishing (SE)? Of course not: each
mathematician will state his/her theorem so as to include the Axiom of Inacces-
sibles among its hypotheses. So clearly we must read Zermelo as claiming that
the appeal to a proposition must occur within proofs without the proposition fig-
uring among the stated hypotheses.

Another apparent problem is suggested by the practice of recursion theorists
who regularly appeal to Church’s thesis within their proofs. No one takes this
in itself to mean that Church’s thesis is even true. One can get around this objec-
tion by pointing out that appeals to Church’s thesis are in every case dispensable.
The recursion theorist, say, who appeals to Church’s thesis does so merely to
facilitate her demonstration. She does not assume its self-evidence or even its
truth. Rather she assumes the extreme unlikelihood of counterexamples to
Church’s thesis. Her appeal to Church’s thesis expresses her belief that the appeal
is eliminable albeit with considerable effort. So we should take Zermelo to mean
that establishing (SE) in the case of a given proposition requires determining that
criterion (APP’) is satisfied:

(APP’): Mathematicians regularly appeal to a proposition in proofs, whether
explicitly or only implicitly, where (1) the proposition does not figure
among stated hypotheses and (2) the proposition is not believed to be
eliminable.

If we take Zermelo to claim that (APP’) implies (SE), then this claim would
be based apparently upon his belief in

(EXP): Extensive appeal to a proposition on the part of mathematicians can
be explained only by its self-evidence (see [15], p. 187).

So the idea would be that (EXP) and (APP’) together imply (SE). Now (EXP)
is to be distinguished from

(EXP’): Extensive appeal to a proposition on the part of mathematicians can
be explained only by their regarding it as self-evident.

Clearly (EXP’) together with (REG) implies (EXP), where (REG) is the principle:

(REG): If many mathematicians regard a proposition as evident, then that
proposition is self-evident.

So ultimately (SE) follows for a given proposition from (EXP’), (REG), and
(APP’). Unfortunately, neither (REG) nor (EXP’) is obviously true. As for
(REGQG), the history of mathematics is no doubt rife with examples of proposi-
tions that for a time were generally held to be self-evident but that were later
found to be false in fact.?? One can imagine other cases in which the proposi-
tion in question is yet held to be true although no longer self-evident.
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As for (EXP’), my earlier examples involving the Axiom of Inaccessibles and
Church’s theorem require refinements analogous to those which led from (APP)
to (APP’). Beyond this, there is the obvious objection that mathematicians might
fail to include a proposition among the hypotheses of the demonstrandum, not
because they regard it as self-evident but, rather, because they believe, perhaps
erroneously, that the proposition is itself provable.

Of course, Zermelo himself asserts only (EXP), and so one might seek some
argument for (EXP) that involves no appeal to (EXP’). One might, for exam-
ple, claim that (EXP) is true since all “intuitively evident” means is “enjoying
communitywide approval.” We might call this the emotivist theory of the mean-
ing of “intuitively evident.” I will not say any more about this. It is impossible
to attribute to Zermelo any such view, given both his view of mathematics as an
a priori science as well as his great interest in applied mathematics. The emotiv-
ist theory would allow for mathematical truths that are not necessary, and it
would leave unexplained the efficacy of mathematics in describing the natural
world.

Another way to defend (EXP) would be to claim that communitywide appeal
to some proposition just reflects the fact that the proposition holds within a
mathematical realm to which each mathematician has some sort of access. In
other words, communitywide appeal gives inductive evidence of an indirect
nature for the proposition holding in the world of mathematics. So ultimately,
despite denials of our having any direct intuition of the mathematical realm in
its fullest extent, we would be forced to attribute to Zermelo some belief in the
accessibility, albeit unconscious, of the mathematical realm in its entirety after
all.

Zermelo’s methodology for selecting axioms stands in sharp contrast to Hil-
bert’s view wherein truth plays no role. This difference is attributable to Zermelo’s
reductionism in the sense of (R3): all mathematical propositions are just set-
theoretical propositions. If this reduction is to have any foundational merit,
then the axioms of set theory must be intuitively evident. Zermelo’s historical
method for establishing that axioms are intuitively evident suggests that math-
ematicians must have access to some platonic domain of sets in its entirety. This
access will not be direct or immediate, for otherwise the status of mathematics
as an a priori science would be undermined. In this respect, Zermelo is proba-
bly not unusual: quite likely all philosophies of mathematics assume that one has
some sort of access to the mathematical realm. More novel is Zermelo’s idea that
evidence for this access —whatever its nature (and there is little point in specu-
lating on what Zermelo takes the nature of this access to be)—is gathered empir-
ically by examination of the work of practicing mathematicians. This position
regarding justification is ultimately troubling to the extent that it risks undermin-
ing Zermelo’s foundational program.

8 Zermelo’s Foundationalism On the one hand, Zermelo’s intentions appear
to be traditionally foundationalist. So he engages the Cartesian vocabulary of
“justification” and “evidence.” It has been seen that Zermelo’s goal is the reduc-
tion of mathematics to set theory. More precisely, assuming the ontic and con-
ceptual reductions accomplished by his predecessors, Zermelo sets out to provide
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axioms for the new foundational science. There seems little doubt that his inten-
tion is to thereby ground mathematics in an epistemic sense. This would seem
to be the impetus for his objection to Skolem’s inductive characterization of def-
initeness: induction presupposes knowledge of the natural numbers, and hence
it is misguided to appeal to induction in describing set-theoretic concepts since
it is set theory that grounds number theory.

On the other hand, when it comes time to defend the axioms, Zermelo adopts
a problematic stance. Nowhere does he claim anything like self-evidence for his
axioms. As has been seen, the iterative conception, which might have served in
this regard, is entirely absent from his non-hieratic thinking about sets. No doubt
Zermelo regards some of his axioms as straightforwardly self-evident. It is clear,
however, that he does not regard all of them in this way, since what he empha-
sizes is indispensability. We can determine objectively through the examination
of mathematical argumentation presented in written texts that a proposition has
often been appealed to in the past. This demonstrates that the proposition is nec-
essary for mathematics. But it also shows that the proposition has been regarded
as self-evident and hence is self-evident.??> Some problems with this argument
have been discussed already. The larger question from the point of view of foun-
dations is this: How are the axioms to ground mathematics if our best evidence
for them is that very mathematics? What seems to emerge here is a conception
of foundations that is not Cartesian at all really. On the face of it, no Archime-
dean grounding of mathematics in the epistemic sense has been provided. Rather,
the conception of the “edifice” of mathematics is one of holism: the architectural
metaphor in fact makes little sense since the foundation supports the superstruc-
ture as well as vice versa. If this reading of Zermelo is right, then the provision
of mathematical “foundations” seems to have proceeded largely in the interest
of rigor.

The indispensability criterion by itself also appears to open the door to the
possibility that an accepted axiom turn out to be false, thus exposing the inher-
ent anti-foundationalism of the criterion taken alone. This may only show that
Zermelo must be interpreted as holding (REG) to be true: the mathematical com-
munity cannot be wrong in its judgments regarding self-evidence. Such a move
does not eliminate the problem, however. For in the case of a controversial axiom
such as AC, the claim of self-evidence cannot be so direct and must rely upon
historical practice—as Zermelo well understands: the axiom’s self-evidence is
established by constant implicit appeals to it. But this reintroduces both fallibi-
lism as well as circularity.

So which reading of Zermelo’s remarks is the correct one? Is he a classical
foundationalist? In one sense, yes, since (SE) expresses a necessary property of
axioms according to him. The difficulty in reading him in this way is a conse-
quence of the manner in which self-evidence is to be established. It seems impos-
sible to square the empirical procedure justifying AC (and by implication at least
some of the other axioms) with the traditional foundational goal. Again, how
has mathematics been grounded epistemically if our best evidence for AC, say,
consists in its having figured regularly in the history of this very mathematics?
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NOTES

1. In [19] Zermelo claims that such definitions presuppose the concept finite number.
Hence, he continues, such a way of proceeding is circular in the case of axiomatic
set theory, where natural numbers have been defined as certain sets (or where the
concept of finite number has been defined in terms of membership). Clearly (R1)
and (R2), rather than (R1’) and (R2’), are the sources of Zermelo’s objection: if the
set concept turns out to presuppose the number concept, then the metaphysical sta-
tus of the reduction is nil.

2. See also the section “Avoiding the Semantic Paradoxes: The Bounds of Definabil-
ity” of the present paper — particularly the final quotations from Zermelo’s [16].

3. For a different view, see Hallett’s penetrating analysis of Zermelo’s theory in [7].
Hallett argues there that Zermelo follows Hessenberg in shunning number objects.
I would claim, on the contrary, that Zermelo’s intentions with regard to number
objects are just not all that clear, which Hallett himself seems to concede ultimately
([71, p. 248). In any case, by about 1915, as reported in Bernays [1], Zermelo will
have developed a theory of ordinals that is independent of the theory of ordered
sets. I read this later development as an indication that Zermelo is never without
interest in number objects.

4. The issue here is not the availability of a reductionist (i.e., set-theoretic) definition
of ordinal but, rather, the extent of the ordinals within Zermelo’s 1908 system. In
the absence of anything like Replacement, the so-called Zermelo ordinals { }, {{ }},
{{{ 1}},..., say, exist in that system only up to, but not including, w2.

5. This indicates that a consistency proof for his system is at least a possibility for
Zermelo and further suggests that he has himself tried to obtain such a result, which
raises the issue of just what such a demonstration would consist of from Zermelo’s
perspective in 1908. Poincaré raises this issue against Zermelo (see Moore [14], pp.
162-163).

6. I make this claim based on the bulk of the textual evidence. There is one passage
in [15], however, in which Zermelo, following Hilbert, describes his own use of the
Axiom of Choice as the free adoption of a “hypothesis” whose consequences he
seeks to explore ([15], p. 189). It would be a mistake to assimilate Zermelo’s phil-
osophical conception of axiom systems to that of Hilbert based on this single remark.
In fact Zermelo’s conception is far more traditional than Hilbert’s.

7. It must be pointed out that Hilbert himself adopts a similar “misleading” idiom in
his [9], always speaking in terms of @ geometry or the geometry, and yet his corre-
spondence and lectures demonstrate unambiguously that he nonetheless has plural-
ity in mind. So, by itself, this argument is perhaps rather weak.

Much later in [19], where not set theory but rather axiom systems generally are
the issue, Zermelo does adopt a more explicit mode of exposition, There he speaks
of “Modellen” in the plural. It is also perfectly obvious that by this point Zermelo
does not see set theory as special: ZF, too, will have multiple models. Of course
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there is no reason to suppose that merely because the later conception allows for
plurality that Zermelo’s earlier conception is similarly pluralistic. On the contrary,
the quoted passage indicates that Zermelo can be very careful in expressing himself
with regard to the model-theoretic conception despite the fact that there is at this
point in time less danger of misunderstanding; by 1929, due to the influence of
Lowenheim and Skolem, talk of multiple models for axiomatic theories is common
coin. That Zermelo does not express himself in this careful manner in 1908 can
hardly mean that he is assuming his reader’s thorough understanding of the model-
theoretic position. One plausible explanation is a certain uneasiness regarding plu-
rality at least in the case of set theory.

. Zermelo considers but ultimately rejects inclusion of an axiom asserting that no set

is self-membered (see Moore [14], pp. 155-157). Since such an axiom does not
express a closure condition, this may or may not support my claim that Zermelo’s
conception of his axioms is algebraic rather than model-theoretic.

. Itis true that in fn. 11 of [15] (p. 192) Zermelo discusses definability in a way that

emphasizes language. Still, if language were really primary, one would expect
Zermelo to specify it in some way, which he does not do.

In fact, Zermelo’s description of definiteness owes a certain amount to Cantor. (See
Cantor [3], p. 150.)

But if Church’s thesis and the computational model of mind are both true, then he
may be wrong. For suppose that my linguistic competence with respect to finite
English strings purporting to name real numbers is realized by some Turing machine
M. (This amounts to assuming both Church’s thesis and the computational model
of mind.) Now M can be defined as a certain set of tuples. Whatever the problems
with my example, it at least shows that it is not obvious that definability in natu-
ral language has nothing to do with membership.

One possibility which should be mentioned is that Zermelo is presupposing some-
thing like Hessenberg’s discussion in Section XXIII of [8]. The conclusion there is
that the predicate “is finitely definable” has no coherent application in the case of
individual numbers at least. So perhaps what Zermelo assumes in [16] is that such
incoherent predicates cannot be understood in terms of membership.

One problem here is that the claim that finite definability is not definable in terms
of membership may seem to beg the question: the presumed inability to define the
concept of finite definability in terms of the fundamental relations of set theory
might be taken to show just that (R2) is false —mathematical concepts are not just
set-theoretic concepts. Zermelo might be expected to hold, however, that the reduc-
tion achieved previously by Cantor et al. constitutes independent grounds for believ-
ing (R2).

The term “size-limitation” is due to Russell. Like von Neumann much later, Russell
specifically bans sets that can be placed in 1-1 correspondence with some paradox-
ical collection such as that of all sets. We might speak of “proscriptive” theories.
Zermelo, on the other hand, bans nothing. That the paradoxical collections fail to
materialize is just a consequence of the nature of the power-set operation. Zermelo’s
approach is conservative to the extent that possibly non-paradoxical collections may
fail to be sets as well. In any case, one may well question the wisdom of grouping
both proscriptive theories and iterative theories under the same heading.
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I do not mean to suggest that Hallett ignores definability. In fact, he devotes the
final section of his chapter on Zermelo to the definiteness concept ([7], pp. 266-
269). But what is stressed there is, as usual, the confusion surrounding the notion
as well as the degree to which Zermelo’s use of it appears to be incompatible with
reductionism. What one misses in [7], I would claim, is adequate recognition of the
fact that, from Zermelo’s point of view in 1908, the limitation upon size and the lim-
itation upon conceptual resources are of equal importance.

In [22] Zermelo describes an infinitary language with the usual propositional con-
nectives and names for all individuals. Sentences may be of arbitrary infinite length.

Zermelo, in fact, says nothing quite this strong. However, it is unclear what force
his argument can have if such substitution is not possible.

Regarding this point, Zermelo’s views concerning justification of mathematical axi-
oms, which will be discussed in the next section, really point in another direction.
So one should probably not be overly impressed by the absence of appeals to IC in
justifying AC.

Zermelo’s attitude toward metamathematical discourse in the late period is hard to
make out. For in [20] and in later papers Zermelo uses ordinals within metamath-
ematical discourse.

This is perhaps the only reasonable reaction to the controversy surrounding AC.
Still, this pretty much settles the question whether Zermelo is an iterativist in his
early period.

Much later, Zermelo explicitly denies intuition of the mathematical infinite (see his
[21], p. 85). However, the same passage probably suggests that we do possess some
direct intuition or grasp of the finite portions of mathematics.

The obvious example here is the naive assumption that every property or predicate
determines a class. For an example from mainstream mathematics, consider the
proposition that all continuous functions are somewhere differentiable. As a recent
example from differentiable geometry, consider the assumption that any manifold
possesses but a single differentiable structure —shown to be false by S. Donaldson.
I owe the last two examples to Seamus Moran.

Zermelo does not quite say this, but it is clear enough from his discussion of AC—
especially his citation of cases of implicit appeal on the part of skeptics.
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