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Cut-Free Modal Sequents for

Normal Modal Logics

CLAUDIO CERRATO

Abstract We develop cut-free calculi of sequents for normal modal logics
by using semantic modal sequents that are trees of usual sequents plus an
accessibility relation, and by introducing modal operators when moving for-
mulas along the branches of such trees. Those calculi are a natural improve-
ment of modal tree-sequents, introduced in a previous work, are cut-free, and
work well for all of the main normal modal logics.

0 Introduction We introduce a variant of sequents to develop cut-free cal-
culi for normal modal logics (NLs). Namely, we enhance the modal tree-sequents
introduced in Cerrato [3] (as the counterpart of systems of natural deduction
based on strict implication developed in Cerrato [2]) by considering trees of usual
sequents instead of trees of sequences of formulas, and by adding the Kripkean
accessibility relation to those trees (so we call our modal sequents "semantic").

We use only two general modal rules for all NLs Dh and hD (with a tech-
nical exception for systems containing the axiom schema D): we vary the first
rule when varying the system depending on the accessibility, while we fix the sec-
ond rule for all NLs.

We prove the completeness of our calculi for the normal modal logics K,
KB, KD, KT (=T), K4, K5, KBD, KBT (=B), KB4, KD4, KD5, KD45, K45,
KT4 (=S4), KT5 (=S5) (see Chellas [4]), giving also a semantic proof of cut-
elimination, and, as a corollary, of the subformula property.

Thus we obtain a uniform treatment of calculi of sequents the normal modal
logics that work well in every case. Namely, our calculi work better than the usual
ones (Fitting [6], Ohnishi [8], [9]) that are not cut-free for some systems (e.g.,
for "symmetric" systems, those containing the axiom schema B) even when the
subformula property holds (Takano [12]). Furthermore, our calculi work also
better than those using higher level sequents (DoSen [5]), that are not cut-free,
and are developed only for S4 and S5. Finally, our calculi work better than those
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using extra metalinguistic signs (Cerrato [1]), that are proved to be cut-free only
forK.

/ Semantic modal sequents To develop cut-free calculi for normal modal
logics, we introduce semantic modal sequents that are trees of usual sequents plus
an accessibility relation (the same used in Kripke models). Trees of sequents are
an improvement of "tree-sequents" introduced in [3]: namely, the former are trees
of usual sequents, i.e., of ordered pairs of sequences of formulas, that are the
left and the right part of the sequent, while the latter are trees of single sequences
of formulas.

Furthermore, the use of the accessibility relation directly into the structure
of modal sequents allows us to fix only two modal rules (a left and a right one)
and to obtain rules for any system by suitably changing only that accessibility
relation. So, semantic modal sequents really characterize modal behaviors by the
structure of the calculus alone, instead of by specifically arranged rules.

Our language i s L = {(P,Λ,v,-ι,-»,D};we define the other operators as the
following abbreviations:

equivalence A <-> B =df (A -+ B) A (B -»A)
possibility OA =df -ιD-»>4
strict implication A => B =df D (A -+ B)
strict equivalence A & B =df (A => B) A (B => A)

Furthermore, T and ± denote a generic theorem and a generic contradiction,
respectively.

A semantic modal sequent is a triple (W9 -»,/?> where W is a non-empty set
of (occurrences of) usual sequents called worlds (i.e., Γ (- Δ, where Γ,Δ are
sequences of formulas of L), -> is a strict tree-ordering on W, and R is a binary
relation on Wthat extends ->, called accessibility. We often use "modal sequent"
to refer to a semantic modal sequent, and "sequent" to refer to a usual sequent;
furthermore, the locution "occurrences of" indicates that several instances of the
same sequent can occur as different worlds in a modal sequent.

The first two components of semantic modal sequents, Wand -•, give rise
to trees of sequents, that we can also inductively define by:

Γ h Δ is a tree of sequents, where Γ, Δ are sequences of formulas of L;

Γ h Δ is a tree of sequents, where Γ, Δ are sequences of formulas of L
/ . . .\ and λ 0 , . . . ,λn (n > 0) are trees of sequents.

λo . . . \n

We use capital latin letters for formulas, capital greek letters for sequences
of formulas, small latin letters for worlds, and small greek letters for trees.

The other component of semantic modal sequents, the relation R, puts the
corresponding semantic accessibility relation into sequents: namely, for a sys-
tem having as modal axioms Axi,...,Ax n the accessibility R is the minimal
relation containing ->, R(AiXx),... 9R(Axn)9 where the correspondence between
axioms and relations is given by the following table:
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Ax I R(Ax)

K -+

T the reflexive closure of -»
4 the transitive closure of ->
5 the euclidean closure of ->
B the symmetric closure of -».

In the case of the axiom D, since we cannot univocally determine R as the
serial closure of -*, we consider a new rule, namely the empty rule; when prov-
ing completeness, that rule (read upward) really allows us only to add unessen-
tial accessible worlds that maintain "serial" the constructing countermodel.

The rules for propositional connectives are -if-, I—>, ΛH, HΛ, vh, hv, ->h,
I—• (see Takeuti [11]) with suitable modifications for the use of trees. First, as
to notation, two semantic modal sequents a = (W,^>,R) and β = < W,-»',iO are
similar by (w,w')9 where w £ Wand w' E W, (written as a w~w> β) iff they
become the same by simply replacing w with w', i.e., iff W- {w] = W - {w'},
and, given the bisection/ between Wand W that is the identity but/( w) = w',
we have both w0 -> W\ iff/(vv0) -+' f(w\) and wQRwχ iff f(wo)R'f(Wι)9 for
every w0, W\ E W. Then, given a usual PC-rule a'a"/b, where a',a"9b are usual
sequents, the corresponding tree version of that rule is a'a"/β, where a\a\β
are semantic modal sequents and a' a>~a» a" a»~b β b~a> a' (we can apply a
similar reasoning to rules with only one premise). So, the tree version of a PC-
rule leaves unaltered both the structures of the tree and of all the unaffected usual
sequents.

For example, now the rule ->h appears as:

7 7

i 4
Γ h Δ , C A Π h Λ

/. . .\ / . . .\
δι . . . δn δi . . . δn

7
4

C - A Γ , Π h Δ , Λ
•. \

δ, . . . δn

where γ , δ ! , . . . ,δn are trees of sequents (when n = 0 no δ, appears), Γ,Δ,Π,Λ
are sequences of formulas, and C,D are formulas of L.

The structural rules are the tree adaptation of the usual weakening h, h
weakening, exchange h, h exchange, contraction h, h contraction (see [11]).

The modal rules are Dh and hD, and move formulas along trees. Rule Dh
varies when varying modal systems, depending on the accessibility relation R:

Dh: from a modal sequent a having two worlds Γ h Δ and A, Π h Λ with
(Γ h A)R(A9U \- A) infer the modal sequent β obtained from a by sub-
stituting (both in the domain and in the relations -• and R) those worlds
with BA,T h Δ and Π h Λ, respectively.
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As an example, when R is the transitive closure of -> that rule appears as
(when n = 0 no δ, appears):

Ύ
1

Γ h Δ
s... i.. \

4
i,ΠhΛ
s . \

6χ . . . δ r t

7

4

ΠA,Γ hΔ

•...4 \

4
ΠhΛ

δx ... δn

Rule hΠ is the same for all modal systems, since it depends on -> instead of
oni?:

hD: from a modal sequent a having two worlds Γ h Δ and K4 with (Γ h Δ) ->
(\-A) infer the modal sequent β obtained from a by substituting (both
in the domain and in the relations -> and R) the former world with Γ h
Δ,ΏA and by completely deleting both the latter world from the domain
and any occurrence of it from -*, and consequently modifying R,

That rule appears as (when n = 0 no δ/ appears):

7
4

Γ h Δ
/ . . . 4 . . . \

\-A . . .
/.. \

δx . . . δn

7
4

ΓhΔ,D^
./ \

δj. . δ ,
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Note that when the sequent K4 is not a terminal leaf that rule should intro-
duce a disconnection in the tree of sequents. We can afford this problem in two
different ways: first by requiring the relation -* to be connected in every case,
limiting the applicability of the rules (e.g., requiring the fact that the sequent
K4 is a terminal leaf as a necessary condition to apply the rule hD); otherwise,
by allowing -> also to be disconnected, only restricting the end-sequents to be con-
nected: since any rule neither reconnects sequents nor eliminates disconnected
sequents, we really must consider only those proofs where all sequents are con-
nected. In this work we follow the first strategy, since it allows us to restrict the
attention only to significant proofs.

Finally, we must specify the empty rule that appears only in calculi of
sequents for "serial" systems, i.e., for those systems containing the axiom D:

empty rule: from a modal sequent a having a world h infer the modal
sequent β obtained from a by deleting that world (when not occur-
ring as top node of a) from W and from both the relations R
and ->.

Clearly, the empty rule does not introduce any disconnection only when h is
a terminal leaf, so that it appears as:

7
I
h

7

The notions proof and end-sequent are used as in standard calculi of sequents
(e.g., see [11]). An initial sequent is one of the form (W9-+,R) where A VΛ G
W for some formula A, a usual sequent Γ h Δ is provable when < W9 -+9R) is an
end-sequent with W = {Γ h Δ), and a formula A is provable when YA is
provable.

2 Soundness Now we prove the calculi we have introduced are sound for
the 15 normal modal logics, K, KB, KD, KT (=T), K4, K5, KBD, KBT (=B),
KB4, KD4, KD5, KD45, K45, KT4 (=S4), KT5 (=S5); namely, using the same
technique used in [3], we really prove that for any NL Λ if there exists a sequent-
style Λ-proof of a formula A (written, "A is Λ-provable") then there exists a
Hilbert-style Λ-proof of it (written, UA is a Λ-theorem"), so that (by soundness
of usual Hilbert-style systems) A is true in any Λ-model (written, "A is Λ-valid").
This section is really a technical adaptation to semantic modal sequents of those
lemmas and theorems used in [3] for the same purposes.

We recall what the system K is in the Hubert style (see [4]):

1. it is a modal system, i.e., a system closed under the rule of inference RPL:
(Ax,A2,...,An)/A where A is a tautological consequence of AuA2i

• >An

2. it contains the axiom schema K: D (A -> B) -• (ΏA -+ ΠB)
3. it is closed under the rule of necessitation RN: A/UA.
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We do not consider the axiom schema DfO : OA <-> -ιD-^4 (see [4]), since
our language does not contain an explicit possibility symbol.

Also, recall that the other 14 NLs have, beyond the axioms of K, suitable
combinations of the following formulas as proper axioms:

T: ΠA-+A
4: UA-^UUA
5: <>A-*Ώ<>A
B: A-*Π<>A
D: ΠA^OA.

\-AA means that the formula A is a theorem of Λ, Λ being one of the above
systems.

Theorem 1 (Soundness of the NLs-calculi) For any NL Λ, if A is A-provable
then A is a A-theorem, and so it is A-valid.

Proof: We translate semantic modal sequents into formulas by suitably modi-
fying the Schutte translation (see Schϋtte [10], [2], and [3]). Namely, we define
the translation * by an induction on the complexity of trees:

(ΓhΔ)* = ΛΓ->VΔ

/ Γ h Δ \*
• . . . \ = Λ Γ - * ( V Δ v D λ S v . . . v D λ : )

\λ0 . . λΛ/

where A is a formula of L, Γ and Δ are sequences of formulas, λ 0 , . . . ,λn are
modal sequents and, by definition, Λ 0 = T and V 0 = l .

Note that only the relation -• influences the translation *; in fact, there is no
mention of R, that will be reintroduced in this theorem indirectly, by using the
Hilbert-style modal axioms.

We extend the translation to sequent-style inferences into Hilbert-style infer-
ences by:

/premise0,... ,premisert\* _ (premise0)*,... ,(premiseπ)*

\ conclusion / (conclusion)*

This translation is well defined, i.e., for any NL Λ, each inference is really
an Hilbert-style Λ-inference, as we shall prove in Theorem 5.

By *, initial sequents are translated to K-theorems (as we shall prove in The-
orem 4), and sequent-style inferences are translated to Hilbert-style inferences,
so that the translation of a Λ-provable sequent is also Hilbert-style provable in
Λ; so, if a formula A is Λ-provable, i.e., if K4 is an end-sequent, then (h4)* is
a Λ-theorem, i.e., (by the definition of *) A is a Λ-theorem.

So we must prove the translations of initial sequents are K-theorems and the
translations of sequent-style inferences are really Hilbert-style inferences. As in
[3], to prove that the translation * of a rule is well-founded, we isolate the usual
sequent affected by that rule and prove a suitable implication restricted to that
sequent; then, we transport that implication up along all of the trees of sequents



570 CLAUDIO CERRATO

obtaining hκ ((ρremise0)* Λ . . . Λ (premise^)*) -• (conclusion)*, so that, by
Modus Ponens, we immediately have the thesis.

To transport implications along trees we need two technical lemmas:

Lemma 2 For any NL Λ, given the semantic modal sequents:

a b c
a = , / . . . \ β = »/...\ γ = ι/...\

«i ••• oίn βι . . . βn Ti . . . 7/2

where a,b,c are usual sequents, and α,, j3z, γ; (1 < / < Λ) are trees of sequents
(when n = 0, no one of them appears)

if hv<x* -* 7i* 0 - i- n) a n d ̂ a* -* c * ^Λ β Λ

if HA(α* v jU?) ̂  7,*(1 <i<n) and hA(a* A b*) -> c* /ΛβAZ

Proof: We prove the latter, since the former is a subcase of it. By the hypotheses
I"Λ (oίf v βf) -• γ * (1 < i < n) and by necessitation we have hΛ • ((af v βf )^y*),
so that, by axiom K we obtain f-AD (α* v j8*) -* Πγ*, and by the K-theorem
(Q/4 v D5) - ^ D U v 5 ) w e have hA(Πα* v G/3*) -> Πγ*. By that, by the
hypothesis hΛ((Γβ - Aa) A (Tb -+ Ab)) -+ (Γc -+ Ac) (where a = Ta\-Aa9b = Γb\-
Ab9 c = Tc h Δc), and by the PC-tautology

/N

Λ ((Λ vB/) -> C) Λ (((^ - > ^ ) Λ (B'-+B")) -+ {C -+ C")))
\ 1

, ^ ( » , y » ^ ( ^ ( c .ίc))),
we obtain

hΛ(((ra -> (Δav V Do?)) Λ (τb-* (Δ6V V ΠiS;)))

- ( Γ C - ( Δ C V V Π Ύ ; ) ) ) ,

that is, recalling the definition of *, the thesis.

Lemma 3 For any NL Δ, g/t eΛ ίλe semantic modal sequents γ, α, β,δ

ifha^δUhenhJ]] - I
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and

if\-A(a*Λβ*)^δ*then\-A h Λ M I - ( I )

Proof: We prove the latter, since the former is a subcase of it. We proceed by
an induction on the complexity of the modal sequent 7: when 7 is empty the the-
sis is immediate. Now suppose we have proved the lemma for 7: we must prove
it for

Γ h Δ

»/... s i \ . . . \

σι . . . σr 7 σr+i . . . σm

by the inductive hypothesis, necessitation, and axiom K we easily obtain

4(lHl)"Ml)*
so that, by the PC-tautology ((AΛB)^>C)^(((G->(SOV. . .vSrvAvSr+i v . . . v
S J ) Λ ( G - ^ ( S o v . . . v S r v 5 v S r + 1 v . . . v Sm))) -> (G -> (So v . . . v Sr v
C v Sr+ι v . . . v Sw))) applied with G = ΛΓ, 5 0 = VΔ, 5, = Dσ* (1 < / < m),
recalling the definition of *, we easily obtain the thesis.

Now we prove the initial sequents are K-theorems and the translations of the
rules are well-founded for any NL:

Theorem 4 The translation * of any initial sequent is a K-theorem.

Proof: Let

7
1

α = AY A

«! . . . δn

be an initial sequent; we prove the theorem by an induction on the complexity
of 7: when 7 is empty, by the PC-tautologies A -> A = (A \-A)* and (B->C)-+
(£-• (Cv A v . . . v Dn)) we have \-PCA -• (A v Πδ* v . . . v Dδ*) = α*. Sup-
pose we have proved the thesis for a given 7: we must prove it for

Γ h Δ
, / . . . / l \ . . . \

σγ...σr 7 σr+ι...σm

By the inductive hypothesis and necessitation we have

/ 7 \*
4

/ . . . \
\δι . . . δ r t /
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so, by the PC-tautology A -> (B -• (So v . . . v Sr v A v Sr+i v . . . v 5m)) we
obtain

/ γ \*
/ 4

h κ Λ Γ - ^ VΔv Dσf v . . . v DσΓ* v D Ah A

\δi . . . δnj

vDσr*+1 v . . . v Dσ*j = a*,

i.e., the thesis.

Theorem 5 For any NL Λ, the translation * of any rule is well-defined.

Proof: We must only prove for any NL Λ f-Λ ((ρremise0)* Λ . . . Λ (premise^)*) -•
(conclusion)*, so that the thesis follows immediately by Modus Ponens.

The thesis is immediate for structural and PC rules: in fact all of the cor-
responding formulas are K-theorems. As an example, for the rule -• h we show
that

11 y \* I y \*\ I y \*
/ 4 1 / 4 I / 4

Γt-Δ,C Λ AΠhΛ - C-AΓ,ΠhΔ,Λ

•/.. \ / ,/.. .\ I s ... \
\ \ δx . . . δ n I \ δ { . .. δ n I I \ δ { ... δ n /

is really a K-theorem. In fact, by the PC-tautologies ((ΛΓ -> (VΔ v C)) Λ
((Z)ΛΛΠ)->VΛ))-^(((C->i))ΛΛΓΛΛΠ)^(VΔvVΛ))and(δ;vδ;)->δ*
(1 < / < n), by applying Lemma 2 we obtain

// ΓhΔ,C \* / AΠhΛ\*\ /C^AΓ,ΠhΔ,Λ\*

W δ i . . . δ Λ / \ δ , ... δ j I \ δx ... δ n I

So transporting that implication along all of y by Lemma 3, we obtain the thesis.
As to rule f-D, recalling that -> must be connected, the affected sequent is

in a terminal leaf; we have:

/ Γ h Δ \*
»/... ι/ 4 \ . . . \ I

\ σ ι ... σr YA σr+ΐ . . . σ m )

= ΛΓ->(VΔvDσf v . . . v Dσr*vD(hy4)*vDσ;+1 v . . . v Dσ^) defof*

<* Λ Γ ^ (VΔ v UA v DσΓ v . . . v Dσ^) PC, (1)

/ΓhΔ,D,4\*
= 1 / . . . \ defof*

\σ! . . . σmj
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where (1) (\-A)* = (A 0 ->A) = (τ ^>A) <r+ A; so transporting that equivalence
along 7 by Lemma 3, we have that the required implication is a K-theorem,
obtaining the thesis.

As to rule Dh, we really move a formula by using the relation R, that
depends on the system; first we examine the case of system K:

/ Γ h Δ \*
»/.../ i \ .. .\

σx...σr v4,ΠhΛ σr+ι.. .σm

»/.. \
\ δi ... δn I

= Λ Γ - * ( V Δ V D Σ * V D ( ( , 4 Λ Λ Π ) - + ( V Λ V D * * ) ) V D Σ £ ) (1)

^ΛΓ-*(VΔvDΣ*vD(.4->(ΛΠ-*(VΛvDΨ*)))vDΣ!) (2)

->ΛΓ->(VΔvDΣίv(D^-^D(ΛΠ^(VΛvD^*)))vDΣ|) axiom K

^ ( D ^ Λ Λ Γ ) - ^ ( V Δ V D Σ Ϊ V D ( Λ Π - > ( V Λ V D Ψ * ) ) V D Σ ^ ) (3)

/ / πhΛ V \
= ( D V 4 Λ Λ Γ ) - > V Δ v D Σ t v D ^ . . . \ v D Σ | defof*

V U . δJ '
I D^,ΓhΔ \*

/ . . . / I \ .. . \
= σχ...σr Π h Λ σr+ι...σm defof*

»/ . . . \
\ δx ... δn /

where

(1) DΣJ =dfBσ* v . . . v Dσr*;
• E 5 = t f DσΓ + 1 v . . . v D σ ^ ;
ΠΨ* =df Dδ* v . . . v Dδ*.

(2) \-PC((A ΛB)^C)-+(A-*(B-> O)

Hpc(U -+ (BvC)) A (C->D)) -+(A-+ (BvD))
(3) \-¥C(A-+{B1V(C-+D)VB2))^((CAA)-+(B1VDVB2));

so, transporting that implication along 7 by Lemma 3, we obtain the thesis.
As to the other systems, since the rule Dh really involves the relation R, we

must move a formula A from (the left part of) a sequent "a" to (the left part of)
a sequent "Z?" when aRb.

In the previous case (axiom K) we have proved that we can change

Γ h Δ D,4,ΓhΔ
1 into 1

.4,ΠhΛ ΠhΛ

without changing the context.
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By axiom B: A -> ΠOA we can change

,4,ΓhΔ Γ h Δ
4 into i

Π h Λ D^4,ΠhΛ

without changing the context; in fact:

/ A,T\-A \*
,/...»/ I \ . . . \

σx...σr Π h Λ σr+1':..σm

S . . . \

\ δi • . . . δΛ /

= (^ΛΛΓ)->(VΔvDΣΐvD(ΛΠ-^(VΛvΠΨ*))vDΣ|) (1)

-^ΛΓ^(VΔvDΣίv-i,4vD(ΛΠ^(VΛvDr))vDΣ2*) (2)

^ΛΓ->(VΔvDΣίvD-iDy4vD(ΛΠ-^(VΛvDΨ*))vDΣ2) PC, axiom £

-^ΛΓ^(VΔvDΣtvD(-iD^v(ΛΠ->(VΛvDΨ*)))vDΣ^) (3), PC

^ΛΓ->(VΔvDΣΐvD((Dy4ΛΛΠ)^(VΛvDΨ*))vDΣ^) (4)

/ /D^,Π|-A\* x
= (D^4ΛΛΓ)->(VΔvDΣίvD s ... \ vDΣ^ defof*

V \«i ... δj '

I ΓhΔ \*
/ . . . , / l \ .. . \

= σι...σr Dv4,ΠhΛ σr+i . .σ m defof*

• .. \
\ δ i δ« /

where

(1) DΣt = 4 r D σ Γ v . . . v Dσr*;
D E 5 = l ί r D σ ; + 1 v . . . v Dσ^;
D t * = # D δ * v . . . v Dδ*.

(2) hpC((-4 ΛB) -+ (CvD)) -> (U-> (Cv i Λ v/J))
(3) h P c ( Π ^ v D 5 ) - ^ D ( ^ v 5 )
(4) hpC(i^4 v (5 ̂  O) ̂  (M Λi)-»C)

so transporting that implication along γ by Lemma 3, we obtain the thesis.
By axiom T : ΠA -> A we can immediately change

i4,Γ h Δ into ΠA,V h Δ

without changing the context.
By axiom 5: OA -> D 0̂ 4 we can change

Σ h θ Σ h θ
„/ \ into t/ \

A, Γ h Δ ΠhΛ Γ h Δ D ^ Π h Λ
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without changing the context; in fact:

/ Σ h θ \*
/ . . . / ,/ \ \ . . . \

σ\...σr A,T \-A Π h Λ σ r + 1 . . . σ m

, / . . . \ ί/.. . \

\ δι . . . δn λi . . . λt I

= A Σ - (Vθ v DΣ* v D((,4 Λ Λ Γ) -+ (VΔ v D**))

vD(ΛΠ^(VΛvDΦ*))vDΣ|) (1)

-> Λ Σ -* (Vθ v DΣJ v (D>4 -^ D(Λ Γ -* (VΔ v D**)))

v D(Λ Π -> (VΛ v DΦ*)) v DΣJ) (2)

^ Λ Σ ^ ( V θ v D Σ t v ^ D ^ 4 v D ( Λ Γ - > ( V Δ v D ^ * ) )

v D(Λ Π -• (VΛ v DΦ*)) v DΣ|) (3)

^ Λ Σ ^ ( V θ v D Σ * v D - « D , 4 v D ( Λ Γ - + ( V Δ v D * * ) )

v D(Λ Π -* (VΛ v DΦ*)) v DΣ*,) (4)

- Λ Σ ^ ( V θ v D Σ * v D ( Λ Γ - + ( V Δ v D * * ) )

v D(πDi4 v (ΛΠ-^ (VΛ v DΦ*))) v DΣ*,) (5)

^ Λ Σ ^ ( V θ v D Σ t v D ( Λ Γ - > ( V Δ v D Ψ * ) )

v Π((ΠA Λ Λ Π) ̂  (VΛ v DΦ*)) v DΣJ) (6)

/ / ΓhΔ \* (ΠA,Π\-A\* v
= ΛΣ-^ VθvDΣtvD s...\ vD , / . . . \ vDΣ|

V \δ! ... δj \\x ... λ,/ /

def of *

/ Σ h θ \*
/ . . . / / \ \ . . . \

= σ{...σr Γ h Δ Dyl,Π|-A σ r + 1 . . . σ m def of *
,/. . . \ ,/ . . . \

\ δι ... δn λ 2 ... λ t I

where

(1) DΣ* = ^ D σ Γ v . . . v Dσr*;
DΣJ =df Πσ*+ι v . . . v D σ ; ;
D Y * = ^ Dδ? v . . . v Πδ*n;
DΦ* =,//Dλΐ v . . . v Dλ?.

(2) hpc((-4 ΛB)->C)+> (A^> (B^> C)) and Necessitation
(3) \-j>c(A^B)++(^A\/B)
(4) Axiom 5
(5) hpC(ΠAvΠB)-+Π(AvB)
(6) hpC(^A v(B-+ O) « ((^ Λ 5 ) ^ C )

so transporting that implication along 7 by Lemma 3, we obtain the thesis.
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By axiom 4: ΠA -» D ΠA we can immediately change

D D Λ Γ h Δ i n t o ΠA,Γ h Δ

without changing the context.
Finally the axiom D affects neither the relation R nor the rule D h (and in

fact, is related to the specific empty rule).
Suitably combining these properties, we can move from a formula A of a

sequent "a" to a formula ΠA of a sequent "&", when aRb, proving for any NL
that the translation of the rule Dh is well-defined.

Finally, the empty rule is well-defined for any "serial" systems, i.e., for any
system containing the axiom D: ΠA -> OA:

I Γ h Δ \*

\σ! . . .σ r h σ Γ + 1 . . .σ m /

= ΛΓ->(VΔvDσ? v . . . v Dσ r*vD(h)*vDσ;+ 1 v . . . v D ^ ) defof*

<+ΛΓ-+(VΔvDσf v . . . v Dσr*vDJ_ vDar*+1 v . . . v Dσ^) PC, (1)

-•ΛΓ->(VΔvDi4vDσί v . . . v D ^ ) PC, (2)

/ ΓhΔ \*
= 1 s...\ defof*

\σx ... σj

where

(1) (h)* = (Λ 0 -> V 0 ) = (T -> ±) ~ ±;
(2) h K D Π ^ ^ ^

so transporting that equivalence along γ by Lemma 3, we have that the required
implication is a KD-theorem, obtaining the thesis. This completes the proof of
Theorem 5.

3 Completeness and semantic cut-elimination A sequent proof appears as
a reverted, at most binary, finite tree, whose root is the end-sequent (at the bot-
tom), and whose terminal leaves are initial sequents (at the top). The way of mov-
ing along such reversed trees allows us to prove completeness: in fact, when
moving downward we consider that tree as a "proof", otherwise when moving
upward we consider it as an attempt at constructing a "countermodel"; we really
prove that when a usual sequent is not cut-free provable we can construct a coun-
termodel of it (or, more exactly, of its Schutte translation), so that it is not valid.

Theorem 6 (Completeness of the NLs-calculi) For any NL Λ, ifR is A-valid
then A is A-proυable (without any use of cut).

Proof: As usual, we prove the statement by contraposition: if A is not Λ-prov-
able (without any use of cut) then A is not Λ-valid. We proceed by several steps,
using a simplified version of the proof used in Girard [7] for PC, adapted to
modal systems (note we have only propositional symbols, and transform Schutte
valuations directly into Kripke valuations). Namely, for any NL Λ:
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1. we fix a class of functions on Kripke frames (the Schϋtte valuations) that
preserve the values true t and false f of formulas when going along a proof-tree
as countermodel and when requiring every formula that appears on the left part
of a sequent to be true, and any on the right to be false. Really, we define such
functions by imposing conditions that must be respected when going along the
tree as a proof, so that we can define them by an induction on the complexity
of formulas (that increases downward);

2. we prove that for any usual sequent Γ h Δ that is not cut-free provable
there is a Schiitte valuation on a Kripke frame such that for some world the value
of ΛΓ is t while the value of VΔ is f;

3. we prove that any Schiitte valuation can be reduced to a binary valuation
(i.e., a valuation that can take only the values t and f, not u) that preserves the
values t and f (so, there is a Kripke model where Γ f- Δ is not valid, proving
completeness);

4. we introduce three-valued models, proving both that any Schiitte valua-
tion can be reduced to a three-valued model valuation that preserves the values
t and f (so, there is a three-valued model where Γ h Δ is not valid) and that any
three-valued model valuation can be reduced to a binary valuation that preserves
the values t and f (so, proving completeness in another way).

Let us examine each step:

1. Given the set of well-founded formulas of the language, wff (L), a set of
worlds W, a strict tree-ordering on W9-*9 a relation R extending -> and accord-
ing with the properties of the accessibility for the system Λ, and a set of val-
ues {t,f ,u}, we define a Schiitte valuation as a function S: W X wff (L) -• {t,f ,u}
such that, for any w, w' E W\

if S(w9A) Φi andS(w,#) Φi then S(w9A ΛB) Φi
if S(w9A) Φtoτ S(w9B) Φt then S(w,,4 Λ £ ) Φt
iϊ S(w9A) Φi or S(w9B) Φi then S(w9AvB) Φi
if S(w9A) Φ t and S(w,B) Φt then S(w9AvB) Φt
if S(w9A) Φ t then S(w,-vl) Φ i
if S(w9A) Φ i then S(w,-vl) Φ t
if S(w9A) Φtoτ S(w9B) Φi then S(w9A -+B) Φi
if S(w9A) Φi and S(w9B) Φt then S(w,A-+B) Φt
if exists w' s.t. wRw' and S(w'9A) Φ t then S(w9ΠA) Φ t
if for every wf s.t. wRw' S(w'9A) Φ f then S(w9ΠA) Φ f.

2. We define the domain W9 the relations -> and R9 and the function 5 that
falsifies Γ h Δ o n the basis of an infinite branch of an inductively constructed
reversed tree of semantic modal sequents. Namely, we start from Γ V Δ, and at
any level of depth, we examine every sequent of that level, giving rise to the
sequents of the next level: since any sequent can construct at most two other
sequents, at any level we have a finite number of sequents; for any of those
sequents, we examine only one formula of only one world (if any) terminating
the examination of that level in a finite number of steps. At the level n9 for any
sequent we need a list of its worlds, and for any world we need a list of its for-
mulas: we examine the first formula of the first world in those lists, possibly we
add new worlds or new formulas at the end of such lists (to not bypass the queue)
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and then we put the world just examined and formula at the end of the corre-
sponding lists (rotating them cyclically, so that in a finite number of steps we can
reach any formula of any world).

For the sake of simplicity, an index n stresses only the level where a sequent
yn occurs, without specifying the branch (in fact we are really only interested in
one infinite branch of that tree); listπ and listΛ(v) denote the corresponding list
of worlds and, for any world υ, the list of formulas, respectively.

Finally, since the worlds of a semantic modal sequent are really usual
sequents, with a left and a right part, and since those parts can change at any
step (actually, they can only increase), we need two other lists, namely leftΛ(ι;)
and right r t(ι0, the left and the right sequence of formulas of the world v at the
step n9 respectively.

So,let7o = <^o,-o,*o>with Wo= {v0},Mt(v0) = Γ,right(i;0) = Δ , - 0 = 0 ,
and let Ro be the suitable closure of ->0; also, let list0 = v0 (the listing of the
worlds of Wo) and listo(Uo) = Γ,Δ (the listing of the formulas of v0).

Given yn = {Wn9-^n9Rn) with listπ = Vo,...9υs (never empty, since only
increasing) and listΛ(ι;o) = Au... 9AP (possibly empty), let yn+χ (possibly y'n+1

and Jn+i), listΛ+1 and listΛ+1 (v) (for v G Wn+X) be defined in the following way
(to simplify notation, all that we do not name remains unchanged at the step
Λ + 1):

a. if a formula A occurring both in the left and in the right part of v0 exists,
then we stop the construction of that branch of the tree (we have reached an
initial sequent, except some weakening and exchanges); otherwise:

b. if listπ(t;o) = 0 then yn+ι = yn9 but listπ + 1 = υΪ9...9υS9 vQ;
c. if A i is an atomic formula and the system Λ does not contain the axiom D,

then let yn+ι = yn9 but Iistπ+I(ι;o) =A2>... ,Ap9Al9 and listπ + 1 = vu . . . ,
vs,v0;

d. if A i is an atomic formula and the system Λ contains the axiom D, then let
Wn+X = Wn\J {vs+ι}, -•„+! = ->rtU {*>o -> vs+ι}, Rn+ι be the suitable closure
of -*„+! (it is easy to prove that it contains Rn), listrt+1 = υλ,.. .9vs,vs+ι,v0,
listΛ+1(ι;o) = A2,...,Ap9Aι, left(t; J +i) = 0 , right(ι;5 + 1) = 0 and
listΛ + 1(ι; 5 + 1) = 0 (we really only add a serial queue for v0);

e. if A i has a propositional connective as the principal one, let the left and right
parts of v0 and listΛ+1 (u0) be modified in the same way indicated in [7],
Theorem 3.1.9, in accord with the same cases; furthermore, let Wn+Ϊ =
Wn9 -+n+i = ->«> Rn+i = Rn> l i s W i = vΪ9...9vS9 v0. W e r e c a l l t h a t h e r e , i n
some cases, we really obtain two sequents y'n+χ and y'ή+\ splitting the tree;

f. otherwise, if Ax is D^4, and it occurs in the left part of vOi and R(v0) =
{vG W:v0Rv] Φ 0 , then let leftΛ+1(ι;o) =leftΛ(t;o), listΛ+1 (^0) =A2f...,
Ap,AιAQftn+ι(v)=A^Qftn(v)9anά^stn+ι(v)=hstn(v),AfoτanyvGR(v0);
let also Wn+Ϊ = Wn9 -+n+i = ->„, Rn+i = Rn, listrt+1 = vΪ9.. .,vS9v0;

g. if A i is ΠA9 and it occurs in the left part of vθ9 R(v0) = 0 , and the system
Λ does not contain the axiom D, then let yn+\ = yn9 but listΛ+1 (v\) = A2,
...9Ap9Al9 a n d l i s t Λ + 1 = vl9... 9υS9υ0;

h. if A i is ΠA, and it occurs in the left part of Vo, R(v0) = 0 , and the system Λ
contains the axiom D, then let Wn+i = Wn\J {vs+ι}, -+n+i =" > «U(^o" > ^+i)>
Rn+ι be the suitable closure of -»„+! (it is easy to prove that it contains Rn)9
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H S V H = Vι,...9υS9vs+uvθ9 leftΛ+1(ι;o) = leftΛ(ι;o), listΛ+i(t;o) = A29...9

Ap9AΪ9 left(f 5 +i) = 0 , right (t; J + 1 ) = 0 and listΛ + i(ι; J + 1) = 0 (we really
only add a serial queue for v0);

i. finally, if Ax is ΠA, and it occurs on the right part of v0, then let Wn+\ =
Wn\J[ vs+ϊ}, -> Λ + 1 = -»n\J{v0 -+ vs+{}9 Rn+Ϊ be the suitable closure of
- V H (it contains Rn), listπ+1 = ι>i , . . . ,v S 9 v s + l 9 v θ 9 ήghtn+ι(v0) = rights(υo)9

listπ+i(t;o) = A29...9Ap9Ai9 r ight(y 5 + 1 ) = A, left(v s + 1 ) = 0 and
]istn+ι(υs+ι) =A.

If yn+i is (both y'n+ι and γ£+ 1 are) cut-free provable, then yn is cut-free
provable too. In fact, in case (a), γ Λ + 1 does not exist, since we have stopped the
construction on yn, an initial sequent; in cases (b), (c), (g) γ π + 1 = yn9 cut-free
provable by hypothesis; in case (e), we prove the thesis as in [7]; in cases (d), (h)
we obtain a cut-free proof by using the empty rule; in case (f), we use the rules
Dh and contraction; finally, in case (i), we use the rules hD and contraction,
proving the proposition. So, since we stop the construction of the tree on initial
sequents, if the tree is finite then it is a cut-free proof of γ 0, against the hypoth-
esis; thus, the tree must be an infinite, denumerable, (at most binary) tree of
sequents. By Kόnig lemma, an infinite branch exists: let γ 0 , . . . , γ, , . . . ( / < ω)
be the list of the sequents on that branch; let W = \J{Wι•: Wιf e γ, ), -» =
U{-»/.'-•/ G Y/}, J? = U{Λ| :Λf e γ, } (for non-serial systems) or let R be
\J{RiiRi G Y/} plus the reflexive closure of non-serial worlds (for serial sys-
tems); let also left(w) = U{left, (w) :i<ω) and right(w) = U{right/(w):/< ω),
for any w E JV.

R satisfies the properties required for the accessibility relation of the system
Λ: in fact, the union of a chain of reflexive (or symmetric, or transitive, or euclid-
ean) relations is also reflexive (or symmetric, or transitive, or euclidean). In the
case of serial systems, by construction, only the empty worlds have no other
accessible worlds, so that we can make them accessible from themselves with-
out going against any formula. Furthermore, the relation R remains possibly
reflexive, symmetric or transitive, and also euclidean (in this case, recalling that
such worlds are the terminal leaves of a -> -tree, that R contains -• and that R
can also only be a symmetric, reflexive, or transitive extension of -*).

Now, let S be the valuation defined as S(w,A) = t iff A occurs in left(w),
S( w,A) = f iff A occurs in right(w), S( w,A) = u otherwise. S is well-defined:
on the contrary, let us suppose a formula A both true and false in a world w;
since formulas are never deleted from a part of a world (i.e., leftΛ(y) 9
Mtn+i(v) and rightΛ(ι;) Q rightΛ+1 (v))9 from an indexs on, A occurs both in
the left and in the right part of w; so, we had to stop the construction of that
branch at such a level, against the hypothesis that the branch is infinite.

Furthermore, S is a Schiitte valuation: we prove only that S respects the
last modal condition on Schiitte valuations, since we can prove that S satisfies
the other modal condition in a dual way, and that satisfies the propositional
conditions as usual (see [7]). Let us assume S(w,ΠA) = f: by definition of S,
ΠA E right(w); so, by definition of W9 from an index r on, ΏA must appear
on the right of w; by construction of the tree, when ΠA is to be examined after
a finite number m of steps, A must appear on the right of some w' with w ~v+w

w'; so S( w\A) = f with wRw' (by the definitions of W, -> and R): by contra-
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position, we have proved that S agrees with the last modal condition on Schutte
valuations.

Finally, by construction, S(fo,ΛΓ) = t and S(ι;0,VΔ) = f. This completes
Step 2.

3. Let < be an ordering on {t,f,u} (in [7] the symbol > was used) defined as:

\ /
v v

\ /

Φ :
< induces an ordering on the Schutte valuations:

S < Tiff S(A) < T(A) for every A E wff(L).

It is easy to see that any <-chain has an upper bound, so that for any Schutte
valuation S there is a <-maximal valuation Fsuch that S < V; but a maximal
valuation must be a binary one, and, by the conditions on Schutte valuations,
must be a Kripke valuation. Since < maintains the values t and f, V(vo,AT) =
t and F(ι;0 )VΔ) = f, so that F(i;0,Ar -> VΔ) = f as a particular case, when
the sequent is h4 we have V(vθ9A) = f, proving completeness.

4. A three-valued model is a triple {W9R9m) where W is a non-empty
set, R is a binary relation on W, in accord with the properties of accessibility
for any system A9m:Wx wff (L) -> {t,f ,u) is a function defined by an induction
on the complexity of formulas, as follows (see [7]): given w E Wand R(w) =
{w' :wRw'}9

if m(w9A) = t and m(w,B) = t then m(w,A ΛB) = t
if m(w,A) = f or m(w,B) = f then IΪI(W,AΛB) = f
if m(w,A) = u and m(w,B) Φ f, or vice versa then m(w,A ΛB) = u
if m(w9A) = t or m(w,B) = t then m(w,A vB) = t
if m(w9A) = f and m(w,B) = f then m(w,A vB) = f
if m(w9A) = u and m(w,B) Φ t, or vice versa then m(w,A vB) = u
if m(w9A) = t then m(w9-iA) = f
if m(w9A) = f then m(w9-*A) - t
if m(w9A) = u then m(w9~\A) = u
if m(w9A) = f or m(w9B) = t then m(w,A -• B) = t
if m{w9A) = tandm(w,£) = f then m(w9A -* B) = f
if m(w9A) = u and m(w9B) Φ t then m(w9A -+ B) = u
if m(w9A) Φ f and m(w9B) = u then m(w,A -+ B) = u
if for every w' G Z?(w) m(w\A) = t then ra(w,Dv4) = t
if exists w' GR(w) with m{w'9A) = f then m(w,D^) = f
if for every w' e R(w) m(w\A) Φ f then m(w9ΏA) = u.

and exists w' G i?(w) m(w'9A) = u

A three-valued valuation is really a Schutte valuation where the values of for-
mulas are strictly determined by the values of their subformulas (see [7]): in fact,
when both the value of A and the value of B is t then the value of A A B could
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be either t or u for a Schϋtte valuation, whereas it must only be t for a three-
valued valuation.

To stress the link between three-valued valuations and Schutte valuations, we
introduce a refinement of the ordering <; namely, we define the relation < on
the Schutte valuations as:

S <Tifϊ S<T and S\β> = T\β>.

It is easy to see that any < -̂chain has an upper bound, so that for any Schutte
valuation S there is a ^-maximal valuation m such that S<m\ and it is also clear
that such a maximal valuation must be a three-valued valuation. Since < (as <)
maintains the values t and f, m(υo,/\Y) = t, m(vo,\/Δ) = f and m(vo,ΛT -•
VΔ) = f. Furthermore, we can restrict the relation < to the three-valued valu-
ations: reasoning as above, for any three-valued valuation m there is a <-max-
imal valuation V such that m < V; such a V must be a Kripke valuation and
F(vo,ΛΓ -> VΔ) = f; as a particular case, when the sequent is \-A we have
V(VQJA) = f, proving, in another way, completeness. This finishes the proof.

Finally, as usual immediate corollaries of cut-elimination, we have both the
consistency of those fifteen main normal modal logics and the subformula prop-
erty for them:

Corollary 7 (Consistency and subformula property) Every system among K,
KB, KD, KT, K4, K5, KBD, KBT, KB4, KD4, KD5, KD45, K45, KT4, KT5 is
consistent; furthermore, for each of them the subformula property holds.
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