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What Evidence is There That 2Λ65536

is a Natural Number?

DAVID ISLES

Abstract The closure of the natural numbers under exponentiation aAb is
a fact which is central to results in metamathematics. The argument which
purports to establish this closure involves a simple mathematical induction.
An analysis of this proof shows that it may involve a new and subtle form
of circularity.

1 Introduction1 To most mathematicians, the title of this article will, I sup-
pose, appear a bit strange: it is so obvious that 2Λ65536 is a natural number that
there would seem to be no rational basis for questioning it. Yet there have been
objections to the claim that all such exponential expressions name a natural num-
ber, two of the best known being due to Paul Bernays [1] and Edward Nelson
[8]. Bernays, in "On Platonism in Mathematics", rhetorically questions whether
67Λ(257Λ729) can be represented by an "Arabic numeral" (he does not, however,
press the discussion). By contrast, Nelson, in "Predicative Arithmetic", devel-
ops a large body of theory which he then advances to support his belief that
2Λ65536 is not a natural number or that, more generally, exponentiation is not
a total function. His ideas will be discussed a bit more fully further on.

What I would like to try to do here is to shift the burden of proof onto those
who would claim that 2Λ65536 does name or is equal to a natural number by ex-
amining the methods and/or arguments they might employ to convince an in-
telligent but untutored student of the fact. I have attempted to mention what I
think are the main arguments and tried to give criticisms of those arguments.
These criticisms have reinforced in me the belief that talking of number in the
abstract, while useful at times, is a bit sloppy: to obtain more precision one must
instead talk about numerical notations. This view is shared by others including
Nelson, Rotman [9], and vanBendegem [10], and was exposited by vanDantzig
in "Is 10Λ(10Λ10) a finite number?" [II] . 2 Furthermore, the line of argument I
have followed leads me to re-examine the circumstances under which a proof (at

Received August 19, 1991; Revised January 31, 1992



466 DAVID ISLES

least in the area under consideration) can be regarded as "convincing": to be com-
posed of logically correct steps which lead from accepted assumptions to the con-
clusion is not enough; in addition there are certain global conditions which the
proof must satisfy in order to be seen as "making sense".

2 Preliminaries First, some terminology. By "natural number" or "numeral"
I mean (unary) notations of the type |, 11,111,1111,..., ordered as indicated; and
by "numerical exponential notations" I mean the collection of terms built from
these together with the function signs + (addition), -(multiplication), A (exponen-
tiation) and left and right parentheses (although these last will frequently be omit-
ted), l + l, || (|| + | | ) , | | Λ (( | | +1||) III), etc. are examples. If we add to these the
usual recursion rules for evaluating these functions, viz.

A+ I =A\

A \ =A

AΛ\ =A

A + (B\) = (A+B)\

A (B\) = (A'B) +A

AA(B\) = (AΛB)A

we obtain a reasonable model of these functions on the (informal) natural num-
bers. Notice that these rules provide a computing procedure which we could ap-
ply to any given numerical exponential notation. Thus 11 + 11 = || || = | |Λ | | = 11| I
a n d ll + q i + H ) = ||||||, | | - ( | | . | | ) = W W I I , I I Λ ( I I Λ I D = I I I I I I I I I I I I I I H . B u t t h e r e i s
a sharp difference between the computations of, say, || + (|| + (|| + (|| +1|))) or
|| (||. (||. (II ||))) and the computations of | |Λ(| |Λ(| |Λ(| |Λ | |))) (which we will ab-
breviate as 2A65536 using the usual notation). The former are quite feasible and
can be performed in a short time whereas the latter represents a number which
exceeds the total number of vibrations executed by all subatomic particles of
size <10Λ-30 cm (smaller than a quark!) which would be needed to fill a universe
of radius 10Λ12 light years (larger than the observational diameter of the uni-
verse!) were each to vibrate 10A50 times per second over a period of 10A12 years
(longer than the surmised age of the universe!).3 Neither now nor ever (as far as
we can tell at present) is there likely to be a case where the computation that starts
with 2A65536 and proceeds according to the recursion rules terminates. Thus
even with respect to small numerical notations there are sharp differences be-
tween addition and multiplication on the one hand and exponentiation on the
other.

It is true that the notation 2A65536 is of the same kind as the term | | A | | or
| |A(| |A | |) for which the analogous computations do terminate but what does that
prove? In other areas of life we know that parallelism of form, and even par-
allelism with respect to forms of processes, does not imply similar behavior (un-
less the parallel is "exact"; but the appropriateness of the adjective in the present
situation is what is being challenged here). After all, the activity of swimming
is the same whether it is done in a pool or in the ocean. Yet from the fact that
I can swim across a pool it hardly follows that I can swim across an ocean. More-
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over the facts of experience belie the assumption that the processes of comput-
ing the numerical values of | | Λ | | and 2Λ65536 proceed in the same way.
| | A | | = mi can be done in a few steps with pencil and paper. But we know that
to actually compute large numbers requires additional computational tools (log-
arithms, slide rules, calculators, computers, etc.), and any particular tool (e.g.,
computer system with programs and outside storage) is limited in the size of num-
ber it can compute. Eventually, due to the increasing amount of data involved,
any completely specified computing scheme must break down and require revi-
sion; and it is by no means clear that the pattern of these revisions has any uni-
formity. Finally the putative fact that there is a Turing machine computation
which shows that 2Λ65536 evaluates to a numeral is (at best) problematic. For
Turing machine computations are defined as sequences of state-symbol-tape de-
scriptions. Because these descriptions are isomorphic to the numerals, to claim
that there exists a terminal one which encodes a numeral equal to 2Λ65536 is
simply to claim that 2Λ65536 equals a numeral.

3 Nelson !y analysis The average primary school student to whom exponen-
tiation is an unknown concept would, of course, find the claim that 2Λ65536 is
a numeral incomprehensible. A junior high school student might find it compre-
hensible but problematic. But if the student continues her association with math-
ematics, by the time she has completed college she will have been convinced of
its truth. Now for most students this occurs because they have been told that it
is true by those whose credentials have given them the authority to authenticate
such claims. However, for a smaller number (including some of those who even-
tually become professional mathematicians) this conviction is achieved (or at least
secured) by means of a proof which says that the recursive procedures for eval-
uating exponential numerical notations always terminate in a numeral. Using
standard logical notations, let us list such a proof for further examination.

Example 1

1. Assume that we have proved (V«)(Vm)(3/?) [n-m =/?] .
2. From the recursion equations for exponentiation we have qA\ = q (i.e.,

(3s) [qA\ = s] for any natural number q.
3. As the hypothesis of induction we assume (3s) [qAr = s]. Then qA(r\) =

(qΛr) q. Using the formula in Step 1 (with qΛr substituted for n and q
for m), we conclude that (3s) [qA(r\) = s].

4. By induction on r, then, it follows from Steps 2 and 3 that (Vq)(Vr)(3s)
[qAr = s].

This is a very simple argument. Indeed, the only slightly problematic step
seems to be the use of mathematical induction; and it is precisely at this point
that Nelson [8] raises criticisms (following a tradition which goes back at least
to Poincare). He states his reasons on page 1:

The reason for mistrusting the induction principle is that it involves an im-
predicative concept of number. It is not correct to argue that induction only in-
volves the numbers from 0 to n; the property of n being established may be a
formula with bound variables that are thought of as ranging over all numbers.
That is, the induction principle assumes that the natural number system is
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given. . . . But numbers are symbolic constructions; a construction does not ex-
ist until it is made; when something new is made, it is something new and not
a selection from a preexisting collection.

(Nelson calls his viewpoint a modified formalism.) In order to avoid this puta-
tive "impredicativity" of induction, Nelson proceeds by building up a body of
arithmetic statements which he calls "predicative arithmetic". He takes as his
starting point the subsystem of Peano arithmetic called Robinson's system, which
is given by the following six nonlogical axioms:

(Ql) ( V * ) [ J C | * 0 ]

(Q2) (vx)(vy)[x\=y\^x = y]
(Q3) (vx)[x + 0 = x]
(Q4) (vχ)(vy)[x + y\ = (x + y)\]
(Q5) (vx)[x 0 = 0]
(Q6) (vx)(vy)[x (y\) = (x y)+x].

He then proceeds to build up a sequence of theories by successively adding to
Q a finite number of new axioms. For example, one could add to Q finitely many
induction axioms whose quantified variables were bounded by terms in the lan-
guage of Q. More generally, if Q[TΪ9..., Tn] is the present theory then we can
adjoin Γ ( Λ + 1 ) as long as Q[TΪ9..., T(n+λ)] is interpretable in Q (via an interpre-
tation of a certain sort). Nelson indicates some of the mathematical power of
predicative arithmetic, studies some of its metamathematics, and then concludes
with proofs of the fact that the formula (V«)Exp(«) cannot be proved in pred-
icative arithmetic where Έxp(n) says that, for any natural number b,bΛy is de-
fined and satisfies the recursion equations for exponentiation for all numbers
y < n. This result indicates that the use of induction in the above elementary
proof of the closure of the natural numbers under exponentiation is impredicative
in his sense—that is, that the existentially quantified variable s must range over
"natural numbers" which go beyond any that can be shown to exist "predica-
tively". This evidence, added to the obvious practical impossibilities of comput-
ing the numeral value of even modest exponential expressions, leads him to
conclude that exponentiation is not total. Whether these arguments would change
the mind of someone who believed that 2Λ65536 evaluated to a natural number
is not clear to me. Such a skeptic might counter that while Nelson's results illu-
minated interesting properties of subsystems of Peano arithmetic, there was no
a priori reason to believe that exponentiation should be derivable in those sys-
tems. Moreover, this skeptic could turn some of Nelson's arguments against him
as follows: You base predicative arithmetic on the formalized properties of ad-
dition and multiplication, both of which, presumably, you believe to be total.
But what reasons do you have for believing that, especially as regards multipli-
cation? For large enough n and m you will not be in a position to evaluate n m
no matter how much time, space, and so forth you assume that you have. In
these cases also your conviction that the computations are total is secured by
means of a proof and, in fact, by a proof of the very same form as that by which
I am convinced that exponentiation is total. This is particularly clear if the proofs
concern the addition, multiplication, and exponentiation relations on the numer-
als. Indicate these relations by A(a,b,a), M(a,b,c), and P(a,b,c) respectively.
Suppose we assume the following axioms about them:
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(Al) (v*M(*, | , jφ
(A2) (vx)(vy)(Vz)[A(x9ytz)**A(x9y\9z\)]
(Ml) (Vx)M(x,\,x)
(M2) (Vx)(Vy)(Vz)(Vw)[M(x,y,z) and A(z9x9w) => M(x9y\9w)]
(PI) (Vx)P(x,\9x)
(P2) (vx)(vy)(Vz)(Vw)[P(x9y9z)andM(z9x,w)=>P(x,y\9w)].

By induction on the second variable, we obtain the following proofs of (Vx)
(vy)(*z)A(x9y9z)9 (vx)(vy)(*z)M(x9y9z)9 and (vx)(vy)(iz)P(x9y9z).

Example 2

Proof I:

1. Axiom (Al) gives v4(#,|,ff|); hence (lz)A(α,\9z).
2. Assume (3z)^4(tf,6,z). From axiom (A2) it then follows that A(α,b\ ,c|)

and so (iz)A(α9b\9z).
3. Using induction on the second variable, we conclude (Vx)(Vy)(3z)

A(x9y9z).

Proofs II (and III):

1. Axiom (Ml) gives M(a,\9a); hence (3z)M(a9\,z).
(1'. Axiom (PI) gives P(α, | ,α); hence (3z)P(α,|,z).)
2. Assume (3z)M(a,b,z). From axiom (M2) plus the conclusion of Proof I

we then conclude M(a9b\9c) and so (3z)M(a9b\9z).
(2'. Assume (3z)P(α,6,z). From axiom (P2) plus the conclusion of Proof II

we then conclude P(a,b\9c) and so (lz)P{a9b\9z).)
3. Using induction on the second variable, we conclude (Vx)(Vy)(3z)

M(x,y,z).
(3\ Using induction on the second variable we conclude (Vx)(vy)(3z)

P(x,y,z).)

Clearly Proofs II and III are practically identical. How can Proof II be claimed
to be convincing whereas Proof III is not?

4 Freeing the bound variable The challenge posed in the last paragraph is
to find some intrinsic, structural difference between Proof III and Proof II
(and I). In order to see where this structural difference might lie, let us look again
at the proof of Example 1.4 Steps 1 and 2 seem unassailable; but if we substi-
tute 2Λ65535 and 2A65536 for the variables q and r in Step 3, we see something
interesting. For although the implication [(35) (2Λ65535 =s)->( 3s) (2Λ65536 = s)]
seems hard to deny (on the basis of the assumptions made), the truth of the con-
clusion can only follow from the truth of the antecedent (3s)(2Λ65535 = s).
But, since no argument is given to establish the truth of this formula, one is
forced to conclude that its truth is simply assumed. That is, if this proof is to
count as "correct reasoning", we must assume that the numerical exponential
term 2Λ65535 equals a natural number value. In other words if we are to count
this proof as a proof, we must change the meaning of "natural number" to in-
clude such expressions as 2Λ65535.
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This conclusion is certainly compatible with Nelson's view that "numbers are
symbolic constructions". (It does, however, include a very nontraditional fea-
ture—namely, that what you are referring to within an argument by the expres-
sion "natural number" may depend on the location within the argument at which
you find yourself.) Unfortunately, this answer does not seem to meet the spe-
cific challenge posed earlier to find some intrinsic differences between Proof II
and Proof III because neither of these two proofs seems to require anything
other than references to the (unary) natural numbers (in particular there are no
other numerical terms occurring). But if we recall the result presented in elemen-
tary logic texts as the "elimination of defined function constants" —i.e., the re-
placement of function terms f(x9 y9 z,...) in locations A (w, v9f(x9y9z9...)) by
formulas (3s) [A(w,v,s) and F(x9y,z,... ,s)] (in the presence of certain axi-
oms)—we see that although different terms may not occur explicitly within the
body of a proof they may occur as referents of various quantified variables
within the proof. Thus in proofs such as those in Example 2, one should con-
sider the possibility of "freeing the bound variables"—that is, of allowing dif-
ferent bound variables in different locations to have different referents.

It seems to me that if you abandon the notion of a single unique series of nat-
ural numbers in favor of a multiplicity of numerical notations, you are almost
forced into this nontraditional stance. Imagine a (precocious) 12 year old whose
powers of logical argumentation were well developed but for whom the world
of natural numbers consisted of a disconnected collection of numerical notations
for which she had learned various algorithms.5 Such a person might be expected
to ask at each step of the proofs in Example 2 questions like "To which num-
bers or notations are you referring at this step?" If she were skeptical, she might
reject assurances that the references were always to "the" natural numbers and
ask "Since unary notation isn't the only way we write numbers, isn't it possible
that your arguments remain valid if we consider other numerical notations as
well?" In other words, the child would be saying that the steps in the proof might
remain valid even if we allow the references to "numbers" which occur in the
proof to vary over collections of possible numerical notations (as long as we ob-
serve certain structural restrictions on these references which the proof rules im-
pose). For example, if the inductive step in the proof of (Vx)(Vy)(3z)A(x9y,z)
from Axioms (Al) and (A2) is to be valid, the range of the bound variable y in
the second argument place must be the numerals; but no such constraints apply
to the first argument place. Likewise in the proof of (vx)(vy)(3z)M(x9y9z)
from Axioms (Al), (A2), (Ml), and (M2), the range of the second argument
place y must again be the numerals. Furthermore, because in the formula

(M2) (Vx)(Vy)(Vz)(Vw)[M(x9y9z) and A(z,x,w) => M(x,y\, w)]

x in the first argument place of M(x9y9z) occurs in the second argument place
of A(z9x, w) (over which induction was carried out in the preceding proof that
(Vx)(Vy)(3z)A(x9y9z))> it as well as y must have the numerals as range. Fi-
nally, in the proof of (Vjt)(Vy)(3z)P(x,>>,z) from Axioms (Al) to (P2), not only
must the range of y be the numerals, but so too must that of the third argu-
ment place z\ for in Axiom (P2) (Vx)(Vy)(v*)(Vw) [P(x9y9z) and M(z9x9 w) =>
P(x9y\9 w)], z occupies the first argument place of M9 which we have already
shown must have the natural numbers as range.
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To examine this argument as well as other more complex ones (see Exam-
ple 5) more closely, we must analyze the proofs in some detail. In the case of the
inductive arguments which concern us, they can be modeled as derivations quite
naturally and convincingly within a formal system of first-order logic. Consider
the following "natural-deduction" derivation (Dl) of the implication

(Vx)A(x,\9x\),(x*)(y*)(z*)[A(x*,y*tz*)

->A(x*,y*\,z*\)] h (Vw)(vv)(3u)A(w,v,u)

which models the statement that the closure of the addition relation follows from
Axioms (Al) and (A2). Here x,y9z,x*, w, u, etc. are bound variables with (vx)
being the universal quantifier and (3w) the existential quantifier; a, b, and a are
parameters (free variables). The logical steps are indicated as follows: 31 = ex-
istential introduction, 3E = existential elimination, VI and VE = universal intro-
duction and elimination, respectively, and -»E = implication elimination. An
arrow such as ΛΓ* -* a indicates that in order for the logical step which accom-
panies it to be valid {preserve truth) the range of possible values of a must be
contained within the range of possible values of JC*. Finally to write j> = u means
that at the step in question the ranges of the two bound variables are identified
(again in order to preserve validity of the logical step (Isles [2])).

Example 3

(Vx*)(>ty*)(>iz*)[A(x*,y*a*)^A(x\y*\,z*\)\

x*-+a y*-+a z*-+b VE

® A(a,a,b) A(a,a,b)-+A(a,a\,b\)

- > E I
I

(Vx)A(x,\,x\) A(a,a\,b\)

VE x-*a U~*h\ 3 I

A(a9\,a\) (2) (ly)A(a,a9y) (lu)A(a,a\,u)

31 u'-*a\ y = u b-+y

I 3E® 1
I

(*u')A(a,\,ur) (aiιM(α,α|,u)

(2) Induction u' = u
I

(3u)A(a,a,u)

VI a -> v a^> w

(VW)(W)(3U)A(W,V9U)
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The arrows here include x-> a-+ w, u->a\, a-^> w, a-> v, « -• b\, and b-+u.

These indicate the inclusion relations which must hold among sets of terms if they
are to be ranges for the various free and bound variables in the derivation. In
order that induction be valid, the induction parameter a must range over a(n ini-
tial) segment of the numerals (notice that this forces the range of v to contain
only numeral-valued notations). Because of the arrows u^b\ and b-+ u, the
range of u contains all the terms r, r |, r \ |, r \ \ | , . . . if it contains any term r at all.
Otherwise there are very few restrictions on the possible ranges for the other vari-
ables. In the standard Tarski interpretation of this derivation, the range of all
the variables is the complete set of numerals. The central assertion of this pa-
per is that this confounds a semantical assertion (there is a "unique" set of nat-
ural numbers) with the purely logical requirement that the derivation rules
preserve truth. But if we consider a purely logical derivation and permit the vari-
ables and parameters of (Dl) to have different reference ranges, we can describe
alternative (nontraditional) models for the formulas in this derivation. For ex-
ample, consider the structure TVS of exponential numerical notations. Its domain
will consist of the set of such notations and it will contain a one place function
I *, a binary relation =* and three ternary relations A*, M*, and P* which will
provide interpretations for a language containing the corresponding function and
relation symbols |, =9A,M, and P. Further, this interpretation will be a (Tar-
ski) model for the nonlogical axioms expressing

1. the transitive, reflexive, and symmetric properties of equality
2. the replacement property of equality with respect to successor terms and

atomic formulas
3. the functionality of the successor function and the relations A, M, and P
4. the recursion equations for A, M, and P
5. the formula (Vx)-i[x| = | ] ,

if we read these (universally quantified) axioms as giving inductive definitions
of the interpreting relations =*, A*, M*, and E*. If we also add the following
defining clauses for all terms r,s

A*(r,s9r + s)

M*(r,s,r s)

P*(r,s,rAs)

we could use NS to provide an interpretation for the formulas in (Dl) which
would not need to assume the existence of numeral values for the addition rela-
tion A*. All that is needed is to assign ranges to the variables and parameters in
(Dl) in a way that is consonant with the arrow conditions. As none of these in-
clusion relations require that the range of u consist of numeral-valued notations
(even if the ranges of w and v do) one can simply let range(w) = [r + s\r in
range( w), s in range( υ)) U {|, 11,111,...}. In this way we avoid using an induc-
tive proof (for the existence of numeral values for A*) of the sort which we are
investigating.

NS can also serve as the universe for the variables and parameters of the induc-
tive derivation (D2) of (A 1),(A2),(Ml),(M2) => (w^iv^iΞu^MiwuVuUx). In
this case, the "arrow conditions" include both those of (Dl) (which is a subproof
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of (D2)) plus some additional ones: w -> U\ -> MΊ, Wj -> u, β -+ υ\, V\ -> WΊ, α -> ϋ,
and w -> w I. As before, these conditions permit the range of Wi to include non-
numeral numerical exponential terms. Thus both derivations (Dl) and (D2) can
be shown to be satisfiable (i.e., to possess models of the sort described above)
without assuming the putative fact established by the proof which we are inves-
tigating.6

Parallel in form to (D2) is the following inductive proof (D3) of

(Al), . . . ,(P2) => (Vw2)(Vv2)(3u2)P{w29v2,u2).

See Example 4 on next page. Among the reference arrows of (D3) are y -+ v2,
u2 -> uλ, u2 -> w2i V\ -> w2, and wx -• u2. These, together with the reference ar-
rows of (D2) (which are part of (D3)), result in the following inclusion conditions:

a-> v-+ W\ -+ u2-+ U\ -> u -+ u\

u2-+ w2

u-+ w\

β^vx

y-+v2.

The ranges of the induction parameters a, β, and 7 must consist of numerals.
Therefore, if NS is to be a model of the formulas in (D3), the numerals of NS
must be closed under the relations A*> M*> and P*, which means that the
numerals ofNS must be closed under exponentiation. Because closure of the nu-
merals must be either assumed or proved (using a derivation essentially like (D3)),
it is hard for me to see how this derivation can be viewed as supporting the claim
that the numerals are closed under exponentiation. That claim is, in the sense in-
dicated, circular. Thus the response I propose to the challenge posed earlier to
show a structural difference between derivations (Dl) and (D2) on the one hand
and (D3) on the other is this: in the case of the first two, one can construct a sat-
isfying interpretation which shows them to be consistent in a non-question-beg-
ging way. This does not seem to be possible for (D3) (or any analogous derivation
with which I am acquainted).7 Inasmuch as (D3) (or its corresponding versions
in sequent or other first-order calculi) is a reasonably natural and direct formu-
lation of the informal proof which would usually be presented as evidence that
the natural numbers are closed under exponentiation, the onus of presenting a
non-question-begging proof of this fact is thrown back upon those who would
assert it.

The previous conclusions can, of course, be avoided by refusing to accept
the central notion of the variability of reference. But enough has been said, I be-
lieve, to at least raise the possibility that this refusal has its consequences. It will
not suffice to point to a result such as

(vx)(Vy)(Vz)[N(x) ΛN(y) ΛP(x,y,z) ^N(z)]

and claim that this shows that the numerals are closed under exponentiation. For
the (first-order) proofs of this formula not only require the assumption of the
functionality of the addition, multiplication, and exponentiation relations, but
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also the proofs of the thirteen relativized versions of the theorems we have been
examining —i.e., of theorems of the form

(vx)(vy)[N(x)ΛN(y) ^ (iz){N(z)ΛP(x,y9z)}].

Aside from the inclusion of the axiom (Vx) [N(\) A [N(X) -* JV(jφ}], the
proofs of these are practically identical to the proofs we have examined, and
they involve the same reference arrows. Consequently, the arguments we made
before will carry over to these derivations with the one minor change that the
interpretation N* of ΛΠn the model must include the numerals.

Example 5 This last example is included to show that one cannot (apparently)
avoid the circularity implicit in the proof of the closure of the exponentiation
relation by defining that relation a la Gόdel in elementary number theory. If one
examines the proof that exponentiation is numeralwise representable in elemen-
tary number theory as given in Kleene [4], one finds that an essential step is the
proof of the existence of a common multiple of the numbers in the sequence
1,2,... ,/2 (Kleene's formal theorem 157 in [4], p. 192). This derivation is given
below in two parts with some trivial steps left out. Assumptions I, II, and III are
derived theorems. The formula to be proved using induction on the parameter
a is (3x)F(a9x) which is

(3ΛΓ) [0 < XA (VZ) [ | 0 < Z Λ Z < α H (3W) [Z W = X]]]

(where z < a abbreviates (z < α) v (z = α)). The main step is an or-elimination
where the two side formulas express the existence of such a multiple for the two
cases b < a | and b = a | . The derivation for the first of these two cases is shown
in Diagram 1. The completion of the derivation is shown in Diagram 2 (with the
derivation of (lx2) F(0,x2) not given). The reference arrows of this derivation
include, among others, x-> |, x-> x a | and q -* x. Because the induction param-
eter a has as its range (a segment of) the numerals, this means that the range of
x includes terms with an arbitrarily high number of consecutive multiplications.
Examination of the derivations of Theorems I, II, and III shows that the ranges
of the variables j9 k9 m9 n, p, and q must all be numerals (because they are in-
cluded within the ranges of induction parameters). Hence a model for this der-
ivation would require that terms of arbitrarily large multiplicative degree be equal
to numerals (i.e., that the numerals be closed under exponentiation).

Is 2A65536 a natural number? From the viewpoint urged here, to answer
Yes is to recognize that the natural numbers are no longer coextensive with the
numerals but rather, say, with numerical exponential (or "similar") notations.
This does not mean that you cannot use ordinary mathematical induction in rea-
soning about these notations. For example, the inductive proof of the formula
(Vx)(3y)H(x9y) (where H(x9y) expresses the "hyperexponential relation"
Λ(0) = 1, h(n + 1) = 2A(h(n)) which proceeds from the axioms //(0,l) and
(Vw)(Vι;)(Vw) [H(u9v) A w = 2Av->H(u\,w)]) generates as reference arrows
only a -• x9 y -• |, and y -* 2Ay (a is an induction parameter). Consequently
an interpretation of this derivation does not require that exponential terms
equal numerals. By contrast, the derivation of (Vx)(Vy)(3u)Ac(x9y9u) (where
Ac(x9y,u) stands for the "Ackermann" relation ac(09y) = 2Ay9 ac(x9θ) = 1,
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Diagram 1

(Vm)(V«)[« < m\ ->/i < m] III

VE n -• b, m -• a.

(3) (0<b)Λ(b<a\) © b<oc\ (b < a\) -* (6 < α | )
1 I

Λ E I ->E

0< b b<a F(a,d) 0
I I

ΛI Λ E , VE z-+b

(0<b)Λ(b< a) {(0 <b)Λ(b< a)} -• (3w) [6 w = d]
I _ _ _ ^ I

^ E

(lw)[b w = d]

I (Y/KvfcKvz!) [(y Λ) zi =y (AΓ ZI)]

7 -* 6, *" -• c

VE

Z\ - > α |

(Z? c) α | =Z? (c α | )

i 7 I
I
I

b- (c α|) = d α|

Wi-^c α| 31

(3wι)[b-wι =d a\]

I
(T) 3E c-^w
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ac(x + 1, y + 1) = ac(x,ac{x + l9y))) includes among its arrows u -* | and
β-+u^> 2Au (β an induction parameter) and so forces on any interpretation the
existential requirement that its numerals be closed under exponentiation.

This view of the matter is both more and less radical than that of Nelson.
For while it does not limit the use of induction it does imply that the effect of
induction is context-dependent. It also implies that when the objects of discus-
sion are linguistic entities (and in this paper the position advocated is that "nat-
ural numbers" or better "natural number notations" are linguistic entities) then
that collection of entities may vary as a result of discussion about them. A con-
sequence of this is that the "natural numbers" of today are not the same as the
"natural numbers" of yesterday. Although the possibility of such denotational
shifts remains inconceivable to most mathematicians, it seems to be more com-
patible with the history both of the cultural growth (and of growth in individuals)
of the number concept than is the traditional, Platonic picture of an unchang-
ing, timeless, and notation-independent sequence of numbers.8

NOTES

1. Investigator: "In the Far North, where there is snow, all bears are white. Novaya
Zemlya is in the Far North and there is always snow there. What color are the bears
there?" Kashgar peasant: "You've seen them, you know. I haven't seen them, so how
could I say?" (from Luria [7], p. 112)

2. John Locke, in chapter 16 of An Essay Concerning Human Understanding, empha-
sizes the centrality of notation in dealing with numbers:

For, the several simple modes of numbers being in our minds but so many combinations
of units, which have no variety, nor are capable of any difference but more or less, names
or marks for each distinct combination seem more necessary than in any other sort of
ideas. For, without such names or marks, we can hardly well make use of numbers in reck-
oning, especially where the combination is made up of any great multitude of units. ([6],
p. 272)

3. Archimedes in his article "The Sand Reckoner" must have been the first to make a
similar estimate.

4. Frequently, induction in a case like this is justified by regarding it as a repeated mo-
dus ponens—i.e., if Fis the formula being proved, what we have is a tree:

^(1) F(\) - F(\\)
I I

I
^(11) ^(11) - F(|||)

I I
I

F(2
Λ
65535) F(2

Λ
65535) -> F(2

Λ
65536)

I , I
I

F(2
Λ
65536)

Clearly this "explanation" begs the question.
5. Compare Locke again:

Thus children, either through want of names to mark the several progressions of numbers,
or not yet having the faculty to collect scattered ideas into complex ones, . . . , do not be-
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gin to number very early, nor proceed in it very far or steadily, till a good while after they
are furnished with good store of other ideas: and one may often observe them discourse
and reason pretty well, . . . , before they can tell twenty. ([6], p. 273)

6. Notice that one speaks of the satisfiability of a derivation rather than the satisfiability
of a set of formulas. This is necessary with the semantics being proposed because a
single logical step may introduce new identifications or reference arrows and thus
cause a derivation to become unsatisfiable. As an example, notice that although
(Vx)A(x) and -»(Vy)A(y) are satisfiable when x and y are given different ranges,
an unsatisfiable derivation leading to a contradiction can be written with them as
axioms.

7. An elaboration and exploration of the technical ideas in this paper is contained in [2].
Although the discussion here is framed in terms of the construction of interpretations
for derivations, it might be better done in terms of interpreting one derivation within
another theory. Thus for (D2), this latter theory would be in a language which would
include predicates N(x) ("xis a numeral"), Add(x) ("xis a term built with | and +"),
Mult(x) ("JC is a term built with |, +, and "), and Exp(x) ("Λ: is a term built with
|, + , , and Λ ") . It would also include axioms for induction over terms of these
classes (e.g., {F(\) A (VZ) [F(Z) - > F ( Z | ) ] J -> (Vz) [N(z)-+F(z)]9 as well as axioms
like (^x)[Uί(x) -• W(x)] and (vy) [U(y) -• Ux(y)] that reflect the arrow condi-
tions w -• Uι and uλ -> w. However, it would not include the axiom (Vx) [Exp(x) -•
N(x)] which would be necessary to interpret (D3).

8. It is, however, commonplace in the practice of law. One of the activities of a lawyer
is to see how legal terms can be interpreted in novel ways so as to adapt a statute or
case to her client's needs. If such an interpretation eventually becomes sufficiently
widespread, it finally becomes part of the accepted meaning of the term in question.
A study of parallels and divergences between standards of proof, evidence, etc. in the
two fields would be interesting.

Moreover, the shift in reference which occurs during the course of a derivation,
with the consequent alteration of the possible interpretations of a predicate are (at
least superficially) similar to the process of "concept-formation" which Lakatos ar-
gues occurs historically as a result of the interplay between proofs of a theorem and
attempts to refute or confirm that proof [5].
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