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A Functional Partial Semantics

for Intensional Logic

SERGE LAPIERRE

Abstract In this paper a partial semantics for the higher order modal lan-
guage of Intensional Logic is suggested. Partial semantic values of functional
types are defined as monotone functions on partially ordered sets; it is shown
that this characterization is materially adequate for representing partial val-
ues and that it overcomes the difficulties that arise when we attempt to in-
troduce one-place partial functions in the hierarchy of types. Partial values
of any type are related to classical values of the same type by means of a
relation of approximation. This allows us to compare partial models with
classical models. Classical semantics then appears to be a part of partial se-
mantics to the extent that there exists a bijective mapping from classical
models onto totally defined partial models. This also allows us to define, ac-
cording to the partial semantics, a notion of entailment which is coextensive
with the classical notion.

1 Introduction Even though much work has been done in partial semantics
for propositional and quantified first order languages, little has been said about
partial semantics for higher order languages. The first attempt to introduce par-
tiality in Type Theory of which we are aware goes back to Tichy [11]. There is
also the interesting work of Muskens [9], which suggests a partialized version of
Montague's semantics. Musken's semantics is relational, in the sense that par-
tial semantical objects are defined as partial relations, not as partial functions.
This strategy is in large part justified by the apparent impossibility, discussed in
this paper, of coding partial relations or partial many-place functions by one-
place functions, as SchonfinkePs theorem might suggest. Note that the same
problem has motivated Tichy's own strategy, which consists of considering only
many-place partial functions. For our point, we do not claim that Tichy's and
Musken's strategies are inadequate, nor do we think they are uninteresting. Our
claim is merely that it is possible, using only one-place functions, to construct
a partial semantics for the higher-order modal language of Intensional Logic.

Received March 18, 1991; Revised September 23, 1991



518 SERGE LAPIERRE

Our strategy, which will be explained in detail in Section 3.1, is in fact in-
spired by another interesting attempt to introduce partiality in the semantics of
Intensional Logic, that of Lepage [4] (and also in [5], [6], and [7]). However, in
our opinion, many notions used by Lepage were not precise enough to serve the
foundations for a partial semantics for Intensional Logic (Lepage's purpose was
not to suggest a foundational theory of partiality in Type Theory, but rather to
suggest a formal analysis of knowledge and belief-sentences by using the notion
of incomplete knowledge of semantic values; of course, these two enterprises are
not mutually exclusive). In particular, Lepage's notion of a good representation
of a classical semantic value, or equivalently, of an approximation of a classi-
cal semantic value, was not analytical enough to make precise the idea that a par-
tial value which is total behaves exactly as one and only one classical value.
Consequently, the notion of a partial model which is total was not precise enough
either. In this paper we shall fill these gaps by providing a unifying view of both
partial semantics and classical semantics. In particular, we shall give a precise
account of the idea that classical models are limit cases of partial models. This
may seem trivial at first glance, but in fact it is not, for the class of classical
models is disjoint from the class of partial models.

Let us first present our formal framework: the language of Intensional Logic
and its standard classical semantics.

2 The language of Intensional Logic and its standard classical semantics
The formal system described in this section is very close to the one described by
Gallin in [3], as a version of Montague's Intensional Logic [8].

Let e, t, and s be three distinct objects. The modal hierarchy of types is the
smallest set Γsuch that:

(i) e9tGT;
(ii) if a G Γand β G Γ, then (α, β) G T;

(iii) if a G T, then (s, a) G T

When no confusion arises, (a, β) and (s9a) will be abbreviated by aβ and sa
respectively. We shall use the Greek letters a, β, and σ as variables of types.

The language of Intensional Logic (IL) has the following resources:

(1) The improper expressions: [, ], Ξ=, Λ, V, λ.
(2) For every a G T, an almost denumerable set Conα of constants of types

a and a denumerable set Varα of variables of type α.
(3) For every a G Γ, a set of terms of type a, recursively defined as the small-

est set Trmα such that:
(i) Cona U Varα c Trmα;

(ii) if A G Ίτmaβ and B G Trmα, then [AB] G Trm^;
(iii) if A G Trmα, then M G TrmJα;
(iv) if A G Trm5α, then M G Trmα;
(v) if x G Varα and A G Trm^, then λxA G Trmα/3;

(vi) if A9B G Trmα, then [A = B] E Trm,.

Henceforth, for any type α, we shall use the symbols Aa, Ba, Cα, etc., as sche-
mata of terms of type a. We shall use more particularly the symbols xa, ya,
zα, etc., as schemata of variables of type a and the symbols cα, rfα, ea, etc., as
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schemata of constants of type α. When no confusion arises, subscripts will be
dropped. Here are some abbreviations:

T := [λxtx = \xtx]
F := [λxtx s \xtT]
-*At := [A = F]
Aί(tt) :=\χt\yt[\ztitt)[[zx]y] = λz,U0[[zT]T]]
[AtΛBt] :=[[Λt{tί)A]B]1

[AtvBt] := -I[-L4Λ -ifi]
[Λ,-^] :=[Mvί]
Vx α ^ r : = [λx^4 = λxT]

lxaAt := —IVΛΓ—«̂ 4

[AamBa] : = [ M = Afi]

DΛ, := [Λ = T]
OΛ, := -ιD-i^4.

All these abbreviations are from [3], except "Λ / ( / / )

W , which is borrowed from
Andrews [1]. The motivation for this choice will be explained in Remark 25, Sec-
tion 3.4.

Let E and / be two nonempty and disjoint sets. The standard system of clas-
sical objects based on E and I is the indexed family [Ma }ocfΞτ of sets, such that:

(i) Me = E
(ii) M,= {0,l}

(iii) Maβ = Mf«
(iv) Msa=MI

a.

A standard classical model based on E and I is an ordered pair M = {{Ma )αGr>
ra>, where [Ma }aGT is the standard system of classical objects based on E and /,
and m is a function from all constants such that for every constant ca, m(ca) E
MSOί. We denote by As(M) the set of assignments over M, that is, the set of all
functions a from all variables such that for every variable xa9 a(xα) G Ma. For
every a E As(M), every variable xa and every z E Ma9 a(xα/z) is that assign-
ment in As(M) such that a(xa/z){xa) — z and for every variable xβ Φ xa,
%(xa/z)(Xβ) = a(x^). We recursively define the classical value [v4 α J^ in Mof
a term Aa according to an assignment a E As(M) and an / E / as follows (in
what follows we shall sometimes omit the superscript "M"):

(i) I c α ] | β f / = (m(ca))(i);
(ϋ) lXaH*j = *(xa);

(iii) E ^ 5 α I a , / = E^Ia,/(E^lla,/);
(iv) |[Mα]IafI = the function/ from / such that for every j E /, /(y) =

lAalΛtJ;
(V) I M ^ I l a , ^ EΛαla,/(0;

(vi) lλxaAβlΛji = the function/ from Ma such that for every z E Mα,
/(z) = E^Ja',/, where a' = a(xα/z);

(vii) I[i4α = 5α]]|m f l = 1 if IAJ a ,/ = IΛα]|. f l , and 0 otherwise.

It is easy to check by induction that for every a E T and every term Aa,
Ϊ A J . , , e M α .
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A formula of IL is a term of type t. Let At be a formula, M a standard clas-
sical model, a G As(M), and let / G /. At is satisfied in M according to a and i,
formally: l=M,a,/̂ 4/> iff IW/Iϋf/ = 1. Λt is not satisfied in M according to a and
i, formally: Î M,a,/̂ /» iff M/Jίf/ = 0. If Γ is a set of formulas, then Γ is satis-
fied in M according to a and i, formally: l=M,a,/Γ, iff HM,a,/^ for every Λt G Γ.
A formulaΛ t is true in Miff l=M,a,/Λ for every a G As(M) and every is I. A
set Γ of formulas classically entails a formula At, formally: Γ ¥At, iff for ev-
ery standard classical model M, every a G As(M) and every / G /, i=M,a,/Γ only
if hv/.a,/^/- Finally, ^4, is classically valid, formally: K4,, iff 0 VAU that is to
say, iff At is true in every standard classical model.

3 The standard partial semantics for the language of IL

3.1 Introduction Our only intuition for the construction of a partial seman-
tics for IL is the following: partial values must be approximations of classical val-
ues. How can we formally define partial values in order to meet this intuitive
requirement? Since in the classical semantics of IL the value of a given functional
type (type aβ or sa) is a total function, it seems appropriate to define the par-
tial value of a given functional type as a partial function approximating a total
function of the same type. This raises some questions, however.

What is a partial function? Under what conditions is a partial function an
approximation of a given total function? First, it is usual to define formally, and
in its full generality, the notion of a function as follows. Let X and Y be two
nonempty sets. A function from X (starting set) into Y (target set) is a relation
fCXx 7 such that for (x,y), (x',y') ef,x = x' only if y=y'. Let/ be a func-
tion from X into Y. The domain of/ is the set D(f) Q X such that for every
x G X, x G D(f) iff there exists y G Ysuch that (x, y) G/. Henceforth, we shall
say that / is total if D(f)= X, nontotal ifD(f)cX, and partial if D (/) c X,
If x G X, f is partial and x £ D(f), then we shall write "f(x) is undefined" (or
"/ is not defined for x"). Let/ and/' be two partial functions from Xinto Y.
We shall say that / is an approximation off (or that / ' is at least as defined
asf), and we shall write: " / < / ' " , iff D(f) c £>(/') and for every xGD(f),
f(x) = f'(χ). Let P(YX) be the set of all partial functions from X into Y.
Clearly, the relation of approximation defined on P(YX) is a partial order. In
fact, (P(Y^),<) is a meet-semilattice, whose smallest element is the least de-
fined function (that is to say, the function/ such that D(f) = 0 ) . For instance,
if we represent each/G P({0,l}{0'1}) by the (ordered) image of {0,1} under/:

/=</(0),/(l)>

and if we use the asterisk * to indicate that/ is undefined for a particular argu-
ment, then we can represent the whole semilattice P([0,1 }*0>1*) as shown in Fig-
ure 1 (underlined numerals are names).

Are these concepts rich enough to be of use in developing an adequate the-
ory of partial functions in Type Theory? More specifically, are they sufficient
to characterize the partial values of any given functional type as partial functions
which approximate classical values of the same type? Unfortunately not, for we
are faced with three major difficulties.



PARTIAL SEMANTICS 521

1 2 3 4
<0~0> <0,l> <l,0> <1,1>

5 6 7 8
<0,*> <*,0> <*,1> <1,*>

9

<v>
Figure 1. The approximating semilattice P(i0,l}{0>1]).

Difficulty 1 It would be certainly possible to use these notions to define the
partial values of types (t,t), (e,e), (t,e), (e,t), (s,t), and (s, e), and then to
compare, in terms of approximation, the partial values of each of these types
with the classical values of the same type. But in the case of higher-order types,
things would become much more complicated, since partial functions of these
types can take partial functions as arguments. For instance, the domain of a par-
tial function of type {(t,t)(t9t))9 if nonempty, may contain total or nontotal
functions in P({0,1 }(0>1*) and the values of such functions can also be total or
nontotal functions in P({0, l}*0>1}). The problem we encounter is thus that we
would have to compare, in terms of approximation, partial functions of a given
higher-order type with the classical functions of the same type, but the starting
and target sets of the partial functions would be different from the starting and
target sets of the classical functions. The conditions of inclusion of domains and
of identity of values would thus not be directly applicable.

Difficulty 2 A second difficulty concerns the reiteration of functional appli-
cations and raises a related question about the status of the undefined in Type
Theory. By way of example, l e t / be a classical function of type (t,t), that is,
let fe {0,l} { ί U } . So, for every x e {0,1}, /(x) is of type /, and therefore,
f(f(x)) is also of type t. We believe that such reiteration of functional applica-
tions should be possible in the universe of partial functions. But consider a par-
tial function g of type (t, t), that is, a function g e P({0,1 }{0'1}), such that g(l)
is undefined. Now try to apply g to g(l). Strictly speaking, this application makes
no sense, because g(l) is not an argument at all. But on the other hand, if g is
the value of an expression Att of type (t,t) and 1 is the value of an expression
Bt of type t, then according to the principle of compositionality, g(g(l)) must
be the value of the expression [A [AB]] of type t. But again, one cannot see what
g(g(\)) could be.

Difficulty 3 A third problem was pointed out by Pavel Tichy [11]. Schόn-
finkePs famous theorem:

XYxZ~(Xγ)z
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which is fundamental in lambda calculus, appears to be invalid in the universe
of partial functions. Indeed, Tichy offered the following counterexample. Let
the function/ from {0,1} x {0,1} into {0,1} be such that:

[y ifx = 0
( 1 ) /<*.*> H Ar A +u

^ undefined otherwise.
There are two distinct partial functions from {0,1} which correspond to/ : one
assigns the identity function to 0 and is undefined for 1 the other assigns the
identity function to 0 and to 1 the function which is undefined both for 0 and 1.
The idea here is that if one of these two functions corresponds to/, the other one
must also correspond t o / if it corresponds to anything.

We believe that these difficulties can be simultaneously removed by apply-
ing the following three measures: (i) give the status of object to the undefined
at the level of types e and t, and for each functional type, identify the undefined
with the least defined function; (ii) on each domain of partial objects, define a
partial order relation, interpreted as a relation of approximation between these
objects; and (iii) restrict the function spaces to functions which are monotone
with respect to the relation of approximation. Let us see how the application of
these measures can solve our problems.

In what follows we shall adopt the following notational convention. If A" and
Fare two nonempty sets (not necessarily distinct) and O is an operation such that
when it is applied to an element x E X, it gives exactly one element O(x) E Y9

then by λx E X.O(x) we mean the function f:X-+ Ysuch that/(*) = O(x)
for every xEX. When there is no chance of confusion, we shall simply write
"λx.O(x)".

Consider first Tichy's difficulty. Tichy's counterexample reveals the fact that
for any nonempty and finite sets X, Y, and Z:

P(XYxZ) ΦP(P(XY)Z).

Indeed, writing \X\ for the cardinality of a set X, it is the case that for any non-
empty and finite sets X, Y, and Z:

| P ( * y χ Z ) | = (\x\ + i ) " r x z ι = « | ; r | + i ) i r i ) i z ι < (((\x\ + i ) i y i ) + i)i z ι

= \P(P(XY)Z)\.

However, since (\X\ + l ) l r x Z l = ((|ΛΊ + l ) l y l ) l z l = \P(XY)\W, we have:

P(XYxZ) « P(XY)Z.

This means that we can move toward solving the problem if we identify, in a
given class of partial functions, the undefined with the least defined function in
that class. Accordingly, to the function/ defined by (1) corresponds an unique
function, which is the function/' from {0,1} into P({0,l} ί (U)) such that:

Γ λy.y if x = 0
(2) f'(x)=\

\^λy. undefined otherwise.
Of course, this raises another problem, which is reminiscent of our second dif-
ficulty, which is that the application of/' so defined to (/'(!))(!) is meaningless.



PARTIAL SEMANTICS 523

The application of/' to (/'(1))(1) would make a sense, however, if the no-
tion of undefined were admitted among the possible arguments of/'. Intuitively,
the only constraint necessary would be that the result of applying/' to the un-
defined should itself be undefined.

Let us represent the undefined of type t by φ, and define the set of partial
objects of type t as the set PMt := {0,1, φ]. As usual, 0 and 1 can be considered
as the truth values false and true, respectively; therefore φ E PMt can be con-
sidered as a truth value which is not defined. It seems natural to define on PMt

a relation of approximation, say " < " , in this way: for x,y E PMt

x < y iff x = φ or x — y.

Under this relation, PMt is a (flat) meet-semilattice which can be pictured as
follows:

\ /
φ

(Note that PMt is reminiscent of Dana Scott's BOOL, minus the top.) We can
define the set PMe of partial objects of type e in a similar manner. Given a non-
empty set E of individuals, let PMe :=EU [φ] (we can of course distinguish be-
tween φ E PMe and φ E PMt by using e and t as subscripts of φ). Then a
relation of approximation can be defined on PMe in the same way as for PMt.

It is possible to formally identify each/E PMfMt with the function p(/) E
P({0,1 }{(U)), where p:PMfMt -*P({0,1 }{0Λ]) is the surjective function defined
as follows:

[fix) if fix) Φ φ
p(/) = χ * E { o , i } . r v ; JK φ .

(̂  undefined otherwise.

From this point of view, a function/E PMfMt is total if fix) Φ φ for every
x Φ φ, and nontotal if fix) - φ for at least one x Φ φ. So it seems that only
elements in {0,1} are relevant arguments for the functions in PMfMt. Conse-
quently, we may think that only strict functions in PMfMt represent suitably
partial functions from {0,1} into {0,1}, where by a strict function in PMfMt we
mean any function/ in this set such that/(<p) = φ. But we must be careful, for
it is possible that a total function might be defined for an undefined argument
of the right type.

For instance, consider the function/= λx. 0 E {0,1}*0'1* and let y = 1 or
y — 0. The function/ is thus of type it,t) and the object y, being of type t, is
a possible argument of/ But this y is not defined precisely: it is either 0 or 1.
However, we can infer the value of/ for it: in any case, /(y) = 0. From this
point of view, the function/' = λx.O E PMfMt suitably represents the function
/, since f\φ) = 0. On the other hand, given g E {0,l} ί (U] such that g(0) = 1
and g(l) = 0, it is impossible to infer the value of g for y; we must therefore let
giy) go undefined. So the strict function g' E PMfMt such that g'(l) = 0 and
g'(0) = 1 suitably represents g.

To conclude the argument, we must remove from the set PMfMt all non-
total functions in PMfMt which are not strict, and also all nonstrict and total
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functions/G PMfMt such that/(x) Φf(φ) for at least one xΦφ. All the re-
mainders suitably represent partial functions of type (t, t).

The set PMtt of all partial functions of type (t,t) can be precisely defined
by means of a monotonicity constraint. Let X( = (X,<)) and Y(= (Y,<)) be two
partially ordered sets; we say that a function/G Yx is <-monotone (hence-
forth, monotone) iff for any x9x' G X, x < x' only if f(x) < / ( * ' ) . Moreover,
define:

(X^Y) :={fe Yx\f is monotone}.

The set (X-+ Y) is ordered pointwise: for any/,g G (X^> Y),f< giff for ev-
ery XGX, f(x) < g(x). Now, define:

PMίt:= (PMt^PMt).

Again (PMtt,<) is a meet-semilattice. If we represent each/G PM^ by the im-
age of PMt under /:

/(0) /(I)
/ =

then we may represent PMtt by Figure 2.
If we compare this figure with Figure 1, we immediately see that each non-

total function n in P({0,1 }[0'ι]) can be identified with the nontotal function nr

in PMtt. Moreover, the total functions 2 and 3 in P({0,1 }{0)1}) can naturally be
identified with the total functions 2' and 3' in PMtu respectively. Concerning
the total and constant functions 1 and 4 in P({0,l}ίO'1}), the above consider-
ations lead us to identify them with the functions 1" and 4" in PMtt, respec-
tively.

1" 4"

0 " 0 1 1

0 1

1' 2' I' 4'
0 0 0 1 1 0 1 1

φ φ φ φ

5' 6' T 8'
0 φ φ 0 φ 1 l < p

<̂ > <^ <P ^

9 '

φ

Figure 2. The approximating semilattice PMtt.
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Consider again the function/' defined by (2). Looking at Figure 1, we see
that the functions/'(0) and/'(I) are, respectively, the functions 2 and 9 in
P({0, l}*0'1*). Looking at Figure 2, we see that these functions correspond re-
spectively to the functions 2' and ?' in PMtt. So the function/' can be identi-
fied with the function g': PMt -• PMtt such that:

ί λy.γ if x = 0

λy. φ otherwise

and we see that unlike the application of/' to (/'(1))(1), the application of gr

to (g'(l))(l) makes sense. Indeed, g'((g'(l))U)) =g'(λy φ(D) = g'(φ) = \y.φ.
Note that according to our convention, the function λy.φ stands for the unde-
fined of type (t,t); hence from this point of view g'((g'( 1))(1)) is undefined. This
identification is no doubt artificial, but it is nevertheless adequate for our pur-
pose. Moreover, it is easy to verify that g' is monotone relative to the partial or-
der on PMt, so it belongs to the set:

PMtm := (PMt^(PMt-+PMt)).

Now if we define a partial order on the product PMt X PMt in the standard
way, that is to say as follows: for (x,y), (x\yf) E PMt x PMti (x,y) < (x\yf)
iff x < xf and y < y\ then we can easily verify that (PMt x PMt -> PMt) is iso-
morphic to PMt(<tt). Hence not only monotonicity allows us to define suitably
partial functions; the sets of functions restricted to monotone functions also sat-
isfy SchόnfinkePs theorem.

Consider again Figure 2. According to the terminology we shall adopt in the
following sections, the functions Γ, 1", 2', 3', 4' and 4" in PMtt are {partial) total
objects. However, only functions 1"2', 3' and 4" are maximal approximations
of classical objects in {0,l}ί0>lί. By determining the maximal approximation of
each classical object, we can compare, in terms of approximation, partial objects
with classical objects and vice versa. For instance, function 1" in PMtt maxi-
mally approximates function λx.O E {0, l}*0>1}. Hence every function/E PMtt

such tha t/< Γ can be seen as an approximation of λx.O E {0, l} ί0)1*.
This approach can be applied to Modal Type Theory.

3.2 The domains of partial objects

Notational convention 1 In what follows, the symbols x, y, z,..., x\ y\ z',...
are used as metavariables of semantical objects. The symbols/ g, Λ,...,/', g',
h\ . . . are more specifically used as metavariables of semantical objects of func-
tional types.

Definition 2 Let Γbe the modal hierarchy of types and let E> I be two non-
empty and disjoint sets. The standard system of partial objects based on E and
I is the indexed family {PMa}aGT of partially ordered sets, such that:

(i) PMe = EU {φ}9 where for x, y E PMe :x<y\iϊx = φoτx = y
(ii) PMt = {0,1, φ], where for x9y G PMt: x < y iff x — φ or x = y

(iii) PMaβ = (PMa -• PMβ), where for/g E PMaβ:

/ < g iff for every x E PMa, f(x) < g(x)
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(iv) PMSOί = PMi, where for f9ge PMsa:

/ < g iff for every / G /,/(/) < g(i).

Remark 3 It is needless to define a partial order relation on the set /, since
there is no function having /as its target set. Every domain PMa stands for the
set of Lepage's good representations of classical objects in Ma (see [4]), provided
that the systems {Ma]aeT and {PMa]aGT are both based on the same sets E
and/.

The next proposition is standard and can be easily proven.

Proposition 4 For every σ E Γ, PMσ is a meet-semiίattice, where for x9yG
PMσ9 the infimum ofx andy, denoted byxAy, is inductively given as follows:

(i) for σ = e or tiXΛy = χifχ = y9 otherwise x Ay = φ;
(ii) for σ = aβ : / Λ g = λx G PMa.f(x) Ag(x);

(iii) for σ = sa :/Λ g = λi G /./(/) Λ g(i).

Moreover, if the supremum ofx and y, denoted by xvy, exists, then:
(i) for σ = eort:xvy=y if x = φ,

= xify = φorx = y,
(ii) for σ = aβ :/v g = λx G PMa.f(x) v g(x);

(iii) /o/ σ = s α :/v g = λi G /./(/) v g(ι).

The notation defined below is very important. We borrow it from [5].

Definition 5 For every σ G Γ, we inductively define the strong difference be-
tween objects in PMσ (formally x Φ* y) as follows:

(i) for σ = e or t:x =t* y iff x Φ φ, y Φ φ and xΦy\
(ii) for σ = aβ:fφ* g iff there exists x G PMa such that/(x) Φ* g(x);

(iii) for σ = sa :f Φ* g iff there exists i G / such that /(/) Φ* g(i).

Intuitively, strong difference means incompatibility: two distinct partial objects
are not necessarily incompatible. Hence, the next proposition says that incom-
patibility is itself monotone.

Proposition 6 For every σ G T and for x9 y, x\ yr G PMσ: if x Φ* y, x < x'
andy < y\ then x' Φ* y'.

Proof: We proceed by induction on the basis of types e and t.
(/) σ = e or t. If x Φ* y, then by definition x Φ φ, y Φ φ and x Φ y. So by

definition again, if x < x' and y < yf, then x = x' and y = j ' . Therefore x' Φ* y'.
(ii) σ = α/S. If/ ^* g, then by definition, there exists x G PMα such that

f(x) Φ* g(x)9 so that if / < / ' and g < g', then/(x) </ r(x) and g(x) < g'(x),
which implies f'(x) Φ* g'(x) by the induction hypothesis. Therefore/' Φ* g'.

(iii) σ = sα. As in (ii).

According to the next proposition, compatible objects have a join.

Proposition 7 For every σET, let Cσ be the set of all nonempty subsets of
PMσ which contain only objects which are notpairwise strongly different (for-
mally we write -t(x Φ* y) to express that x andy are not strongly different):
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Cσ:= {XQPMσ\XΦ 0 &vxfyePMσ:x,yeX=>-i(χΦ*y)};

then for every X G Cσ9 MX exists in PMσ.

Proof: We proceed by induction on the basis of type e and t.
(i) σ = e or t. This is straightforward.
(ii) σ = aβ. Let Fe Cσ; so for every x G PMa9 [f(x) \fe F) E Cβ. Indeed,

suppose the contrary. Then there exists x G PMa and there exists/, geF such
that/(x) * * g(x). But this implies t h a t / * * g, which contradicts that fgeF.

Since for every x G PMα, {/(JC) | /G F) G Cp, then by the induction hypoth-
esis, for every x G PMα, V {f(x) \f G Fj exists in PMβ. Therefore, the
function:

λ * G P M α . V { / W | / G F }

is well defined, exists in PMσ, and is exactly VF.
(iii) σ = sa. As in (ii).
Now we can begin comparing partial objects with classical objects.

3.3 Comparing partial and classical objects Henceforth, given two non-
empty sets E and /, we shall consider [Ma}aGT to be the standard system of
classical objects based on E and /and [PMa}aeT to be the standard system of
partial objects based on the same E and /. No confusion should arise.

At first glance, comparison in terms of approximation of partials and clas-
sical objects is easily done. Consider the following definition, suggested by Le-
page in [6], First, inductively define, for every σ G T, a relation <° Q PMσ x
Ma as follows (x <° y means "x is an approximation of y"):

(i) for σ = e or t:x <° y iff x = φ or x = y;
(ii) for σ = aβ:/ <° g iff for every x G PMa and every z G Ma such that

χ < ° z , / W < ° s U ) ;
(iii) for σ = sa:f<° g iff for every / G /, /(/) <° g(i).

Surely this definition is intuitively suitable. Moreover, every classical object
z G Mσ is naturally identifiable with the partial object x G PMσ which maximally
approximates z,x being simply V [xf G PMσ\x' <° z). Unfortunately, it ap-
pears far from obvious how to demonstrate the existence of such an object, and
at any rate the proof, were it possible, would require far too many lemmas. But
we think that there is a simpler, more general, and more elegant way to obtain
the same result.

To begin with, we shall inductively define, for every σ G T, the property of
being a total object in PMσ. Intuitively, to be a total object in PMσ is to be an
approximation of exactly one classical object in Mσ.

Definition 8 We inductively define, for every σ G T, the set PTσ(c PMσ) of
total objects in PMσ as follows:

(i) for σ = eox t:PTσ := (ΛΓG PMσ\x Φ φ)\
(ii) for σ = aβ:PTσ:= {fePMσ\VxePTa:f(x)EPTβ};

(iii) for σ = sa :PTσ := {fe PMσ\\/i G /:/(/) GPTa}.

Remark 9 Obviously, PTe = Me = E and PTt = Mt = {0,1}. However, for
every functional type aβ, it is not the case that Maβ « PTaβ. For instance, Mtt
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contains exactly four objects, whereas PTtt contains six objects —if one takes a
look at Figure 2 of Section 3.1, one sees that PTtt = {l',2',3',4',l",4"). But an
equivalence relation can be defined on a set of total objects. For instance, the
functions Γ and 1" in PTίti restricted to PTt, are identical; so we may consider
that both are very good approximations of the function λx.O in Mtt. Similarly,
the functions 4' and 4" in PTtt may both be thought of as very good approxima-
tions of the function λxΛ in Mtt. From this point of view, we can consider Γ
and 1" (and 4' and 4") as equivalent total objects. The next definition generalizes
this view to all types.

Definition 10 For every σ G T9 we define inductively an equivalence relation
between objects in PTσ (formally, xoy) as follows:

(i) for σ = e or t and x,y G PTσ :xoy iff x = y;
(ii) for σ = aβ and/,g G PTσ :/<>g iff for every x G PTa,f(x) og(x);

(iii) for σ = SOL and/,g G PTσ:fog iff for every / G /,/(/)<>g(/).

The next proposition says that a partial object z, which is at least as defined
as a total object x, is total and equivalent to that x.

Proposition 11 For every σ G Γ, et ery x G PΓσ, ύwtf ei βry z G PMσ: //x < z,
then z G PΓσ and xoz

Proof: Left to the reader (proceed by induction on the basis of types e and t).

The next proposition says that nonequivalent total objects are strongly dif-
ferent (we write -ι(xoj>) to express that x,y are nonequivalent total objects).

Proposition 12 For every σET and for x,yG PTσ: if -ι (xoy), then xΦ* y.

Proof: Left to the reader (proceed by induction on the basis of types e and t).

Definition 13 For every σ G Tand every x G PTσ, define <x> := [z G PΓ σ |
z o x } and Πσ := {<x> |x G PTσ). Informally, <JC> is the set of total objects
equivalent to x and Πσ is the partition of PTσ generated by <>.

The next proposition is very important, for it provides the key to compar-
ing partial and classical objects (see Remark 19).

Proposition 14 Let x G PMσ. If x G PTσ, then V (x) exists and belongs to
{x) and for every z G PTσ such that x Φ* z, ->(Jtoz). If x £ PTσ, then there
exists y G PTσ such that x<y.

Proof: We proceed by induction on the basis of types e and t.
(i) σ = e or t. This is straightforward.
(ii) σ = aβ. Assume that this property holds for types a and β. Let/G PTσ.

Suppose that V </> does not exist. Then by Proposition 7, </> φ Cσ. So there
exists g, h G </> such that g Φ* h and thus, by definition, there exists y G PMa

such that g(y) Φ* h(y). But g, h G PTσ; thus, if y G PTay then by the induc-
tion hypothesis, -ι(g(y)oh(y)), and thus by definition, ->(goλ), which con-
tradicts that g, A G </>. On the other hand, if y φ. PTay then by the induction
hypothesis, there exists z G PTa such that y < z, and hence, since g and A are
monotone, such that g(y) < g(z) and Λ(^) < Λ(z). But g(j>) =£* A(j); so
g(z) Φ* h(z), by Proposition 6. So by the induction hypothesis, ~>(g(z) <>
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h (z)), and thus π(/<>g) by definition, which contradicts again that g, h G </>.
Therefore, V </> does exist. A similar argument shows that for every g G PTσ

such that fΦ* g, ->(/<>#). Moreover, since/< V</>, it is the case t h a t / o
V</>, by Proposition 11. So by definition, V</> G </>.

Secondly, suppose t h a t / ^ PTσ. We shall show that there exists g G PTσ

such that/< g. Indeed, if f£ PΓσ, then by definition, there exists x G PΓα such
that/(x) §i P7^. But by the induction hypothesis, there exists y G PTβ such that
/(Λ:) < j>, and since V <x> exists and belongs to <Λ:>, this assures that for every
xGPTa, the set:

SΆy<x>) := {y ePTβ\f{V<χ» <y],

is not empty. Define

uf ={sΆv<x>)\χePTa}9

and let χ be any function from Uf into P7^ such that for every XG Uf, χ (X) G X
Now consider g: PMα -> PM^ such that:

Γ/(JC) i f x £ P 7 ;

« W = | / ( V < x > ) i f x G P Γ α a n d / ( V α » G P 7 >

[χ(S/(Vα») otherwise.

One easily verifies that if g is monotone, then g G PTσ and/< g. So let us check
whether g is monotone.

Let x, x' G PMa such that x < x'. A priori, there are four possible cases for
xyx'\

(l)x,x'<£PTa;
(2) x£PTa and x'ePTa;
(3) xEPTα and x' £ PTa;
(4) JC,JC' GPΓ α .

Case (3) is excluded by Proposition 11. Let us inspect the other cases.
In Case (1), g(x) =f(χ) ^f(x') = g(x'). Hence g(x) < g(xf).
In Case (2), g(x) =f(x) ^f(χ') <f(\/<x'))=g(x'), iff(V <x')) ePTβ.

If not, g(x) =f(x) <f(x') <χ(S / ( V<χ'») = g(x')> So in both cases, g{x) <
g(x')

In Case (4), we cannot have/(V<*>) <£ PTβ and/(V<x/>) G P7^, or vice
versa, because <x> = {x') by Proposition 11. So \l(x) = \Z(x'}. Thus, if
f(V<x>)ePTβ, theng(x) =/(V<JC>) =/(V<^>) =g(x') On the other hand,
if/(V <z>) ί P7^, then g(x) = χ(S/(V<x») = x(S/(V<x'») = *(* ')- So in both
cases, g(x) <g(x r ) .

So, g is monotone.
(iii) σ = sα. As in (ii), but simpler.

The next proposition is analogous to Leibniz's law. Its proof requires the
monotonicity of functions of type αβ.

Proposition 15 For every αβ G T, every /G PTαβ and for x,y£ PTa: ifxoy,
then f(x) of(y).
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Proof: If xoy9 then —I(ΛΓ Φ* y) by Proposition 14. Hence by Proposition 7,
there exists z E PMU such that z = xvy and so such that x<z and.y < z. There-
fore, by the monotonicity of/,/(*) </(z) and/(y) </(z). But/(*),/( j ) E
PTβ\ so by Proposition 11, f(z) E PTβ,f(x)of(z) and/(j>)<>/U). There-
fore / ( J C ) O / ( J ) .

Proposition 16 (/) LetfG PTaβ9 x E PΓα andy E PΓ^ swcΛ that (V </>)
(V<*>) E <^>; then (V</>)(VOt>) = V<>>>. (ii) Let f <Ξ PTSOί9 island

y E PΓα 5t/cΛ that (V</» (/) E <y>; then (V</» (/) = V<>>>.

Proof: (i) By Proposition 14, V</> E </>, so that:

(*) For every g E </>, V </> < g only if V </> = g.

Suppose then that (V </>) (V <x>) Φ V <y). Since (V </>) (V <*>) E <^>, this
means that there exists z E (y) such that V </> (V <Λ:>) = z Φ V < ̂ >. Now con-
sider the function g: PMa -• PMJ3 such that for every z' E PMa:

_ΓV<J> ifz' = V<x>

^ Z ~t(V</>)(z /) otherwise.

One can easily verify that if g exists, then g E PΓαj8, V </> < g and g Φ V </>.
But by Proposition 11, this implies that g E </>, contradicting (*) above. So we
conclude that (V</>)(V<*>) = V<j>>.

(ii) As in (i), but simpler.

We would like to associate with every classical object x E Mσ the equivalence
class XE Πσ of objects in PTσ which approximates x. Inversely, we would like
to associate with each equivalence class X EUσ the classical object x E Mσ

which is approximated by the objects in X. This is the purpose of the next def-
inition.

Definition 17 We define inductively two functions:

Φ: UM,-* UΠσ

Θ I J Π ^ U ^
σGT σGT

as follows:

(i) for σ = e or t: Φ(x) = {x} and θ({x}) = x;
(ii) for σ = aβ:

Φ(/) = {//EPΓσ |vjcEMα:VjEΦ(x)://(^)EΦ(/(x))};

Θ(F) = λx E Mα.θ({z E P7>I Vg E F: v^ E Φ(x) zogWj) ;

(iii) for σ = sa:

Φ(/) = {//ePΓff|v/G/://(ι)GΦ(/(ι))};

Θ(F) = λ/ E /.θ({z E PΓα I Vg E F : z o g ( / ) j ) .

Proposition 18 Φ is bijectiυe and Φ" 1 = θ.
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Proof: It is sufficient to show that θ(Φ(x)) = x and Φ(Θ(X)) = X. One pro-
ceeds by induction on the basis of types e and t.

(i) σ = e or t. This is straightforward.
(ii) σ = aβ. Suppose that this property holds for types a and β. Let/E Mσ

a n d F = Φ ( / ) . So Θ(Φ(/)) = Θ(F) =

(1) λx E Ma.θ({z E PTβ | Vg E F: vy E Φ(x) :zog(y)}).

By definition, g(y) E Φ(f(x)) for every g E F, every x E Ma and every j> E
Φ(x). Therefore, (1) is equal to:

λx E Ma.θ({z EPTβ\z<Ξ Φ(/(x))})

and this is of course equal to:

(2) λxEMα.θ(Φ(/(x))).

Therefore (2) is equal to λx E Ma.f(x), that is/.

On the other hand, let FG Πσ and/= Θ(F). So Φ(Θ(F)) = Φ(/) =

(Γ) [ΓePTσ\vxeAfa:vyeΦ(x):f'(y)eΦ(f(x))}.

But by definition, for every x E Mα:

f(x) = θ({z E P7>I Vg E F : V7 E Φ(x) : z o g ( Λ ) ) .

Therefore (1') is the set:

{/ 'ePΓ f f | vxeΛf α :VyeΦ(x):

/ ' ( j ) G(zG P7^ I vg E F: Vy E Φ(x) z o g W ) ) ,

which is equal to the set:

Ff = {f ePTσ\vxeMa:VyeΦ(x):VgeF:VzeΦ(x):f'(y)og(z))

Now, F ̂  F'. Indeed, suppose there exists/E F such t h a t / ^ F'. Therefore:

(2') 3x E Mα : 3y E Φ(JC) : 3g (ΞFilzE Φ(x): -i (/(^) <>*(*)).

But for every x E Mα and for ^ z G Φ ( x ) j , z E PTa a n d j o z . Hence (2') im-
plies:

(30 3g E F: 3y,z E PΓα : j o z & -i(/(j>) og(z)).

But since / G f , /(X) <> g(x) for every g G F and every x E PΓα. This and
Proposition 15 imply that for any y,zG PTa such that yoz, f(y)of(z)<>
g(z), which implies thsdf(y)<>g(z), and this clearly contradicts (30-

On the other hand, F' c F. Indeed, suppose there is/' E F' such that/' ̂  F.
This means that ->(/' <>g) for every g E: F, and so:

(40 3zGPΓα:-i(/'(z) <>*(*)).

But s ince/ 'EF':

(50 Vx<ΞMa:Vye Φ(x):/'(j)<>«(^).

So (4'), (5') and Proposition 14 imply:

(6') 3zEPΓα:VxEMα:V)>EΦ(x): -<(z<>y).
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But PTa = {y E Φ(x) \x E Ma}. Therefore (6') is equivalent to:

3z E PΓ α : vy G PΓ α : - i ( z o ^ ) ,

and this implies that there exists z E PΓα such that -»(z<>z), which is absurd,
(iii) σ = sa. Assuming that this property holds for type a, the proof is as in

(ii), but simpler.

Remark 19 Now we know that for every σ E T, Mσ « Πσ. Moreover, Propo-
sition 14 assures that for every classical object x E Mσ, the object VΦ(x) E PTσ

is the unique partial total object which maximally approximates x. Therefore we
can identify each classical object x E Mσ with its maximal approximation
VΦ(ΛΓ), and then consider any partial object y E PMσ such that y < VΦ(AΓ), as
an approximation of x.

Notational convention 20 For every σ E Γ and every x E Mσ, we denote
VΦ(#) (the maximal approximation of x) by "ma(x)".

Proposition 21 (/) Let f E^ Maβ and x E Mα; then (ma(/))(ma(jc)) =
ma(/(x)). (ϋ) LetfG Msa; then for every i E /, (ma(/))(ι) = ma(/(/)).

Proo/: (i) By Definition 17(ii) and Proposition 14, (ma(/))(ma(x)) E Φ(/(Λ:)).

Therefore by Proposition 16(i), (ma(/))(ma(x)) = ma(/(jc)). (ii) By definition
17(iii) and Proposition 14, (ma(/))(ι) E Φ(/(/)). Therefore, by Proposition
16(ii),(ma(/))(/)=ma(/(/)).

Remark 22 The partial functions of type (t91) or (t,(t, t)) of our system
which correspond to the truth functions of Kleene's strong three-valued logic
(KSL) are exactly the maximal approximations of the classical truth functions.
Indeed, to the function of negation according to KSL corresponds the function
3' in PMtt (see Figure 2, Section 3.1) and this function is obviously the maximal
approximation of the classical truth function of negation. Moreover, to each bi-
nary truth function of KSL corresponds a function/ in PMt(tt) which can be
represented by the image of PMt under/, as follows:

Conjunction Disjunction

0 0 0 1 0 1 1 1

0 φ φ 1

0 φ φ 1

φ φ

Conditional Biconditional

1 1 0 1 1 0 0 1

1 φ φ φ

φ 1 φ φ

φ φ
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It is thus easy to check that each of these functions belongs to PTt(tt)9 is not
dominated by another function, and so is the maximal approximation of its clas-
sical analogue.

This ends the description of the domains of partial objects. We can now de-
fine the notion of a standard partial model for the language of IL.

3.4. Definition of the notion of a standard partial model Let E and / be
two nonempty and disjoint sets. A standard partial model based on E and I is
an ordered pair PM = ({PMa}aGT,pm), where {PMa]aST is the standard sys-
tem of partial objects based on E and /, andpm is a function from all constants
such that for every constant ca9pm(ca) E PMSOί. We denote by As (PM) the set
of assignments over PM, that is the set of all functions pa from all variables such
that for every variable xa, pa(Λτα) E PMa. For every pa E As (PM), every vari-
able xa and every z E Ma, pa(xa/z) is that assignment in As(PM) such that
p%(xa/z)(Xet) = z and for every variable Xβ Φ xai pΛ(xa/z)(Xβ) = pa( Xβ). We re-
cursively define the partial value lAa^ ™ in PM of a term Aa according to an
assignment pa E As (PM) and an / E /as follows (in what follows we shall some-
times omit the superscript "PM"):

(i) llQjpa,/= (pm(ca))(i);

(ϋ) E*oJPa,i = pa(*α);

(iii) lArfAJp. f /= IA*]lp.,i<l[*«W);
(iv) I M c J p^ , = the function / from / such that for every j E /, f(j) =

IÎ *ail pa,y>
(V) ΓΛα]lpa,/= EΛcJpa,/(O;

(vi) iλXaAβlpaj, = the function/ from PMa such that for every z E PMa,
f(z) = IΛβi^i where pa' = pa(xα/z);

Π if IAJ P a,/,E£cJ P a,/ΞP7;

(vii) I W o . - Λ J l p . , / - 0 if [ Λ Λ p ^ lΉJp.,/

^ otherwise.

Remark 23 The rule (vii) of identity makes indiscernible, in the object lan-
guage, all total equivalent objects, and by Propositions 12 and 14 (which imply
that x Φ* y iff ~^(xoy)) it makes discernible all nonequivalent total objects.
So identity between total objects has the same behavior as standard identity be-
tween classical objects. This expresses the idea that if the known denotations of
two expressions are total objects, then one can safely determine whether or not
the two expressions in fact denote the same thing. On the other hand, it is suf-
ficient that the known denotations of two expressions be incompatible for one
to be able to infer that the denotations of the expressions are not in fact the same.
However, if the known denotations of two expressions are not total but are com-
patible, one cannot determine whether or not the two expressions in fact denote
the same thing. This is the case even when the known denotations of both ex-
pressions are equally partially defined.

Proposition 24 Let PM = <{PMa}aGTipm) andPM' = <{PM}αGΓ,/7m/> be
two partial models such that for every a. E T and every constant ca, pm(ca) <



534 SERGE LAPIERRE

pm'(ca); moreover, let pa, pa' G As(PM) be two assignments such that for
every a G T and every variable xa, pa(jcα) < pa'(xα). For every a G T, every
term Aa and every i G /:
(i) IAJ™,IAJ£ίwePMα;
(ϋ) IΛJSft^ ϊ^«l£ίfί.

Proof: This is immediately verified in the case where Aa is a constant or a vari-
able—this follows from the definitions of pm, pm\ pa, and pa'. The other cases
are as follows.

• Consider a term [AaβBa]. (i) By the induction hypothesis, lAa0J ™ G
PMaβ and [ΛJlgf, G PMα, which implies that IΛrfl™ (IWJ™ ) =
l[AafiBa]i™i G PM^. Similarly, ϊ[^/?α]]|™/ e PM^. (ii) By the in-
duction hypothesis, [Arflgf/* tt^J^ and [B«]|™i^ [fiαljϊfί.
By the definition of the partial order on PMα/S and by the monotonicity
of the objects in PMaβ, this implies that lA^ζ^d Bal ™ ) =

• Consider a term M α . (i) By the induction hypothesis, for every j G /,
E Λ J S J € PMα. But by definition, [ M J ^ is the function/ from
/such that for everyy G 7,/(y) = [IAJ gft, and'so, [M α ] | ™i G PM^ =
PM5α. Similarly, [ M J ^ G PM5α. (ii) By definition, for every j G /,
Γ A J X ω = I^αlSfy and [ M J ^ . ( i ) = ΓAaY$j. By the induc-
tion hypothesis, lAal ζ™j < lAalζ£f'j for every j G /. By the definition
of the partial order on PMsa, this means that [ M J ^ < [ M α J gjfί.

• Consider a term v^45α. (i) By the induction hypothesis, for every / G /,
IΛαll2f/ e PM^ = PM5α and by definition, (M^lgjf/ = M s J X ( O G
PMα. Similarly, VASOίlζ¥j € PMα. (ii) By definition, for every / G /,
ΓA^lζϊϊi = IΛαl^ίO and Γ Λ J P ^ = 1 1 ^ 1 ^ ( 0 . By the
induction hypothesis, lAsajζ™i < I^^Ip^/ for every / G /. Therefore
IΛsX^id) < EΛJSίί (0. This means that Γ Λ J X ^ ΓΛsaV^h

• Consider a term λxaAβ. (i) Let z, z' G PMα such that z ^ z' and let pb =
pa(xα/z) and pb' = pa(Λrα/z'). So, for any σ G T and every variable
xσ,pb(xσ) < pb'ίxj. So, by the induction hypothesis, E ^ I ™ ' ,
E^ϊpb(/ € PM^ and lAβV^i ^ tt^B^/. But by definition,
[λjc α ^l™ (z) = tt^Ipbf/ and ίλxaAβlζ^(zΊ = lAfilffih There-
fore, iλXaAβlζgi G PMα)8. Similarly, [λ^^ l^ l f ί G PMα^. (ii) Again,
by definition, for every z G PMai l\xaA0^i(z) = E^Jpίf/, where
pb = pa(j^/z), and ϊ λ ^ ^ I ^ ί U ) = I ^ l X , where pb' = pa'(xα/z).
But by the induction hypothesis, [̂ 4̂ 1 p̂f/ < tt^/slp^f/ and of course,
pa(xα/z)(Xα) ^ pa^Xα/zίίXα) for every z G PMα. This means that
iλXaAβlgi* l\XaAβiζ!fj.

• Consider a term [̂ 4α = Ba]. (i) By the induction hypothesis, I^4α]]™/,
C^αlpT/ G PMα. So since E[^α s 5«]]|™ is either 0, or 1, or <p9

UAa = Bα]]|™i G PM,. Similarly, I[Λα = 5J]|£}f; G PM,. (ii) By the
induction hypothesis, lA^ffi * I A J S W and ΪΛα]|™i^ IΛα]|£ίfί
and there are only three possible cases for l[Aa s Λα]]|piίfi:
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(1) [K^5JI^=1;
(2) UAa = Ban™i = O;
(3) UAa^Banζ^ = φ.

In case (1), H A J £ M , IUU™/ G PTa and I A J ™ <> IUU™/. So by
Proposition 11, EAj£2w> I*«l5w G PΓα and l A J g f t o [Bjg f ί , and so,
II A, s Ban™fj = 1. Therefore, [[>!„ = ΛJI™ < [[A, » Λα]j£ίf;.

In case (2), Ϊ A J ™ Φ* lBal™h So by Proposition 6, HAJίϊfί **
I*«ISίί/ which implies that UAa = Ba]^]=0. Therefore, l[Aa = BJl1^) <
ίlAa^Ban^ .

In case (3), this is trivial, since ί[Aa = B^ζζfj is either 0, or 1, or φ, so
that in any case, l[Aa = fi«]]|™i < ΠA* = ^ ] I ^ : .

Remark 25 Consider the abbreviations given in Section 2. On the basis of the
definition of identity between partial objects, it is easy to verify that "T" denotes
1, "F" denotes 0 and that the definition of " i " is equivalent to the definition of
the negation according to KSL. The definition of "Λ" induces the following truth
conditions (we consider that the values are relative to some fixed assignment pa
and some fixed / E / ) :

Γl if M I = [fll = 1

T C . Λ UAtΛBt]i =\ 0 if [ i 4 ϊ = 0 o r | [ J Ϊ ] | = 0

[ φ otherwise.

These truth conditions are exactly those of the conjunction according to KSL.
Indeed, if \A\ = \B\ = 1, then l[λzt(tt)[[zA]B] = λzt{tt)[[zT]T]n = 1, ac-
cording to Proposition 15. On the other hand, the falsity condition of [AΛB] is:

There exists fePλft{tt) such that fdAJ)(1*1) * * / ( l ) ( l ) .

Clearly, [̂ 4 J and [[#]] cannot both be 1 nor could one of them be φ when the
other is either 1 or φ, by/'s monotonicity. On the other hand, if either 1̂ 4]]
or [2?D (or both) is 0, then the condition is satisfied by taking, as a witness of
/, the truth function of conjunction in KSL.

Notice that in Gallin's presentation of IL, conjunction is introduced by the
following definition:

G.Λ Λ := λxtλyt[λztt[[zx] = y] = λZtdzT]].

In the classical semantics, G.Λ induces the classical truth conditions. But in the
partial semantics, G.Λ induces the following clause:

UA Λ 5 ] I = φ if \A\ = 0 and \B\ = φ.

In all other cases, however, the clauses agree with T C . Λ . SO with G.Λ, we ob-
tain a noncommutative conjunction in the partial semantics, which is, of course,
undesirable.

Since "Λ" behaves exactly like the conjunction in KSL, the definitions of " v"
and "-*" are respectively equivalent to the definitions of the disjunction and the
conditional in KSL. Notice that the biconditional is the sign " s " restricted to
Trm, and it is easy to check that "Ξ=" SO restricted corresponds to the bicondi-
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tional according to KSL. The definition of the universal quantifier "V" induces
interesting truth conditions, for instance, one easily sees that:

1 if for every x G PMe such that x Φ φ, lAet] (x) = 1

lVxe[Aetxe]~Ά = 0 if there exists x G PMe such that lΛetJ (x) = 0

φ otherwise.

At first glance, this result may appear to be inconsistent. Indeed, one could
imagine that Aet is such that \Aet\ (φ) = 0 and [v4e,] (Λ:) = 1 for every x G PMe

such that x Φ φ. Clearly the result would be that lVxe[Aetxe}] = 1 and 0. But
in fact no predicate may have this behavior, for this behavior is not monotone.
Monotonicity implies that if there is an x G PMe such that iAet^ (x) = 0, then
ϊAetl (z) = 0 for every z G PMe such that x < z. One can verify that the defi-
nition of the existential quantifier " 3 " induces the following truth conditions:

1 if there exists x G PMe such that lAet^ (x) = 1

llxe[AetxeU = 0 if for every x G PMe such that x Φ φ, lAet]i (x) = 0

y otherwise.

Finally, one may easily see that the definitions of the modal operators induce the
following truth conditions:

( 1 if for every j G /, H Λ W = 1

0 if there exists j G / such that IA J p a J = 0

φ otherwise.

1 if there exists j G / such that IA Jp a,y = 1

1 OΛIpa, i = 0 if for every j G /, μ j p a j = 0

φ otherwise.

Definition 26 Let PM = ({PMa}aGτ>pmy be a standard partial model and
let pa G As (PM). An extension of PM is a standard partial model PM' =
({PM^a^Tipm') such that for every a G Γand every constant ca,pm(ca) <
pm'(ca). An extension o/pa is an assignment pa' G As(PM) such that for ev-
ery a G Γand every variable xa9 pa(xα) < pa^jc^). A maximal extension of PM
is an extension PM' = ({PMa}aGTipm') of PM such that for every a G Γand
every constant c^.pm'ic^) = V<x> for some x G PTSOί. A maximal extension
of pa is an extension pa' of pa such that for every a G T and every variable
xa9 pa'( jθ = V <x> for some x G PTa. Finally, a standard partial model is total
if it is a maximal extension of some standard partial model.

Proposition 27 Let PM be a standard partial model and let pa G As (PM)
then: (i) PMhas a maximal extension (not necessarily unique); (ii) pa has a max-
imal extension (not necessarily unique).

Proof: (i) Let PM= ([PMa}aGT,pm) be a standard partial model. Obviously,
for every a G Γand every constant ca, eitherpm(ca) G PTSCί orpm(ca) £ PTsa.
In the latter case, Proposition 14 assures that there exists an x G PTsa such
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thatpm(cα) < x. Let PM' - ({PMa}aGT,pm') be any standard partial model
such that for every a E T and every constant ca,pm'(ca) = V (pm(ca)) if
pm(ca) E PTsoι\ otherwise, pm'(ca) = V{x) for some x E PTSCi such that
pm(ca) < x. It is clear that PM' is an extension of PM which, moreover, is
maximal, (ii) As in (i), we are considering pa E As(PM) instead of pm.

3.5 The notions of entailment and validity in the partial sense Most of the
so-called partial logics are weakened logics, lacking many fundamental laws of
classical logic such as the excluded middle. But we are somewhat ill at ease with
such an exclusion. What is troublesome is not the thesis that there are sentences
which are neither true nor false (there are indeed many good reasons to believe
that). The problem is that on this basis, one concludes that the law of excluded
middle (this is just an example) is not valid. But this conclusion rests on a par-
ticular notion of validity: to be valid is to be true according to every model, or
equivalently, it is to be true under every substitution of terms for nonlogical con-
stituents. In classical logic, of course, this notion is equivalent to the notion of
being not false according to every model, or equivalently, to the notion of be-
ing not false under every substitution of terms for nonlogical constituents. This
follows obviously from bivalence. In partial logics, however, this equivalence no
longer holds: the class of valid formulas according to the first notion of validity
is generally smaller than the class of valid formulas according to the second. For
instance, Kleene's strong three-valued propositional logic does not have any valid
formulas according to the first notion because given any formula A, it is always
possible to construct a model in which A is not true. But Rescher [10] showed
that for the same logic (and others like it) the class of valid formulas according
to the second notion is exactly the class of valid formulas in classical logic. A
more general result can be obtained. Indeed, the language of propositional logic
interpreted by the coherent partial situation semantics —whose meaning postu-
lates for logical connectives are equivalent to those of Kleene's strong three-
valued logic —has been provided with a notion of entailment (by van Benthem
in [2]) which turns out to be coextensive with the classical notion. This notion
(called "weak consequence") superficially appears identical with the classical no-
tion: a set Γ of formulae entails a formula A if and only if there is no model in
which all formulae in Γ are true and A is false. In the spirit of partiality, how-
ever, this amounts to saying that a deductively valid argument whose conclusion
is a sentence B is a sequence Au... ,An, B of formulas such that, necessarily if
Aι,... ,An are true, then B is not false. We think that this is the essential prop-
erty of a valid argument, for though it may appear much too weak, it is both
uncontroversial (in the sense that nobody can seriously think it false), and it leads
to a class of valid formulas which is identical with the class of valid formulas
according to the classical definition. Let us apply this notion of entailment to our
system.

Let At be a formula of IL, PM a standard partial model, pa E As(PM),
and let / E /. At is satisfied in PM according to pa and /, formally: N/>Λ/,pa,/̂ f>
iff ίAβζ™i= 1. At is not satisfied (or is unsatisfied) in PM according to pa
and /, formally: NpM,pa,/̂ 4/> iff ίAt^ζ™j= 0, At is not unsatisfied in PM ac-
cording to pa and /, formally: ^W,Pa,/^> iff IA/]JJf/= 1 or φ. If Γ is a set of
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formulas, then Γ is satisfied in PM according to pa and /, formally: KpMpa,/I\
iff NpΛ/,pa,/̂ 4ί for every Λt G Γ. A formula At is true or undefined in M iff
^PM,pa,/^ί for every pa G As(M) and every / G /. A set Γ of formulas entails
a formula Λt (in the partial sense), formally: Γ 3 At, iff for every standard
partial model PM, every pa G As(PM) and every / G /, KpΛ/,pa,/Γ only if
^PM,pa,/ ί̂ Finally, a formula Λt is iw/ztf (in the partial sense), formally: #At9

iff 0 3 ̂ 4,, that is to say, iff At is true or undefined in every standard partial
model.

The notion of entailment in the partial sense is equivalent to the notion of
classical entailment (see Proposition 32, Section 3.6). This is due to the fact that
partial models which are total can be identified with classical models. Of course,
this presupposes that we can compare partial models with classical models.

3.6 Comparing partial and classical models

Proposition 28 Let PM be a standard partial model, pa G As(PM), PM'
a maximal extension of PM, and let pa' G As (PM) = As (PM') be a maximal
extension o/pa. For every a G T, every term Aa and every i G /, [;4α]|£ί^<
li^αJipa', i

Corollary Let PM be a standard partial model, pa G As (PM), PM' a max-
imal extension ofPM, and let pa' G As(PM) = As(PM') be a maximal exten-
sion o/pa. For any formula At and every i G /: KPM, pa,/^ implies NpΛf, pa',/̂ 4/
and 3pM,pa,iΆt implies APM\χ>*\iAt.

Proof: By Definition 26 and Proposition 24(ii).

Definition 29 Let M - ([Ma}a(ΞT,m) be a standard classical model and
a G As(M). The partial replica of M is the standard partial model PR(M) =
({PMa}aeT,pm) such that for every a G Γand every constant ca,pm(ca) =
ma(m(cα)). The partial replica of a is the assignment PR(a) = pa G As(PR(M))
such that for every a G Γand every variable xa, pa(xα) = ma(a(xα)). Clearly,
the partial replica of a classical model is a partial model which is total.

Proposition 30 Let M be a standard classical model, a G As(M), PM =
PR(M), and let pa = PR(a). For every a G T, every term Aa and every i G /,

EAJpM=ma(|IAJ5).
Corollary Let M be a standard classical model, a G As(M), PM = PR(M),
and let pa = PR(a). For any formula At and for every i G /: KpM,pa,̂ 4/ iff
I=M, a, iΛt and ^PMy p a > tAt iff ΨMy a> iAt.

Proof: This is immediately verified for variables. This is also straightfor-
ward for constants, because provided that M = <{Mα}αGΓ, m), ttCcJp^ =
(ma(m(cα)))(/) = ma((ra(cα))(/)) (by Proposition 2.1-(ii)) = m a d t e J ^ ). The
other cases are as follows.

• Consider a term [A^Ba]. By the induction hypothesis:

ϊArflSft = πwίϊAtfO and lBal™t = ma(|[£α]l2f/)
so
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But by Proposition 21(i),

(πMUΛrfOOnaίlΉJSf,)) = ma(IΛ*]l£ί/(l[tf«]lίfi»

and by definition,

ma( lAaβl^i (I£ β J *f,)) = ma( UA^B^,).

Therefore, l[AaβBaX^ = madKA^JBaf;)-

• Consider a term ΛAa. By definition, for every j e /:

ΓAJEftίy) = lAal™j
lΛAal%,U) = lAΛ%j,

and by the induction hypothesis:

lAX™j = m*(lAal%j)-

So VAaA™,U) = m&(lAa\%j) = ιm([Mβlίf,(;)) But by Proposition
21(ii):

ma<IΛA«]l2f/(y)) = (ma(Γ^Jίf/))(i)

Hence |ΓAJ™/(./) = (mA(lΛAaΊ%,))U), which implies IΓAJ™/ =

• Consider a term v/4ία. By definition, for every / G 7:

ΛsαJ]pa,ί — H^lsαJIpa.iA' )

ΓAsal%i=lAsal%i(i),

and by the induction hypothesis, IL4J0J™ = mad^sαl^f/). Hence
ΓΛαlpM = (maαΛαOM*). But by Proposition 21(ii): '

( m a d ^ O X i ) = madί^llίf/d')).

Therefore, Γ Λ α l ^ = ma( 1^11^(0) = madlM^Jft).

• Consider a term λ^^^. It is sufficient to show that for every z E Ma:

lλx«Aβl™i(mA(z)) = mΛilλXvAβlXiiz))

for by Proposition 21(i), m a ( [ λ x α ^ ] ^ (z)) = (ma([λxα^l5))(maU)),
which shows effectively that l\xaAp^i = madλx^l j f/) .

First, by definition, it is the case that for every z E Ma:

l\xaAβl™i(mBί(z)) = I ^ l S f i , where pa' = pa(xα/ma(z))

l\xaAβl%i(z) = lAβl%i9 where a' = a(xα/z).

Secondly, by the induction hypothesis, I ^ ] ^ / = madf^jjf/) and
obviously, pa(xα/ma(z))(xα) = ma(a(xα/z)(xα)) for every z E Λfα.
Therefore, for every z E Λfa, Eλx α ^^]]^ (ma(z)) = I I ^ I I ^ / =
m a d ^ l ^ y ) = m a d l λ ^ ^ I ^ ίz)), where a' = *(xa/z) and pa' =
pa(xα/ma(z)).
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• Consider a term [Aa = Ba], By the induction hypothesis, IMcJp^ =

ma(MαJif/) and lBal™i = ma(|[2U2f/). So M J ^ , I*<j2fte>7;

and by Propositions 12 and 14, -ι ([ AJSfi<> I^αlSf/) iff IΛJSίfi **

tt^αBpM Hence we have:

1 II ILA*Jlpaf/<>IU\*llpa,/

0 otherwise

and so obviously:

and a fortiori, ϊ[Λα = ΛJI™; = ma([[[A* s Λ«]]|£ff.).

Proposition 31 Lei PM 6β a standard partial model, pa E As (PM), PM' α
maximal extension ofPM, and let pa' E As(PM) = As (PM') Z?e a maximal ex-
tension o/pa. There exists a standard classical model M and an assignment a E
As(M) such that PR(M) = PM' and PR(a) = pa'. A corollary is that for every
partial model which is total there corresponds exactly one classical model

Proof: Let PM' = ({PMa}aeT,pm'y be a maximal extension of the model
PM = {{PMa}a^T,pm). By definition, for every a E T and every constant
ca9pm(ca) <pm'(ca) = V<x> for somexE PTsa. LetA/= <{Ma}aGT,m) be a
standard classical model such that for every a E Γand every constant ca,m(ca) =
θ«/7m'(cα)». Obviously, M exists. Moreover, for every a E Γand every con-
stant ca,pm'(ca) = V «pm'(cj» = ma(θ«/?m'(cj») = ma(m(cj). Therefore
PR(M) = PM'. On the other hand, let a E As(M) be an assignment such that
for every a E Γand every variable xa, a(xα) = θ«pa'(jcα)». Again, ma(a(iα)) =
pa'(x«) for every a E T and every variable jcα. Therefore PR (a) = pa'.

Proposition 32 Let Y bea set of formulas and At be a formula ofΐL. Then
T*A,iffTtAt.

Proof: First suppose that Γ 3 At but not T\*At. This means that there exists a
standard classical model M, an assignment a E As(M) and / E / such that
l=M,a,/r a n d kW,a,/Λ Let PM = PR(M) and pa = PR(a). So by the corollary
of Proposition 30, KpΛ/,pa,/Γ and NpΛ/.pa,/̂ /- But this contradicts the assump-
tion that Γ 3 v4,. Therefore Γ M , . On the other hand, suppose that Y¥At but
not T #At. This means that there exists a standard partial model PM, an as-
signment pa E As (PM) and / E /such that NpΛ/,pa,/Γ and N/>Λ/,pa,/̂ f By Prop-
osition 27 and the corollary of Proposition 28, there exists a maximal extension
PM' of PM and a maximal extension pa' of pa such that NpΛ/,pa,/Γ and
^PΛΓ, pa', i^ί B u t by Proposition 31, there exists a standard classical model M
and an assignment a E As(M) such that PM' = PR(M) and pa' = PR(a). There-
fore, by the corollary of Proposition 30, t=M,a,/Γ and fe^a,/^- But this contra-
dicts the assumption that Γ \=At. Therefore Γ # At.

Remark 33 Consider the deductive system IL described in [3], Chapter 1, Sec-
tion 3. Since this system is sound in both the standard and classical sense (i.e.,
every theorem of IL is valid in standard classical semantics), Proposition 32 al-
lows us to claim that it is also sound in both the standard and partial sense (one
may easily verify that the rules of inference preserve validity in the partial sense).
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Moreover, we know that restricted to a certain class Σ of formulas (the class of
persistent formulas), the deductive system IL is complete for standard classical
semantics. This of course allows us to conclude that relative to Σ, the deductive
system IL is also complete for standard partial semantics.
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NOTE

1. In this definition we assume that Zt{tt) in At{tt) is the first variable of the indicated
type not occurring free in any of A and B.
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