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On the Proofs of Arithmetical Completeness

for Interpretability Logic

DOMENICO ZAMBELLA

Abstract Visser proved that ILP is the interpretability logic of any finitely
axiomatizable theory containing IΔ0 4- SUPEXP, Berarducci and Shravrukov
proved that ILM is the interpretability logic of PA. But these proofs are not
based directly on the natural semantics of interpretability logic (i.e., Veltman
models). We give simpler alternative proofs of the arithmetical completeness
of ILP and ILM directly based on finite Veltman models. We will provide a
general setup for arithmetical completeness proofs of interpretability logic
which is in the style of Solovay's arithmetical completeness proof of prova-
bility logic.

1 Introduction Visser [7] introduced the binary modal logic IL (interpret-
ability logic) and its extensions ILM (interpretability logic with Montagna's ax-
iom) and ILP (interpretability logic with a persistent relation in its models) to
describe the interpretability logic of PA and the interpretability logic of any suf-
ficiently strong theory T which is finitely axiomatizable and Σx sound. The mo-
dal completeness of IL, ILP, and ILM was provided by de Jongh and Veltman
[3] using so-called Veltman models. These are a very natural generalization of
Kripke models. Visser [8] obtained the arithmetical completeness for ILP and,
more recently, Berarducci [1] and Shavrukov [5] have shown ILM to be complete
for arithmetical interpretation over PA. All these proofs of arithmetical com-
pleteness do not directly use the Veltman models. Using a bisimulation, Visser
[8] showed ILP to be modal complete with respect to his so-called Friedman
models and then used these to prove arithmetical completeness. Berarducci and
Shravrukov also used a bisimulation due to Visser [7] showing that ILM is modal
complete with respect to the so-called simplified models to prove arithmetical
completeness. The use of simplified models in proving arithmetical completeness
for ILM adds a complication because in general these cannot be taken to be
finite.
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Our aim is to provide simpler and more natural proofs of arithmetical com-
pleteness for ILP and ILM. For both we shall use the original Veltman models.
As all proofs of arithmetical completeness known so far, ours are based on
the ideas exposed in the pioneering work of Solovay [6] and made explicit in
de Jongh, Jumelet, and Montagna [4].

The organization of this paper is the following: in the next section we review
the axioms of ILM and ILP and the corresponding classes of Veltman frames.
We refer the reader to the literature (see, e.g., [7], [3], and [1]) both for details
and comments as well as for the proofs of soundness of the axioms. In Section
3 we present a general technique inspired by Solovay's work to obtain arithmet-
ical completeness for theories containing IL, provided that we already have mo-
dal completeness with respect to a certain class of finite frames. The common
preparatory work of Section 3 is used in the last two sections for the two arith-
metical completeness proofs.

2 Interpretabίlity logics The language of the logic of interpretability con-
tains (atomic) propositional letters p0, pu..., logical connectives -> and ->, and
a binary modal operator >. All other connectives, such as Λ, v, and <->, are de-
fined in the usual way. We use ± for false and T for true. The unary modal op-
erator D is defined as > _L. The axioms of IL are:

(LO) All tautologies of the propositional calculus.
(LI) D (A -* B) -* (ΠA - ΠB).
(L2) ΏA^ΠΠA.
(L3) Π(ΠA-+A)-+ΠA.
(Jl) Π(A->B)-+A >B.
(J2) (A > B A B > C) -> A > B.
(J3) A > B-+ (OA-+OB).
(J4) OA > A.

The deduction rules of IL are modus ponens and necessitation. The following
two other axioms are the characteristic axioms of ILP and ILM.

(M) A> B^>(AΛΠC>BΛΠC).

(P) A >B-+ Π(A >B).

A Veltman frame is a triple (W,S9R) where Wis a set called universe, R and
S are respectively a binary and a ternary relation on W. The elements of W are
called nodes. We shall write xRy for (x,y) G R and ySxz for <ΛΓ,y,z) G 5. It is
further required that R is transitive and conversely well founded and that for ev-
ery x G W, Sx is a reflexive and transitive relation on {y\ xRy} £Ξ W. Moreover
for every x,y,zE W, xRyRz implies ySxz.

A Veltman model is a Veltman frame together with a forcing relation Ih be-
tween elements of W and the formulas of IL commuting with the logical con-
nectives and satisfying the following:

x Ih ΏA iff Vy(xRy => y \\-A),

x\\-A>Biff vy[(xRy & y VA) => 3z(ySxz & zIhB)].
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As usual we shall improperly use the same letter W for the model, the frame, and
the underlying universe. If Wis a frame, we write W\=Aiff for all forcing re-
lations on Wand all nodes of W,x\\- A.

We shall consider two other possible properties of Veltman frames:

P: If xSwy then xSzy for every z such that wRzRx.
M: If xSwyRz then xRz.

We call W a P-Veltmαn model (resp. M-Veltmαn model) if the underlaying frame
satisfies P (resp. M).

The modal completeness of IL, ILP, and ILM has been proved by de Jongh
and Veltman. In particular, they proved the following three theorems:

(1) IL h A iff for every finite Veltman frame W.WYA.
(2) ILP VA iff for every finite P-Veltman frame W,W\=A.
(3) ILM h A iff for every finite M-Veltman frame W.WYA.

3 A Solovαy style strategy We want to find a general strategy for proving
the arithmetical completeness of the interpretability logic for various arithmet-
ical theories. Let T be a theory in the language of the arithmetic which is Σx

sound and Σj complete and strong enough to formalize syntax. Given two arith-
metical sentences a and β, we shall write a > β to mean the arithmetical formal-
ization of the statement: "T+ a interprets T+ β". It will always be clear from
the context to which theory T we refer. We will use Latin letters for modal for-
mulas and Greek letters for arithmetical formulas so that no confusion will arise
from the fact that we are using the same symbols > and D both for the modal
and for the arithmetical operators.

An interpretation is a mapping i from modal formulas to sentences of the lan-
guage of the arithmetic such that:

(1) L(A-+B) = L(A)-+I(B)

(2) ι(iΛ) = -π(,4)
(3) ι(A >B) = L(A) >L(B).

Let us write IL(T) for the set of modal formulas which are provable in T for ev-
ery interpretation ι, i.e., IL(T) = {A | ViT \- ι(A)}. Let ILX be a modal theory
in the language of IL containing IL. We say that ILX is arithmetically sound for
T if, for every modal formula A, if ILX \- A, then for every interpretation t,
T\-ι(A), i.e., if IL(T) 2 ILX. We say that ILX is arithmetically complete for T
if the reverse inclusion also holds, i.e., whenever A is not a theorem of ILX then
there is an interpretation t such that ι(A) is not provable in T.

Claim Let us suppose there is a class of finite Veltman frames X with respect
to which we have modal completeness for the theory ILX. Let us suppose also
that IL(T) 2 IL. If for any frame WeX, there is a set {λx | x G W) of arithmet-
ical sentences such that (o)-(iv) below are satisfied, then IL(T) c ILX.

(o) for every x,y G W\ϊ x Φ y then T h -«(λ*Λ λ^)
(i) for every x G W, T 4- λx is consistent

(ii) for every x G W, T h λ* -> D V ^ λ^
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(iii) for every x, y,z E W such that ySxz, T \-\x^>λy>\z

(iv) for every x9y E JFsuch that xRy, T \-λx-+ -ι(\y> ~^\/ysxz K)-

Proof of the claim: We assume ILX \f C and define an interpretation ι such
that T \f L(C). By the modal completeness there is a finite model JΓ with frame
in X such that WΨC. Let {X* | x E W j be a set of arithmetical sentences satis-
fying conditions (o)-(iv). Let i be the interpretation which maps the atomic prop-
osition/? occurring in C to t(p) :=\/ [kx\x\\-p). We shall show by induction
on the complexity of the modal formula A that for every x E W\

(a) x\YA =>T\-XX-+L(A)

(b) xWA = * T h λ x - > π t μ ) .

This will suffice to prove the arithmetical completeness, because if W ¥ C then
for some forcing relation on W and some x E JV9 x¥ C, from which then by
(b), T h λx -• -u(C). By (i), λx is consistent with T, as is therefore ~u(C).
Hence T \ΪL(C).

It remains only to prove (a) and (b) by induction on the complexity of the
formula A. By condition (o) it is clear that (a) and (b) hold for atomic sentences.
The inductive steps for -> and -ι are straightforward, so let us consider just the
inductive steps for >.

Let us prove first (a). Assume x Ih A > B. Then for every y such that xRy,
if y Ih A, there is a node z such that ySxz Ih B. By the induction hypothesis we
can write: for every y such that xRy, if y Ih A, there is a node z such that ySxz
and T \- λz-> L(B). Using (iii) and Σι completeness and the soundness of IL
(i.e., making few steps of reasoning in IL) we get T h λx -> Λ ^ M (λ^ > ι(B))
and finally T h λ* -> (\ZxRy\\-A λ^ > ι(B)). On the other hand, by (ii) and using
the induction hypothesis (b) we obtain T h L(A) -> -ι\JyuΛ λ ,̂ from which,
since we assumed T h λ^ -• D V ^ λ ,̂ we get T h \x -• D (t(A) -• VXRy\\-A λ^).
Again by the soundness of IL, T \-λx-+ L(A) > V ^ I M λ .̂ Thus the proof of
(a) follows.

We now prove (b). Assume x ¥ A > B. Then there is a y such that xRy
and y Ih A and for every node z such that ySxz,z ¥ B. Thus, for some y such
that xRy we have: y Ih A A f\ysχZz ¥ B. By the inductive hypotheses we have
T h λ ^ L(A) and T h \ZySχzK -> ~I^(^) By Σ{ completeness we have T h
D [λj; -• L(A)] and T h D [ι(B) -• ~*\/ysxz \]> from which by the soundness of
IL we get T h λ̂  > ι(A) and T h ι(B) > ->VysχZ K- Reason in T and assume
X*. Assume for a contradiction that L(A) > t(B). By the soundness of IL we
would have λ̂ , > ""V ŝ̂ ^λ ,̂ so from (iv) we obtain the desired contradiction.
This completes the proof of the claim.

We conclude this section by remarking that conditions (o)-(iv) are not in gen-
eral necessary, we believe that with a little additional work one can obtain more
general, sufficient and necessary, conditions as is done in [2] for the case of prov-
ability logic.

4 The interpretability logic of finitely axiomatizable theories In this sec-
tion T may be any finitely axiomatizable Σx sound theory extending IΔ0 +
SUPEXP. The main property which distinguishes interpretability over these the-
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ories is that the interpretability predicate in T is Σ{, from which the soundness
of the modal axiom P follows immediately. In T it is possible to characterize
interpretability as follows. Let Δ E X P be tableaux provability in IΔ0 + EXP, Δ
tableaux provably in T and V = -1Δ-1, i.e., the tableaux consistency in T. Accord-
ing to the Friedman-Visser characterization [8], a interprets β iff ΔEXP(Vα: ->
V/3).

We want to prove that IL(T) = ILP. We leave, as usual, the proof of sound-
ness to the reader and we shall prove only IL(T) <Ξ ILP. We shall find sentences
(o)-(iv) as in the previous section. The method is as in [6]. We define a function
F using the fixed point theorem and let the X* be some limit statements concern-
ing F.

Assume for convenience that JΓhas been given as a finite set of nonzero nat-
ural numbers. We shall use the symbols x, y, and z only for elements of W. Let
λx be the sentence ]imnF(n) = x and λ0 := VnF(n) — 0. Together with the func-
tion F we will also define an auxiliary function G which will aid us in bookkeep-
ing. The function G will always "follow" the function F, i.e., if for some n,
F(n) = x then G(n) = F(m) for some m<n. Speaking informally, G(n) Φ F(n)
will warn us of the fact that there is no proof of code less than n of ->λF ( π ).
This has to be considered a "dangerous signal" since we would like in the end
to have λ*-* D-iλ*. When such a situation occurs then only "safe" moves are
allowed, i.e., Fas well as G will move only to a nodey for which there is a proof
of -ι\y.

The definitions of F and G are as follows:

(a) F(0) = G(0) = 0. If F(n) = 0 and for some x G W, n witnesses Δ Λ ,
then F(n + 1) = G(n + 1) = x.

(b) If F(n) = G(n) = x G Wand for some node y such that xRy, n witnesses
AE X P(Vλ,-> V-χ\JySχZ\z)9 then F(n + 1) = y and G(n + 1) = G(n).

(c) If F(n) = y and G(n) = x, for some z9 ySxz and n witnesses Δ~iλz, then
F(n + \) = G(n + l ) = z .

(d) In all other cases F(n + 1) = F(n) and G(n + 1) = G(n).

Let μx be the sentence lim^ G(n) = x. We shall eventually prove that the two
functions have the same limit, i.e., μx ++ λx, but for proving this we need the cut
elimination theorem. The formalization of the cut elimination theorem is prov-
able in T since T contains SUPEXP but is surely not provable in EXP. To carry
on with our proof we need to know what IΔ0 + EXP proves about the functions
F and G, hence the following:

Lemma 1 IΔ0 + EXP proves the following:
(1.1) For every w e W, μw-+ A\/wRx λx.
(1.2) For every w,x G W, if x Φ w then μwΛλx-> Δ\ZxSwy λy.
(1.3) For every w,y£ WifwRy then μw Λ\w^>V\y.
(1.4) For every x9y, w G JV, ifxSwy then μwΛλx-+ Vλy.

Proof: Directly from the definition of F, IΔ0 + EXP proves that if, for some
n,G(n) = w then after stage n the function Fremains either in w or in the up-
per cone above w. Thus the limit of F is either w or some node above w. If
G(n) = w then by provable Σi completeness, Δ E X P ( G ( Λ ) = w) and a fortiori
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A(G(n) = w). The proof of (1.1) follows by combining all this with the fact that
G(n) = w implies Δ-ιλw. To prove (1.2) assume that for somexφ wwe have
μw/\ λx. Then for some n ΔE X P(G(rt) = w /\F(n) = x). Again, observing the
definition of the functions F and G, it is easy to argue that whenever G(n) =
WΛF(Π) = x for some w Φ x, the function Fnever leaves the set of nodes which
are in Sw relation with x. This gives (1.2). To prove (1.3) assume wRy, λw and
μw, and let n be such that for all m > n, F(m) = G(m) = w. If -*λy were cut
free provable, then some m> n would witness Δ- λ .̂ (Here and in the follow-
ing it is assumed that a cut free provable theorem has infinitely many cut free
proofs.) So ΔEXP(Vλ^ -* V-i\/ysxZ K) a n c * then at stage m 4- 1, F would move
to y, against our assumption that at stage n Fhas already reached its limit. To
prove (1.4) assume λ*, μW9 and xSwy. Then wRy, and therefore w Φ y. Let n be
such that for all m > n, F(m) = x and G(m) = w. Suppose, by contradiction,
that Δ-iλj,. Let m > n a witness of Δ-iλ^. Then at stage m + 1 both F and G
move to y, by condition (c). This contradicts our assumption that at stage n
G has already reached its limit. (Note that clearly y Φ w since xSwy and then
wRy.)

For the following lemma we need that the formula ((Vα Λ a > β) -> Vβ) is
provable in T. It is easy to check that T (or even IΔ0 + EXP) proves ((Oα Λ a >
β) -> 0/3), and since in T the formalization of the cut elimination theorem is prov-
able, we can substitute tableaux consistency with normal consistency, so also the
former formula is derivable in T. We can prove the following:

Lemma 2 For every xG W, T h μx <+ λ*.

Proof: Reason in T and assume for a contradiction that λx A ~^μx. Then for
some wRx we have μw. This implies Vλ*, for otherwise the function G would
have jump to x. Since x Φ w the last move of the function F has been from w
to x using condition (b) and therefore λ* > ~^\/xswy λ7. By the remark above we
get immediately -iΔV^s^^λ^. From Lemma 1.2 we also get ΔV^s^^λ^. Thus
we have the desired contradiction.

Lemma 3 For every x9y,zE Wsuch that ySxz, T \-\x-+λy> \z.

Proof: Reason in T and assume λ^. We want to show that for every y,z such
that ySxz,λy > λz, i.e., ΔβxpίVλ^ -• Vλz). By Lemma 2 we have μx and by
provable Σj completeness we have that for some k, AEXp(G(k) = Λ:). Reason
in IΔ0 + EXP. Assume Vλ^ and let w be the limit of the function G. Since
G(k) = x, the limit w is either x or is above x. By Lemma 1.1, from Vλ^ we
know that w has to be strictly below y. Thus either x = wRy or xRwRy and, by
the characteristic property of the P-Veltman frames, from ySxz we get ySwz. Let
u be the limit of F. If u = w from wRz and Lemma 1.3, the lemma follows im-
mediately. Otherwise by Lemma 1.2 and Vλ̂ , one has uSwy. By the transitivity
of Sw we obtain uSwz and thus finally, by Lemma 1.4, Vλz.

Lemma 4 For every x E W, T h λ* -* Δ\ZxRy λy.

Proof: Immediate by Lemmas 1.1 and 2.

We can now easily check that the set of sentences {λx | x G W) satisfies (o)-
(iv). In fact (o) is trivial, the proof of (i) is completely standard, (ii) derives from
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Lemma 4 and the provability in T of the cut elimination theorem. Condition (iii)
is Lemma 3 and (iv) is obvious by the definition of F and Lemma 2. This con-
cludes the proof of the completeness theorem.

5 The interpretability logic of PA In this section we want to prove that
IL(PA) = ILM. The main characteristic of the interpretability in Peano arith-
metic is the Orey-Hajek characterization: let Ukβ be the formalization of the
sentence "there is a proof of β which uses only the first k axioms of PA", let
0k = -ιΠfc-ι, then it is provable in PA that a interprets β iff V&D (a -• 0^/3).
Another characteristic property of PA is that it proves full reflection for any of
its finite subtheories. Moreover, this is formalizable in PA, namely: for every α,
PA h VkΠ (Πk<x -> α). These facts would be sufficient to carry out the follow-
ing proof, but for the sake of better readability we shall, following Berarducci,
work in ACAo rather than in PA. The second-order theory ACAo is a conserva-
tive extension of PA; in ACAo we can speak of models of PA and easy theorems
of basic model theory are formalizable and provable in ACAo. In particular, in
ACAo we have the following characterization of the interpretability over PA:
"PA + a interprets PA-\-β iff every model of PA + a has an end extension to
a model of PA + β". In ACAQ the standard model is the set [x \ x = x) with the
obvious choice of operations; any other nonstandard model has an initial seg-
ment which is isomorphic to it. Numbers belonging to this initial segment are
called, as usual, standard numbers. Full reflection translates in ACA0 in the
following manner: "for every model Y of PA and every standard number k,
YΪΠka^a".

As in the previous section we shall prove only that IL(PA) £Ξ ILM, leaving
the converse to the reader. The sentences which are meant to satisfy (o)-(iv) are
defined as limits of a recursive function F exactly as in the previous proof. De-
fine, as in [1] for every xE W, rank(x,n) := "the minimal ksuch that there is
a witness <n of Πk-^\x". If A: is a number, x,y E W9 xRy then we define the
sentence aXiy(k) as Vy > k[F(j) = χvF(j) = y]. Our definition of the func-
tion F resembles Berarducci's as far as it is concerned with the S-jumps, but it
differs in the Z?-jumps. Roughly speaking, we allow the function F to make an
i?-jump if there is a proof that this will not be the last move. We assume for con-
venience that if has been coded as a finite set of nonzero natural numbers, and
we shall use the symbols w,x,y9... etc. only for elements of W.

Proof:

(a) Let F(0) = 0 and if F(n) = 0 and for some x G W9n witnesses D-iλ*, then
F{n+ l ) = x .

(b) IfF(fl)=xandforsome.)>e Wanά some k <n such that Vy'e [k,n]F(j)=x
andxRy9n witnesses Π-^axy(k) (kis the numeral of/:), thenF(n + 1) =y.

(c) If F(n) = x and for some nodes y and z9 xSzy and 3/ < n [rank(j>,n) < / <
rank(x,«) Λ F ( / ) = Z ] , then F(n + 1) = y. (If this condition obtains for two
different nodes, choose the one with minimal code.)

(d) In all the other cases F(n + 1) = F(n).

Note that any two points in the orbit of F are connected by an S- and/or R-
arrow. We shall write Y K . . x . . .y if, according to the model Y, the function
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F goes from x to y (possibly in a nonstandard number of steps). We write
Y N... xRy... (resp. F K .. xSzy...) if, in the model Y, F moves in one step
from x to y and xRy (resp. xSzy). If in a model Fthe function Fmoves at stage n
from x to y, then we say F moves with an i?-step (resp. with S-step) if at stage
n condition (b) (resp. condition (c)) has been applied. If, at stage n, Fmoves from
0 to some node x, we say that F moves with an (a)-step.

Lemma 1 In PA it is provable that the function F has a limit.

Proof: This is not obvious since the S-relations are, in general, not well founded.
It is clear that if h is the height of the frame the function cannot make more than
h consecutive i?-moves. By the property M of the M-frame, F cannot make more
than h 7?-moves whether they are consecutive or not. Thus eventually F is allowed
only to make S moves. If F would not have a limit, we could construct a defin-
able infinite decreasing sequence of ranks. This is provably false in PA.

We are eventually going to prove λx -> D-iλ*, but to achieve this goal we
first need to prove a weaker form of it.

Lemma 2 For every x E W and for every k E ω, PA h F(k) = x -• D3/ >
ίcF(j) Φ x.

Proof: Assume F(k) = x. Reasoning in ACAQ we claim that for every model Y
of PA, Y N 3j > kF(j) Φ x. If F moved to x with an (a)-step or with an S-step,
we would have Π-ι\x and then Y\= -ι\x so our claim would hold trivially. So,
assume that the last move of Fhas been an i?-step, and that say at stage A, the
function Fmoves from z to x. Then for some / < h such that V/ E [i,h]F(j) =
z, h codes a proof of -^aZfX(i). So, Y> 3/ > i[F(j) Φ ZΛF(J) Φx].We have
assumed v/ E [i,k] [F(j) = z vF(x)]9 this is a Σ\ statement so, by provable Σx

completeness, it is true also in Y. Thus Y \= 3y > kF(j) Φ x and our claim is
proved.

Lemma 3 For every x E W9 PA h λx -» D \ZXRy λ^.

Proof: It is sufficient to prove that for every x and y, if ~^xRy then PA \- \x -•
D-iλy. Reason in ACAo and assume for contradiction that X*, Oλ ,̂ and ~^xRy.
Choose k such that F(k) = x and let Ybe a model of λ .̂ By provable Σι com-
pleteness we have Y\=F(k) =x. Now in Ylet z be the last node through which
the function passes before arriving at y. The last step must be an S-step other-
wise zRy and, by the M property of the M-Veltman frames, we would have xRy.
We shall picture the situation as Y\=...x... zSwy. (We recall that either z or y
might be equal to x; the previous lemma only guarantees that after stage k the
function has moved at least once.) We assumed -\χRy\ thus, since zSwy implies
wRy, we have that w Φ x. By the definition of F we have that at some stage n,
for some i < n, rank(^,^) < / < mnk(z,n) and F(i) = w. By the reflection
principle rank(y,n) has to be nonstandard in Y, and since we have chosen k stan-
dard, rank(^,«) > k. Thus also / > k and so Y t=.. .F(k).. .F(i) and there-
fore ΓK..JC.. .W.. . zSwy. By the M property of the M-Veltman frames from
wRy we get xRy. Contradiction.

Lemma 4 For every x9y9zG W such that ySxz, PA h \x -> λ^ > λ .̂
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Proof: Assume X* and ySxz. We shall prove in ACAQ that, for arbitrary large
k, in any model Y of PA, λy -> O^λ .̂ Let k be such that F(k) = x. Suppose for
a contradiction that there exists a model Y \=\y Λ Πk~ι\z. Then for n large
enough we have Y1= rank(z,«) <k<n. Suppose n is also large enough so that
(in Y) Fhas already reached its limit. By the reflection principle rank(y,n) must
be nonstandard in Y. Then Y N rank(z,fl) < k < rank(.y,«) Λ F(k) = x. So,
Y^F(n + 1) = z which contradicts the fact that F has already reached its limit.

Lemma 5. For every x,yE Wsuch that xRy, PA h λx -> -«(λ y > -ι VysxZ λz).

Proof: Reason in ACA0 and assume λx. To prove -ι (λy > -1 Vysχ Zλz) it will
suffice to find a model Y of λ^ which has no end extension to a model of

->\/ysxzK- F ί x *" s u c h t h a t Y/ ^ ^ ( 7 ) = X' Since xRy we have: QctXty{k);
otherwise the function would jump from x to y contradicting X*. Then we can
choose our model Ysuch that YN V j > k[F(j) =xvF(j) =y]; since we have
assumed λ* and therefore (by Lemma 3) Y1= -iλ*, we can conclude that Y^λy.
Let Z be any end extension of such a model Y and let z be such that Z \=\z.
The proof is complete if we can show that ySxz. Let n be the minimal number
in Z such that Z N F(AI + 1) = z. By provable Σj completeness and the fact
that Σι formulas are conserved by end extensions, we have Z (=.. .xRy.. .z.
Let w be the last node reached with an R step (i.e., for some w,Z 1=.. .xRy . . .
wi?w... z and between w and z only S steps occur). Then the rank of all the steps
between w and z is larger than rank(z,ft). By the reflection principle rank(z,ft)
is a nonstandard number in Z. If all the steps between w and z are S* steps, we
are done; otherwise let St be the last non-S* step between w and z (i.e., Z N . . .
Jt/?y... */Z?w ...StvSx... Sxz). Let / > rank(z, Λ) be such that F(i) = t. Since
rank(z,«) is nonstandard in Z, t cannot occur in the orbit of Fbefore x; so ei-
ther t = y or Z (=... x/?y... t... St vSx... Sxz. In both cases one can conclude
that yRv and hence ySxz-

We can now easily check that the set of sentences {\x \ x E W] satisfies (o)-
(iv). In Fact (o) is trivial, the proof of (i) is completely standard, (ii) is Lemma 3,
(iii) is Lemma 4, and (iv) is Lemma 5. This concludes the proof of the complete-
ness theorem.
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