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Refutation Calculi for Certain

Intermediate Propositional Logics

TOMASZ SKURA

Abstract Using simple algebraic methods we give Lukasiewicz-style refuta-
tion calculi for the following intermediate logics: finite logics, LC, Yankov's
logic, the logic of the weak law of excluded middle, Medvedev's logic, and
certain logics without the finite model property.

0 Introduction There are at least three reasons for being interested in
Lukasiewicz-style refutation calculi for propositional logics:

1. Such a formulation together with the usual axiomatic system provides a
uniform complete characterization of a logic.

2. If a logic has such a refutation procedure then the set of its nontheorems
is recursively enumerable (r.e.) so that the logic is decidable as long as the
set of its theorems is also r.e. This method of obtaining decidability re-
sults is both simple and very general (cf. Skura [13],[14]).

3. A formulation of this kind expresses a syntactic property uniquely char-
acterizing a logic (cf. Skura [12]). The more elegant such a formulation,
the more intuitive the property.

In [6] Lukasiewicz introduced the following refutation rules:

-\e(a)
(Γsb) — — (e(α) is a substitution instance of a),

( m p ) Hα

("Ha" reads " α is refutable".)

Of course rsb reverses the substitution rule, and r m p reverses the modus ponens
rule.
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It is easily seen that the above rules together with a fixed propositional vari-
able p axiomatize the set of all formulas not provable in the classical proposi-
tional logic (C). (We also say that every nontheorem of C is refutable by the
formulap and the rules r s b, rm p.)

In [12] it is proved that every nontheorem of the intuitionistic propositional
logic (INT) is refutable by the formula p and the rules r sb, rm p,

H(αi-»/3i) Λ . . . Λ (αfr-EftJ-KX/U </</*)
(Γ/?) -77 — — (n>:2).

The rules rn reverse the generalized disjunction property.
In this paper we give refutation calculi for some of the more important in-

termediate logics using simple algebraic methods.

/ Preliminaries Let For be the set of all formulas generated from the set Var
of propositional variables by the connectives -1, Λ, V, ->, and let For" be the
set of all positive formulas (i.e., negation-free formulas). We write a = β instead
of(α->β)Λ(β->α). For any a E For, the symbol Var(α) will denote the set
of all propositional variables occurring in a. Of course Var (A!') = U{Var(α):
a E X] for every X <Ξ For. By an intermediate logic we mean any set INT <Ξ
L c For closed under modus ponens and substitution, where INT is the set of
all theorems of INT.

Heyting algebras (or pseudo-Boolean algebras) will be denoted by script cap-
itals G,(B,.... The unit element, the zero element, the lattice ordering, and the
operations of Q are denoted by lβ, 0β, < f i , and -i β, Aa, v f l, ->β respectively.
The subscript fi is often omitted. The symbol β~ denotes the algebra obtained
from d by deleting the operation π α .We say that Gt is strongly compact (fi E
SC) iff there is a greatest element in β - {\a} (denoted by * β ) . f l G FSC iff
G E SC and G is finite. The symbol fi © (B denotes the Troelstra sum of G and
(B (i.e., a © (B is the result of putting (B on top of G and identifying 0& with
lα). The Jaskowski sequence is the following (cf. [3]): <ξjo is the two-element
Boolean algebra, gn = (Sn-i) ® 3o (n > 0). We write a ® , ® β instead of
a © So, #0 ® β respectively. U{Gίt: t E T) is as usual the direct product of a
family of algebras [β / : / E T].

£(&) is the set of all tautologies of ft, i.e., a E £((£) iff v(a) = l α for ev-
ery valuation υ: For -> α in β. Of course £(3C) = Π {E(&): α E JC) for any fam-
ily JC of Heyting algebras.

With every countable class JC of countable Heyting algebras we associate a
one-one function fx from Z = U {β: ft E K} into Var. For every xeZ,fχ (x)
will be denoted by px. For any countable fi we define the set D(&) as follows
(cf. Yankov [18], Wroήski [16]):

D(a) = i(px(g)pγ)=px(g)y:x,γea,(g)e ίΛ,v^HUh^Ξ^:χeft).

If a is finite then δa = AD (a). If G E FSC then its characteristic formula
χ(β) = δa ̂ P*a (cf. [18]). For any finite algebras β l f . . . ,fiΛ by δ ^ , . . . ,δ&w

we mean the results of substituting distinct variables for distinct variables in
δβi, ,δan i

n such a way that Var(<%.) Π Var(δ4y) = 0 for all / Φj. The vari-
able substituted for px in δβ / is denoted by px.
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2 Some general theorems

Definition 2.1 Let & be a Heyting algebra, ψ G For, and let Fbe a function
from ft into For. We say that the pair (F, ψ) expresses Gί iff the following hold
true:

(i) There is a valuation v0 in d s.t. vo(F(x)) = x (x G Gί) and vo(ψ) Φ l α .
(ii) If v is a valuation in (B G SC s.t. v(ψ) = *& then the function Λ: β -•

(Ά s.t. Λ(JC) = V(F(*))(JC G «) is an embedding of a into (B.

Example Let (2 G FSC. Then (/β, χ(β)) expresses G.

Theorem 2.2 Zeί fi be a Heyting algebra, and let ψ G For, F: & -> For Z?e 5. ί.
(F, ψ) expresses Gί. ΓΛβ« α £ £((£) iff e(a) -+ψE INT/or some substitution
e:For ->For.

Proof: (<-) Since ^ £ £((£) by Definition 2.1.
(-•) Assume that a ί F((i). Then v(a) Φ l α for some valuation v in (i. Let

e be a substitution s.t. e(p) = F(x) if v(p) = x (p G Var). Now suppose that
e(αθ -> ̂  ^ INT. Then by the well-known completeness theorem for INT,
w(e(a) -• ψ) = *(B for some valuation w in some (B G SC. By Definition 2.1 the
function h: β -• (B s.t. Λ (x) = W(F(JC)) (Λ: G «) is an embedding of a into <B.
So it is easy to verify that w(e(β)) = w(F(v(β))) for any β G For (induction on
the complexity of β). Hence w(e(α» = w{F(v{a))). Moreover w(F{v{a))) Φ
1(B since v(a) Φ l α . Thus w(e(α)) Φ 1®. Contradiction.

Theorem 2.3 Lei JC c FSC. 7%e« a φ. E(3Z) iff a is refutable by the rules
rSb, ΓmP> and formulas in [χ(d): α G JC}.

Proof: (<-) Since χ(α) ί F(β) 2 F(JC) for each a G JC.
(->) Assume that a £ F(JC). Then a £ E(Gί) for some Gί G JC. Hence by

Theorem 2.2 and the Example above we have e(a) -* χ(β) G INT. Thus Hα.

Definition 2.4 Let α be a countable Heyting algebra, | fi| > 1. Then R(Gί) =
{ Λ ^ - ^ p r ^ c ^ ί α ) , |ΛΊ < K0,/?G Varί^) - {/?lβ} * 0 } . Moreover if JC
is a countable class of countable algebras then R(JC) = U iR(&): β G JC} pro-
vided that Var(£>α) Π Var(Aa) = 0 for all a Φ (B G JC.

Theorem 2.5 Let 3£ bea countable class of countable Heyting algebras. Then
a£E(3ΐ)iffais refutable by the rules r sb, rm p, and formulas in i?(JC).

Proof: (<-) Since i?(JC) ΠF(JC) = 0 .
(-•) Assume that a φ. E(3C). Then a £ F(d) for some S G JC. Hence e(a) -+

β G INT for some substitution e and for some β G R(&) by the Lemma in [13].

Corollary 2.6 Let a be a finite Heyting algebra, | β | > 1. Then a £ F(β) iff
a is refutable by the rules r sb, rm p, and formulas in R(Q).

Proof: By Theorem 2.5.

Definition 2.7 Let β = Π {Gz: 1 < / < « } © , where each α, is a finite Heyt-
ing algebra, n > 1. Then φ{d) = (ya -+ Δjt v . . . v Δ^) -> γ α , where

Δk = δ l

α , Λ Λ { P * - > p i / : * e α - {lβ}} (1 < / < « ) ,

Tα = V {P^^P.rx-^^ Φ l α , x,^ G C},
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and

ί p-+p if x = 1(?

, (JίGfl).
p ^ v . . v p ^ ifx = ( * ! , . . . , * „ )

Lemma 2.8 ([12]) Zeί α = Π{α,: 1 < / < « } © , wAm? each β, /s α/rate
algebra, n > 1, a/zrfletP:GL^>For" Z?e5./. P(x) = P , ( x E f l ) . ΓΛβAi

(i) (P,<^(α)) expresses α.
(ii) (P, <ρ(Φ~~)) expresses GΓ.

(iii) a ί £ ( β ) iff e(α) -> <pα E INT for some substitution β.
Lemma 2.9 ([12]) Letd = Π{α,:l < / < / i } © , β/eFSC (1 < / < « ) , / z > 2.
77z£Λ Λ̂β/*e are « ! , . . . , α Λ , j8 E For 5.^. φa = ((«i -> j8) Λ . . . Λ (an -> β) -•
α i v . . v α Λ ) G I N T , α/ιtf ( ( * ! - > j8) Λ . . . Λ ( α Λ - > / S ) - > α , ί £ ( β / ) ( 1 < / < / ! ) .

3 Dummett's LC By Dummett's logic we mean the system LC = INT +
(α-*j8) v(j8->α).

Theorem 3.1 (Dummett [1]) LC = £(3C), wΛere JC is the class of finite lin-
ear Heyting algebras.

We will use the following formulas (cf. Nagata [10]):

Nι = ((Pi -> A)) -•Pi) -*Pi,

Nn=((pn-+Nn-l)->pn)-*pn (n>l).

Theorem 3.2 α ̂  LC iff a is refutable by the rules r s b, rm p, and the formulas
Nn(n>l).

Proof: Simple.

The three-element algebra $ 0 ® is especially important.

Lemma 3.3 a £ E($o®) iffe(a) ->p v -ιp E INT/or 5ome substitution e.

Proof: By Theorem 2.2 and the fact that # 0 ® is expressed by (F,p v i p ) ,
where F(0) = -«(pv -ip), F ( * ) = p v -ip, F( l ) = -ι-i(p v ->p).

The Heyting-Lukasiewicz logic HL is an extension of INT by the following
axiom scheme: (-ijS -• a) -• (((α -* j8) -> α) ->α).

Theorem 3.4 (Lukasiewicz [5]) HL = ̂ (ίJo® )•

Theorem 3.5 a £ HL iff a is refutable by r s b, rm p, and the formula p v -ip.

Proof: By Lemma 3.3.

¥ Fa/zArovi /o^/c By Yankov's logic we mean the system YC = INT +
-•-•a Λ (a -> ]S) Λ ( ( # - • α ) -• α ) -> ]8.

Theorem 4.1 (Yankov [17], McKay [8]) YC = £(3C), wΛere JC = {̂ )g 0 :
n> 1).

First we define the following sequence of rules:
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Λ ( c L χ - + β ι ) Λ . . . Λ ( α Λ - > j 8 π ) - * α i v . . . v a n

Theorem 4.2 Ifn>2 then the rule yn is valid in YC.

Proof: Assume that —i —ι (-y -> α,) £ YC (1 < ί < n), where 7 = («i -• /Si)
Λ . . . Λ (an -* ft,). Then 1 1 (7 -> α, ) £ £(#0) (otherwise -»-i (7 -* αf ) G INT c
YC). Thus it is easy enough to see that 7 -• ax v . . . v an £ E(<$®) 2 YC (cf.
[12]).

Theorem 4.3 α £ YC iff a is refutable by the formula pv -ιp, and the rules
rSb,Γmp,y« (n>2).

Proof: (<-) By Theorem 4.2.
(->) Assume that a £ YC. Then by Theorem 4.1, a £ E($Q ®) for some « > 1.

If n = 1 then Hα by Lemma 3.3. If n > 2 then e(α) -» ̂ (<3o®) Ξ INT for some
substitution e by Lemma 2.8. Moreover by Lemma 2.9 there are α j , . . . , α Λ ,
iSG For s.t. ^ ( 5 8 θ ) - * ( ( α i - * i 8 ) Λ Λ (αΛ-^j8) ->«i v . . . v an) G INT, and
(αi-*/3) Λ . . . Λ (αn->j3)->«/<££(#()) (1 < / < « ) . Hence - i- ((αi-*j8) Λ . . .
Λ (α π -> β) -+ at) ί £(ί |o) =>£(3o@) d ^ / ̂  n)9 so H-i-. ( ( α i -^ |8) Λ . . .
Λ (α Λ -> β) -> «/) (1 < / < «) by Lemma 3.3. Applying the rule yn we have
H(αi->|8) Λ . . . Λ (α Λ ->/3)->αi v . . . v α Λ . Thus H^(ίJoΘ) and Hα.

5 ΓΛ̂  to^ίc o/ίΛe weak law of excluded middle The logic of the weak law of
excluded middle (WEM) is an extension of INT by the axiom scheme l α v i - i α .

Theorem 5.1 (Yankov [17], [19], McKay [8]) WEM = E(X)9 where JC =
{®3n:n >0}.

First note the following.

Proposition Let Q be a Heyting algebra, Ifx,y G β, (8) G {Λ,V,->) then

Lemma 5.2 Let ΰί be a Heyting algebra, and let ψ G For", F:&-+ For" be
s.t. (F, φ) expresses GΓ. ffψ' = Λ {τ»F(x) :xeGί}^>ψ andF': ® a -> For
is s. t.

(F(X) ifxea
F'{x) =\ (xe ®β)

^ -1 (p -• p) otherwise

(a) (F',ψ') expresses ®a.
(b) α ί £((*) iffe(a) -> ̂ ' G INT/or some substitution e.

Proof: (a)

(i) (F, ψ) expresses GΓ, so ̂ (Fίx)) = x(x G ft), υ0 W ^ !α f o r s o m e 0̂ in α~.
Let v'o be a valuation in ® β s.t. v'Q(p) = vo(p) (p G Var). Then v'0(β) =
ι;0(j8) for every β G For" by the above Proposition. Hence υ'0(ψ) = vo(ψ),
vUF(x)) = vo(F(x)) (x G a). Thus ι ό ( ^ W ) = * ^ θ Ct), ^ ( ^ r ) =
v6(^) ^ l©α
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(ii) Assume that υ(ψ') = *®9 where v is a valuation in (B G SC. Then v(ψ) = *&.
We have to show that h: © & -+ (B s.t. Λ(x) = v(F'(x)) (x G © (ϊ) is an em-
bedding of © β into (B. Since (F, i/0 expresses (ί~, we have

(•) h\a is an embedding of β~ into (B~.

We show that
(1) h is a homomorphism from ©<£ into (B. Indeed, Λ(OΛX) = Λ(0) Λ/*(*),

andλ(Ovx) = h(0)vh(x) (xG ©Ot). Moreover if x G ®Q then Λ(O->;t) =
Λ(lα) = l(Bby(*),andΛ(0)-^Λ(Λ:) = 0(B-^Λ(Λ:) = l(B.IfΛ:GαthenΛ(Λ:->0) =
Λ(0), and Λ(x) -• A(0) = f(F(x)) -• 0^ = ^υ{F(x)) = y(->F(x)) = 0& since
y(i-.F(x)) = 1^. Also Λ(-υt) = Λ(x->0) = h(x) ->Λ(0) = Λ(x) -^0 = -^h(x)

(xe® a).
(2) If xΦy then h(x)Φh(y). Indeed, if Jt,j>G α then Λ(ΛΓ) ^Λ( j )by(*) .

Assume that, say, x = 0®a. Then>> Φ 0@a, so h(y) = υ(F(y)). Now suppose
that h(x) = Λ(j ), i.e. v(F(y)) = 0 @ α . Then y(-«-iF(^)) = 0 @ α . Contra-
diction.

(b) By (a) and Theorem 2.2.

Definition 5.3 Let (2 = Πfβ,: 1 < / < Λ} ©, where each β,- is a finite alge-
bra, n > 1. Thene(©d) = Λ {-*-*Px:x G A] ->^(β").

Lemma 5.4 Zeί β = Π{α/: 1 < / < « } © , fyGFSC (1 </</i), AZ > 2. ΓΛέw
there are oίi,..., αn, ]8 G For~5./. e(©β) -> (XΛ ( « I ->]8) Λ . . . Λ (αrt-^i8) ->
«! v . . . v αΛ) G WEM, and λ Λ ( a i -+ /3) Λ . . . Λ (αΛ-*]8) - > α / ί £ ( © β / )
(1 < /< n), where λ = Λ h ^ / ? : p E V a r ^ , . . . ,αΛ,j8)}.

AΌO/: Let j8 = Δ^- v . . . v Δ^-,

«/ = V {P*->/y */->Λ ^ lα,) U [Pyiyt Φ lβ /)

U ( W β y : l ^iΦj^n) (1 <i<n).

Since both (-1-1 (/> v$r) -> r) -• (-ι-v> -> r) G WEM a n d p -> (̂ r ->/>) G WEM,
it remains to be shown that λ Λ (OL\ -• |8) Λ . . . Λ (α Λ -> |8) -• α, ί £ ( © a , )
(1 < / < n). Let Vj be a valuation in ©fi f s.t.

Γ Λ: if k = /

^0 Q / otherwise (1 < A:, / < n, x G Qk).

Then it is easy to see that Vj(Px) = pι

x. (Λ:G & - {lα))> and V/(α, ) ̂  l©α, since
© β , G SC. Further i /ίΔ^-) = l @ α . by the above Proposition. Hence Vi(β) =
l @ α . . Moreover vt{p) Φ 0 @ α . for every/? G V a r ^ , . . . ,an,β)9 so Vi(-*-*p) =
l @ α . . Thus ϋ, (λΛ («!->/?) Λ . . . Λ (a n -*j8)->a/) Φ l @ α . .

We define the following rules:

HλΛ(«pg1)Λ...Λ(«->^«< (ISI^I.)
HλΛ ( α i - > 0 i ) Λ . . . Λ («„ -^ /S«) —> oί! v . . . v an

w h e r e λ = Λ { ^ ^ p : p G V a r ( α 1 , . . . , α Λ > j 8 1 , . . . , j 8 J } , and « ! , . . . , α Λ , j 8 1 , . . . , j 8 Λ

are negation-free.

Theorem 5.5 F o r every n > 2 ^Λe r«/e wr t is vα//V/ m WEM.



558 TOMASZ SKURA

Proof: Assume that 7 -> at• ^ WEM (1 < / < n), where

y = \ Λ ( α i - ^ β ! ) Λ . . . Λ (an-+βn),

λ = Λ {->->/?:/? G V a r ί α j , . . . , βn)}, and « i , . . . , βn E F o r "

Then by Theorem 5.1, 7 -• α f <£ £ ( ® β , ) for some algebra (1/ (1 < / < « ) . So
ι;/(7 -> α, ) qt l@β. for some valuation V\ in ® β , . Now tf (p) =£ 0©^. for each
/? E V a r ( α i , . . . ,βn) (otherwise Vj(">"«/?) = O®^.). Hence by the fact that

α i , . . . , βn E F o r " ( α i -• ft) Λ . . . Λ (α Λ -> ft,) -> ά, £ £ ( « , ) (1 < / < n) (cf.
Proposition). Thus by Theorem 1 in [12] we have ( α 1 - > β 1 ) Λ . . . Λ (α n -> βn) ->
αj v . . . v α w ί ^ ( Q ) for some algebra Q. By the above Proposition γ-^αj v
. . . v (xnφE(®Q).

Lemma 5.6 a ^ E(@^ι) iff e(a) -^ N2 E INT for some substitution e,
where N2 is the formula defined in Section 3.

Proof: By Theorem 2.2 and the fact that ®$χ is expressed by (F,N2), where
F(*&) =P2, F(03ι) =pu F(l3ι) =p-*p, F(0®gι) = ^(p-+p).

Lemma 5.7 Let (£ = Π {β,: 1 < / < « } © , where each CE, is a finite algebra,
n > 1. Then (P\ e(®d)) expresses © β , where P': © β -• For is sΛ.

[Px if x E G
P'U) =^ (JCE ® β ) .

(̂  -1 (/?->/?) otherwise
Proo/ By Lemma 2.8, (P,φ(d~)) expresses Gί~, so by Lemma 5.2 (P',e(@Gί))
expresses ®fi.

Lemma 5.8 a£E(@$n) iffe(a)-+e(®3n) E INT for some substitution e.

Proof: By Lemmas 5.7 and 5.2.

Theorem 5.9 a £ WEM iff a is refutable by the formula N2, and the rules
Γsb>rmp,W/i (n > 2 ) .

Proof: (<-) By Theorem 5.5 and Lemma 5.6.
(-•) Assume that a £ WEM. Then by Theorem 5.1, a £ E( ® &•) for some

/ > 1. By Lemma 5.8,£(α)->e(©<5/)E INT for some substitution e. Let en =
e(®3n) (n ^ 1). We show by induction on n that HeΛ.

(1) n = 1. By Lemma 5.7, β! £ 2?(®#i)* so Hei by Lemma 5.6.
(2) n > 2. By Lemma 5.4, there are α i , . . . , α r t , β E For" s.t. en ->

(λ Λ (α! -• j8) Λ . . . Λ ( α π ^ i 3 ) ^ α 1 v . . . v α n ) E WEM, and λ Λ (a{ -> β) A
. . . Λ (αΛ->/3)->α i>££(©&,_!> (1 < / < n). Hence Hλ Λ ( t t l -> /3) Λ . . .
Λ (oLn-*β)^>oLi (1 < / < n) by Lemma 5.8 and the induction hypothesis. Now
applying the rule wM we have Hλ Λ (OCI -> j8) Λ . . . Λ (αM -> |8) -•«! v . . . v απ .
Thus H€rt.

6 Medvedev's logic Medvedev's logic M is the system E(X), where 3C =
{H ((?):(? = (2X - {X}9<^)9 X Φ 0 is a finite set} and H((P) is the Heyting al-
gebra associated with a poset (P (cf. Medvedev [9], Gabbay [2]).
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Theorem 6.1 a £ Miff a is refutable by the variable p and the rules r s b, r^p,
r d, where

(Γmp) j 9 (Γd) —j W~

Remark The symbol HKP denotes provability in Kreisel-Putnam's logic KP =
INT + (-iα -> β v 7 ) -> (-ια -• 0) v (-»α -> 7) . We are using hm» rather than \-M

because it is not known whether M is recursively axiomatizable.

Proof: (<-) Since M has the disjunction property and KP Q M.
(-•) Assume that a 0Λ. Then a £ E((&) for some (B G JC whence e(a) ->

χ((B) E INT for some substitution e. From the proof of Theorem 5 in Mak-
simova [7] it follows that s(x&) -> -10^ v . . . v - ια m E KP for some substitution
s, and -iα/ is not a classical tautology (1 < / < m). Thus Hχ((B), so Hα.

7 Logics without the finite model property

Theorem 7,1 (Wroήski [15], cf. also Kuznetsov and Gerchiu [4]) Letde FSC
be s. t. 0a = XγAx2A x3 for some pairwise incomparable x 1 , x 2 , x 3 G ( i , and let
(R be the Rieger-Nishimura lattice (cf [11]). Then the logic E((A ® a) does not
have the finite model property.

A refutation calculus for each such logic can be obtained by Theorem 2.5,
but we give here much simpler formulations for these logics.

Theorem 7.2 Let a and (R be as in Theorem 7.1. Then a <£ E((Ά ® β) iff a is
refutable by the rules r s b, r m p , and the formula (-1-1/7 v (-1 -1/7 -»/?) -* χa-) ->
χa-9 where p ί Var(χ α -).

Proof: By the proof of Lemma 12 in [15].
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