On the Maximality of Some Pairs of p-t Degrees

XIZHONG ZHENG

Abstract

This paper discusses the properties of polynomial time Turing degrees. It is shown that there exist recursive p-t degrees $a>a_{0}$ and $b>b_{0}$, for any recursive p-t degrees a_{0} and b_{0}, such that $\{a, b\}$ and $\left\{a_{0}, b_{0}\right\}$ have the same low bound set of the degrees. Hence, there is neither maximal minimal pair, maximal exact pair, nor maximal branching pair of p -t degrees.

Zheng [7] proved that there is no maximal p-m minimal pair. This paper will show a similar (in fact somewhat more general) result about p-t degrees.

The concept of the polynomial time Turing reducibility (abbrev. p-t reducibility) was introduced by Cook in [3]. A set A is polynomial time Turing reducible to B (denoted by $A \leq_{\mathrm{t}}^{\mathrm{p}} B$) if there is a polynomial time bounded Turing machine M^{B} with oracle B such that M^{B} accepts A. A is p-t equivalent to B if $A \leq_{\mathrm{t}}^{\mathrm{p}} B$ and $B \leq_{\mathrm{t}}^{\mathrm{p}} A$, which is denoted by $A \equiv \equiv_{\mathrm{t}}^{\mathrm{p}} B$. The p-t degree of set A (denoted by $\operatorname{deg}(A)$) is the class of all sets that are equivalent to A, i.e., $\operatorname{deg}(A)=$ $\left\{B: A \equiv \equiv_{\mathrm{t}}^{\mathrm{p}} B\right\}$. Below, the p-t degrees are denoted by a, b, c, \ldots. For any p-t degrees a and b, a is called (p-t) reducible to b (denoted by $a \leq b$) if there are sets $A \in a$ and $B \in b$ such that $A \leq_{\mathrm{t}}^{\mathrm{p}} B$. In this paper, the degree always means the p -t degree, and the " $\mathrm{p}-\mathrm{t}$ " is often omitted.

Like the Turing reducibility which gives a natural classification of the unsolvable problems according to their relative difficulty, p-t reducibility provides a natural tool for classifying the solvable but not efficient solvable (so-called intractable) problems according to their relative complexity. So the discussion of polynomial time degrees concerns mainly the recursive ones. In this paper, we deal only with recursive sets and degrees.

The study of the structural properties of p-t degrees was initiated by Ladner [5],[6]. Ambos-Spies [1] offers a broader discussion. Ladner proved in [6] that there are degrees a, b with infimum 0 , the degree of polynomial time computable sets, i.e., $a \cap b=0$. A pair a, b with this property is called a minimal pair. Furthermore, Ambos-Spies has shown in [1] that any nonzero degree is one-half of some minimal pair. Then it is natural to ask whether there is a minimal pair which is maximal, i.e., is there a minimal pair a, b such that any pair a_{1}, b_{1} with
$a_{1}>a$ and $b_{1}>b$ is not a minimal pair. This question for the recursively enumerable Turing degrees has recently been answered negatively by Harrington and Soare [4]. This paper answers this question negatively for the p-t degrees and shows that no minimal pair is maximal. Similar results will also be obtained for the exact pair and the branching pair. A pair of degrees a, b is called an exact pair if there is an increasing sequence of degrees $\left\{c_{n}\right\}_{n \in \omega}$ such that $\forall n\left(c_{n} \leq a, b\right)$ \& $\forall d\left(d \leq a, b \rightarrow \exists n\left(d \leq c_{n}\right)\right)$, and a, b is a branching pair of degree c if $c=$ $a \cap b$. In fact, we will prove a more general result which asserts that there are $a_{1}>a$ and $b_{1}>b$, for any p-t degrees a and b, such that $\left\{a_{1}, b_{1}\right\}$ and $\{a, b\}$ have the same set of low bound degrees.

Let Σ be an alphabet with two elements 1 and $0 . \Sigma^{*}$ is the set of all finite strings over Σ. Our discussion will be restricted to Σ^{*}, and all sets constructed will be subsets of Σ^{*}. For any strings $x, y \in \Sigma^{*}, x y$ is the concatenation of x followed by $y .|x|$ is the length of $x .\langle$,$\rangle is a one-to-one polynomial time comput-$ able pairing function from $\Sigma^{*} \times \Sigma^{*}$ onto Σ^{*} with polynomial time computable inverse functions (see Balcazar et al. [2]). Any natural number n can be written in binary and thought of as an element of Σ^{*}. Then we can define the nth section of A for any set A and natural number n as follows. $A^{[n]}=\{x:\langle n, x\rangle \in A\}$ and $A^{[\leq n]}=\mathrm{U}_{i \leq n} A^{[i]}$. We do not distinguish between a set and its characteristic function, so $x \in A$ iff $A(x)=1$ and $x \notin A$ iff $A(x)=0$. A function f is polynomial honest if f is recursive and there is a polynomial p such that $f(n)$ can be computed in $p\left(f(n)\right.$) steps for all $n \in \omega$. (Formally, function f from Σ^{*} to Σ^{*} is polynomial honest if there exists a polynomial p such that $p(|f(x)|)>|x|$ for all $x \in \Sigma^{*}$.) Note that for any recursive function g and natural number n, there is a strictly increasing polynomial honest function f with $g(n) \leq f(n)$, which we denote by " f dominates g ". For any sets A and B, the join of A and B is defined by $A \oplus B=\{0 x: x \in A\} \cup\{1 x: x \in B\}$.

Other unexpressed concepts and notations are all from [1] and [2].
Now we can prove the main theorem.
Theorem. There are degrees $a>a_{0}$ and $b>b_{0}$ for any degrees a_{0} and b_{0} such that $\{a, b\}$ and $\left\{a_{0}, b_{0}\right\}$ have the same low bound set of degrees, i.e.,

$$
\forall d\left(d \leq a, b \leftrightarrow d \leq a_{0}, b_{0}\right)
$$

(Note: The result of the theorem is also true for all p-t degrees including nonrecursive ones.)

Proof: Fix $A^{\prime} \in a_{0}, B^{\prime} \in b_{0}$ and define A_{0}, B_{0} as follows.

$$
\begin{aligned}
& A_{0}(\langle n, x\rangle)= \begin{cases}0 & \text { if }|x|>n \\
A^{\prime}(x) & \text { if }|x| \leq n\end{cases} \\
& B_{0}(\langle n, x\rangle)= \begin{cases}0 & \text { if }|x|>n \\
B^{\prime}(x) & \text { if }|x| \leq n\end{cases}
\end{aligned}
$$

It is obvious that $A_{0} \in a_{0}, B_{0} \in b_{0}$ and $A_{0}^{[n]}, B_{0}^{[n]} \in 0$ for any n.
Note that it is sufficient for us to construct $a>a_{0}$ such that $\left\{a, b_{0}\right\}$ has the same low bound set of degrees with $\left\{a_{0}, b_{0}\right\}$. Thus we need only to construct a recursive set A satisfying the following requirements for all e :

$$
\begin{array}{ll}
R_{2 e}: & A \neq P_{e}^{A_{0}} \\
R_{2 e+1}: & D=M_{e}^{A_{0} \oplus A}=N_{e}^{B_{0}} \rightarrow D \leq_{\mathrm{t}}^{\mathrm{p}} A_{0}, B_{0}
\end{array}
$$

where $\left\{P_{e}^{X}\right\}_{e \in \omega}$ is an effective enumeration of all polynomial time bounded deterministic Turing machines with oracle X, and $\left\{M_{e}^{X}, N_{e}^{X}\right\}$ is the effective enumeration of all pairs of such machines. Let $\left\{p_{e}\right\}_{e \in \omega}$ be a recursive sequence of polynomials such that p_{e} bounds the running time of M_{e}^{X} for all X. If set A meets the requirements R_{e} for all e, then $A_{0}<_{\mathrm{t}}^{\mathrm{p}} A_{0} \oplus A$ by all $R_{2 e}$ and $\forall D\left(D \leq_{\mathrm{t}}^{\mathrm{p}}\right.$ $\left.B_{0} \& D \leq_{\mathrm{t}}^{\mathrm{p}} A_{0} \oplus A \rightarrow D \leq_{\mathrm{t}}^{\mathrm{p}} A_{0} \& D \leq_{\mathrm{t}}^{\mathrm{p}} B_{0}\right)$ by all $R_{2 e+1}$. Hence the degree $a=$ $\operatorname{deg}\left(A_{0} \oplus A\right)$ is what we need.

The strategy for meeting the requirements $R_{2 e}$ for all e is a typical diagonal method. To meet $R_{2 e+1}$, we try to ensure that $M_{e}^{A_{0} \oplus A} \neq N_{e}^{B_{0}}$ by choosing an appropriate extension of the given part of A. If it fails, then the set $D=$ $M_{e}^{A_{0} \oplus A}=N_{e}^{B_{0}}$ must be p-t reducible to both A_{0} and B_{0}.

The set A will be constructed by an initial segment argument. While we construct A we also construct a uniformly recursive sequence of sets $\left\{A_{e}\right\}$ and functions $\left\{f_{e}\right\}$. At the end of stage s, all the sets and functions constructed are determined on all strings of length $\leq s$. Each stage will be effective and finite, hence A (as well as A_{e} and f_{e}) are recursive. Furthermore, because we are interested only in the recursive sets, the step-counting function of the computation of B_{0} must be a recursive function which can be dominated by a polynomial honest function, say, b. Then $b(|x|)$ is always greater than the number of the steps computing the $B_{0}(x)$ for all x.

The construction of A :
Stage 0: Proceed to stage 1.
Stage $s+1$: Given $A_{e}(x), A(x)$, and $f_{e}(x)$ for all e and x with $|x|<s$. For $e \geq s$ and x with $|x|=s$, let $A_{e}(x)=B_{0}(x)$ and $f_{e+1}(s)=b(s)$. For $e<s$ and x with length $s, A_{e}(x), f_{e+1}(s)$, and $A(x)$ will be defined by the following $s+1$ substages from s to 0 .

Substage $e(0 \leq e \leq s)$: Let $f_{e}(s)$ be the least number $n>b(s)$ such that the construction up to now can be performed in n steps.

Now, we say the requirement $R_{2 e}$ is satisfied at stage $s+1$ if the following hold:

$$
\begin{equation*}
\exists x\left(|x|<s \& A(x) \neq P_{e}^{A_{0}}(x)\right) . \tag{1}
\end{equation*}
$$

Requirement $R_{2 e+1}$ is satisfied at stage $s+1$ if

$$
\begin{equation*}
\exists y\left(p_{e}(|y|) \leq s \& M_{e}^{A_{0} \oplus A \upharpoonright s}(y) \neq N_{e}^{B_{0}}(y)\right) \tag{2}
\end{equation*}
$$

where $A \upharpoonright s=\{x: x \in A \&|x|<s\}$.
We say requirement $R_{2 e}$ requires attention at stage $s+1$ if it is not yet satisfied and there is an x such that

$$
\begin{equation*}
x \notin \Sigma^{*[\leq e]} \&|x|=s \tag{3}
\end{equation*}
$$

Requirement $R_{2 e+1}$ requires attention if it not yet satisfied and there are x, t, and finite set C satisfying the following:

$$
\begin{gather*}
|x|<f_{e}(s) \& t=p_{e}(|x|), \tag{4}\\
C \upharpoonright s=\left(A_{0} \oplus A\right) \upharpoonright s, \tag{5}
\end{gather*}
$$

$$
\begin{gather*}
\forall y\left(y \in \Sigma^{*[\leq e]} \oplus \Sigma^{*[\leq e]} \& s \leq|y|<t \rightarrow C(y)=\left(A_{0} \oplus B_{0}\right)(y)\right) \tag{6}\\
M_{e}^{C \backslash t}(x) \neq N_{e}^{B_{0}}(x) . \tag{7}
\end{gather*}
$$

The definition of $A_{e-1}(x)$ for $|x|=s$ is distinguished into the following three cases.

Case 1. If $R_{2 e}$ requires attention at stage $s+1$, let x_{0} be the least x satisfying (3) under the lexicographical order of Σ^{*}. For all x with length s, define

$$
A_{e-1}(x)= \begin{cases}B_{0}(x) & \text { if } x \neq x_{0} \\ 1-P_{e}^{A_{0}}\left(x_{0}\right) & \text { if } x=x_{0}\end{cases}
$$

Then we say that $R_{2 e}$ receives attention at stage $s+1$.
Case 2. If $R_{2 e+1}$ requires attention at stage $s+1$ but $R_{2 e}$ does not, then let x_{0}, t_{0}, C_{0} be the least x, t, C satisfying (4)-(7), under the assumption that the class of all finite sets has been effectively coded, and hence there is a well ordering on it. Define $A_{e-1}(x)=C(1 x)$ for all x with length s and then say that $R_{2 e+1}$ receives attention at stage $s+1$.

Case 3. If neither $R_{2 e}$ nor $R_{2 e+1}$ requires attention at stage $s+1$, then define $A_{e-1}(x)=A_{e}(x)$ for all x with length s.

In all three cases, if $e>0$, proceed to substage $e-1$. At the last substage (i.e., $e=0$), we will define the $A_{-1}(x)$ for all x with length s. Then let $A(x)=$ $A_{-1}(x)$ for $|x|=s$ and proceed to stage $s+2$.

This ends the construction.
It is worth noting that our construction is a priority argument within a stage. That is, during each stage the requirements all try to become satisfied. Some of the requirements may receive attention. But only the highest priority one that receives attention receives really effective treatment for our set A by the reverse order of the substages from s to 0 .

We say that requirement R_{m} is active at stage $s+1$ if R_{m} receives attention but no requirements R_{n} with $n<m$ require, hence receive, attention. It is obvious that the construction is effective, and so A, A_{e}, and f_{e} are all recursive. And f_{e} is a strictly increasing polynomial honest function such that $A_{e}(x)$ and $A(x)$ can be computed in $f_{e}(|x|)$ and $f_{e}(|x|+1)$ steps, respectively, for all x and e.

To see that A succeeds we need only prove the following five lemmas.
Lemma 1. For any e, if $R_{2 e}$ is active at stage $s+1$, then $R_{2 e}$ is satisfied at stage $s+2$ and is met.
Proof: By the construction, if $R_{2 e}$ is active at stage $s+1$, then $A_{e^{\prime}}(x)=A_{e}(x)$ for all $e^{\prime}<e$ and all x with length s. Particularly, we have $A\left(x_{0}\right)=A_{e-1}\left(x_{0}\right)=$ $1-P_{e}^{A_{o}}\left(x_{0}\right) \neq P_{e}^{A_{o}}\left(x_{0}\right)$ for some x_{0} with length s. Hence $R_{2 e}$ is satisfied at stage $s+2$ and then $R_{2 e}$ is met.

Lemma 2 For any e, if $R_{2 e+1}$ is active at stage $s+1$ and there is no requirement $R_{m^{\prime}}$ with $m^{\prime}<2 e+1$, that requires attention after stage $s+1$, then $R_{2 e+1}$ is satisfied at some stage after stage $s+1$.

Proof: Suppose that $R_{2 e+1}$ is active at stage $s+1$, then there are x_{0}, t_{0}, C_{0} satisfying (4)-(7). Note that $e \leq s+1 \leq t_{0}$. So, if $R_{2 e+1}$ is not satisfied before stage t_{0}, then $R_{2 e+1}$ will be active whenever it requires attention after stage $s+1$ because there is no $R_{m^{\prime}}$ with $m^{\prime}<2 e+1$ that will require attention. Hence $A_{e-1}(x)=A(x)$ for any x with $|x| \geq s+1$. This means that $R_{2 e+1}$ will require attention, hence be active, at stage t for all t with $s+1 \leq t \leq t_{0}$, and even the x_{0}, t_{0}, C_{0} being chosen at stage t are the same as those of stage $s+1$. Then $C_{0} \upharpoonright t_{0}=A_{0} \oplus A \upharpoonright t_{0}$, and $R_{2 e+1}$ is satisfied at stage t_{0} by (7).

Lemma 3. Each requirement R_{m} requires attention at most finitely often.
Proof: By induction on m. For $m=0$, it is obvious by Lemma 1 and the construction.

Suppose that $m>0$, then there is s_{0}, by the induction hypothesis, such that there is no $R_{m^{\prime}}$ with $m^{\prime}<m$ which will require attention after stage s_{0}. So, if R_{m} requires attention after stage s_{0}, then R_{m} will be active and will be satisfied at some later stage t by Lemma 2. Then it is not difficult to see that R_{m} will not require attention after stage t. So R_{m} requires attention at most finitely often.

Based on the above technical lemmas, our main results can be shown as the following two lemmas.

Lemma 4. Requirement $R_{2 e}$ is met for all e.
Proof: Firstly, it is obvious by (1) that if $R_{2 e}$ is satisfied at some stage, then it is met. Now suppose by way of contradiction that $R_{2 e}$ is never satisfied at any stage. Note that there are infinitely many s such that $\exists x\left(x \notin \Sigma^{*[\leq e]} \&|x|=s\right)$, and for every such $s, R_{2 e}$ will require attention at stage $s+1$. This means that $R_{2 e}$ requires attention infinitely often, contrary to Lemma 3.

Lemma $5 \quad R_{2 e+1}$ is met for every e.
Proof: Suppose by way of contradiction that $R_{2 e+1}$ is not met and has the least index among the requirements which are not met. Then we have at first that

$$
\begin{equation*}
D=M_{e}^{A_{0} \oplus A}=N_{e}^{B_{0}} . \tag{8}
\end{equation*}
$$

Choose s_{0} by Lemma 3 such that, for any $s \geq s_{0}$, there are no x, t, C satisfying (4)-(7) at stage s and no requirement R_{m} with $m<2 e+1$ that requires attention at stage s. Then, by the construction, we have

$$
\begin{gather*}
\forall x\left(|x| \geq s_{0} \rightarrow A(x)=A_{e}(x)\right), \text { and } \tag{9}\\
\forall x\left(|x| \geq s_{0} \& x \in \Sigma^{*[\leq e]} \rightarrow A(x)=B_{0}(x)\right) . \tag{10}
\end{gather*}
$$

It follows from (9) and the definition of f_{e} that

$$
\begin{equation*}
\forall x\left(|x| \geq s_{0} \rightarrow A(x) \text { can be computed in } f_{e}(x) \text { steps }\right) \tag{11}
\end{equation*}
$$

$$
\& \forall x\left(|x|<s_{0} \rightarrow A(x) \text { can be computed in } f_{e}\left(s_{0}\right) \text { steps }\right) .
$$

Now we can show that $D \leq_{\mathrm{t}}^{\mathrm{p}} A_{0}, B_{0}$ as follows. $D \leq_{\mathrm{t}}^{\mathrm{p}} B_{0}$ is from (8) immediately. To show that $D \leq_{\mathrm{t}}^{\mathrm{p}} A_{0}$, we need only show that D can be computed in polynomial time with oracle A_{0}.

Note that there are only finite many x with $|x| \leq f_{e}\left(s_{0}\right)$. We can consider only such x that $|x|>f_{e}\left(s_{0}\right)$. Given x with $|x|>f_{e}\left(s_{0}\right)$, find the maximal s such that $f_{e}(s-1) \leq|x|$. This can be done in polynomial time by the polynomial honesty of f_{e}. Since $s>s_{0}$, by the choice of s_{0} we have that $M_{e}^{C_{1} \upharpoonright t}(x)=$ $N_{e}^{B_{0}}(x)=M_{e}^{C_{2} \upharpoonright t}(x)$ for $t=p_{e}(|x|)$ and any two finite sets C_{1}, C_{2} satisfying (5) and (6) at stage s. Note that, by (10), $A_{0} \oplus A$ does satisfy (5) and (6) at stage s. Hence we have $M_{e}^{C \upharpoonright t}(x)=M_{e}^{A_{0} \oplus A \backslash t}(x)=M_{e}^{A_{0} \oplus A}(x)=D(x)$ whenever C satisfies (5) and (6). Particularly, let C satisfy (5) and the following:

$$
\begin{equation*}
\forall y\left(s \leq|y|<t \rightarrow C(y)=A_{0}^{[\leq e]} \oplus B_{0}^{[\leq e]}(y)\right) . \tag{12}
\end{equation*}
$$

Then C must satisfy (6). So it is sufficient to compute $M_{e}^{C i t}(x)$ for the computation of $D(x)$. Now, in the computation of $M_{e}^{C \upharpoonright t}(x)$, any query $z \in C$? can be replaced by the query $z \in A_{0}^{[\leq e]} \oplus B_{0}^{[\leq e]}$? if $|z| \geq s$, or by $z \in A_{0} \oplus A$? if $|z|<s$. Note that $z \in A_{0} \oplus A \leftrightarrow \exists z_{1}\left(z=0 z_{1} \& z_{1} \in A_{0}\right)$ or $\exists z_{2}\left(z=1 z_{2} \&\right.$ $\left.z_{2} \in A\right), A\left(z_{2}\right)$ can be computed in $\max \left(f_{e}\left(\left|z_{2}\right|\right), f_{e}\left(s_{0}\right)\right) \leq f_{e}(s-1) \leq|x|$ steps, and $A_{0}^{[\leq e]} \oplus B_{0}^{[\leq e]} \in 0$ by the choice of A_{0} and B_{0}. So, $D(x)$ can be computed in polynomial time with oracle A_{0}, hence $D \leq_{\mathrm{t}}^{\mathrm{p}} A_{0}$.

This completes the proof of the theorem.
Corollary 1. For any minimal pair a_{0}, b_{0}, there are $a>a_{0}$ and $b>b_{0}$ such that a, b is a minimal pair. Hence there is no maximal minimal pair of p-t degrees.

Corollary 2. For any exact pair a_{0}, b_{0} of an increasing sequence of degrees $\left\{c_{n}\right\}_{n \in \omega}$, there are $a>a_{0}$ and $b>b_{0}$ such that a, b is also an exact pair of $\left\{c_{n}\right\}_{n \in \omega}$. Hence, there is no maximal exact pair.

Corollary 3. If a_{0}, b_{0} is a branching pair of c, then there are degrees $a>a_{0}$ and $b>b_{0}$ such that a, b is also a branching pair of c. Hence there is no maximal branching pair for any degree.

Corollary 4. For any degrees a, b with $a<b$, there exists degree $d>a$ such that $a=b \cap d$, i.e., b is a-cappable.

Acknowledgment This project was supported by National NSF of China.

REFERENCES

[1] Ambos-Spies, K., "On the structure of the polynomial time degrees of recursive sets," Habilitation Thesis, Universität Dortmund, 1984 (Technical Reports, vol. 206 (1985), Department of Computer Sciences, Dortmund University).
[2] Balcazar, J. L., J. Diaz, and J. Gabarro, Structural Complexity I, EATCS monographs on theoretical computer science, Springer-Verlag, Berlin, 1988.
[3] Cook, S. A., "The complexity of theorem proving procedure," pp. 151-158 in Proceedings of the Third Annual ACM Sympoisum on Theory of Computing, Association for Computing Machinery, Baltimore, 1971.
[4] Harrington, L. and R. I. Soare, "Games in recursion theory and continuity properties of capping degrees," preprint.
[5] Ladner, R. E., "Polynomial time reducibility," pp. 122-129 in Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, Baltimore, 1973.
[6] Ladner, R. E., "On the structure of polynomial time reducibility," Journal of the Association for Computing Machinery, vol. 22 (1975), pp. 155-171.
[7] Zheng, X., "There is no maximal p-m minimal pair," Journal of Nanjing University, vol. 9 (1992), pp. 18-22.

Department of Mathematics
Nanjing University
Nanjing 210008
People's Republic of China

