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On the ΛΛαximαlity of Some Pairs of p-t Degrees

XIZHONG ZHENG

Abstract This paper discusses the properties of polynomial time Turing de-
grees. It is shown that there exist recursive p-t degrees a > a0 and b > b0, for
any recursive p-t degrees a0 and b0, such that [a,b] and {ao,bo} have the
same low bound set of the degrees. Hence, there is neither maximal minimal
pair, maximal exact pair, nor maximal branching pair of p-t degrees.

Zheng [7] proved that there is no maximal p-m minimal pair. This paper will
show a similar (in fact somewhat more general) result about p-t degrees.

The concept of the polynomial time Turing reducibility (abbrev. p-t reduc-
ibility) was introduced by Cook in [3]. A set A is polynomial time Turing reduc-
ible to B (denoted by A <f B) if there is a polynomial time bounded Turing
machine MB with oracle B such that MB accepts A. A is p-t equivalent to B if
A <? B and B <? A, which is denoted by A s £ B. The p-t degree of set A (de-
noted by deg(^4)) is the class of all sets that are equivalent to A9 i.e., deg(A) =
[B:A =t B). Below, the p-t degrees are denoted by a,b,c9 For any p-t de-
grees a and b9 a is called (p-t) reducible to b (denoted by a < b) if there are sets
A EL a and B E b such that A <f B. In this paper, the degree always means the
p-t degree, and the "p-t" is often omitted.

Like the Turing reducibility which gives a natural classification of the un-
solvable problems according to their relative difficulty, p-t reducibility provides
a natural tool for classifying the solvable but not efficient solvable (so-called
intractable) problems according to their relative complexity. So the discussion
of polynomial time degrees concerns mainly the recursive ones. In this paper, we
deal only with recursive sets and degrees.

The study of the structural properties of p-t degrees was initiated by Ladner
[5],[6]. Ambos-Spies [1] offers a broader discussion. Ladner proved in [6] that
there are degrees a9 b with infimum 0, the degree of polynomial time comput-
able sets, i.e., a Π b = 0. A pair a,b with this property is called a minimal pair.
Furthermore, Ambos-Spies has shown in [1] that any nonzero degree is one-half
of some minimal pair. Then it is natural to ask whether there is a minimal pair
which is maximal, i.e., is there a minimal pair a9b such that any pair aλ9bχ with
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aγ> a and bγ > b is not a minimal pair. This question for the recursively enu-
merable Turing degrees has recently been answered negatively by Harrington and
Soare [4]. This paper answers this question negatively for the p-t degrees and
shows that no minimal pair is maximal. Similar results will also be obtained for
the exact pair and the branching pair. A pair of degrees a9b is called an exact
pair if there is an increasing sequence of degrees {cn]neω such that VΛ(CΛ < a,b)
& \fd(d < a, b -• 3n(d < cn))9 and a,b is a branching pair of degree c if c =
a Π b. In fact, we will prove a more general result which asserts that there are
ax> a and b\ > b, for any p-t degrees a and b, such that [aΪ9bι] and [a,b]
have the same set of low bound degrees.

Let Σ be an alphabet with two elements 1 and 0. Σ* is the set of all finite
strings over Σ. Our discussion will be restricted to Σ*, and all sets constructed
will be subsets of Σ*. For any strings x,y G Σ*, xy is the concatenation of x fol-
lowed by y. \x\ is the length of x. <, > is a one-to-one polynomial time comput-
able pairing function from Σ* x Σ* onto Σ* with polynomial time computable
inverse functions (see Balcazar et al. [2]). Any natural number n can be written
in binary and thought of as an element of Σ*. Then we can define the nth section
of A for any set A and natural number n as follows. A[n] = {x: (n,x) G A]
and Aι~n] = UiiStnA

li]. We do not distinguish between a set and its character-
istic function, so x G A iff A (x) = 1 and x^AiffA (x) = 0. A function/ is poly-
nomial honest if/ is recursive and there is a polynomialp such thztf(n) can be
computed inp(f(n)) steps for all n G ω. (Formally, function/ from Σ* to Σ*
is polynomial honest if there exists a polynomial/? such that/?(|/(Λr)|) > |JC| for
all x G Σ*.) Note that for any recursive function g and natural number n, there
is a strictly increasing polynomial honest function/ with g(n)</(«), which we
denote by "/ dominates g". For any sets A and B, the join of A and B is defined
byA®B={Ox:xeA}U{lx:xeB}.

Other unexpressed concepts and notations are all from [1] and [2].
Now we can prove the main theorem.

Theorem. There are degrees a> a0 and b > b0for any degrees a0 and b0 such
that [a9b] and {ao,bo} have the same low bound set of degrees, i.e.,

vrf(rf< a,b++d< ao,bo).

(Note: The result of the theorem is also true for all p-t degrees including non-
recursive ones.)

Proof: Fix A' G a0, B' G b0 and define A0,B0 as follows.

Γo i f | jc |>Λ
A0«n,x» =\ A/ί ^ . '

\^A (x) if \x\ < n

{0 if IJCI > n

B'(x) if |* | <n.

It is obvious that Ao G a0, Bo G b0 and A[

o

n],Bon] G 0 for any n.
Note that it is sufficient for us to construct a > a0 such that {a,b0} has the

same low bound set of degrees with [ao9bo]. Thus we need only to construct a
recursive set A satisfying the following requirements for all e:
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R2e: A

R 2 e + ι : D f ? ( h o

where [P* )e<Ξω is an effective enumeration of all polynomial time bounded de-
terministic Turing machines with oracle X, and {M?,N*} is the effective enu-
meration of all pairs of such machines. Let [pe}eeω be a recursive sequence of
polynomials such that pe bounds the running time of M* for all X. If set A
meets the requirements Re for all e, then Ao <f Ao ® A by all R2e and VZ>(Z> <f
#o & D <? Ao ® A -> Z> <? Λo & -D <f Bo) by all i?2ίH-i Hence the degree α =
deg(^40 ®A)is what we need.

The strategy for meeting the requirements R2e for all e is a typical diago-
nal method. To meet R2e+u we try to ensure that M?°®A Φ Nf° by choosing
an appropriate extension of the given part of A. If it fails, then the set D =
M?°®A = Nξ° must be p-t reducible to both Ao and Bo.

The set A will be constructed by an initial segment argument. While we con-
struct A we also construct a uniformly recursive sequence of sets {Ae} and func-
tions [fe\. At the end of stage s, all the sets and functions constructed are
determined on all strings of length <s. Each stage will be effective and finite,
hence A (as well as Ae and/e) are recursive. Furthermore, because we are inter-
ested only in the recursive sets, the step-counting function of the computation
of Bo must be a recursive function which can be dominated by a polynomial
honest function, say, b. Then 6(|JC|) is always greater than the number of the
steps computing the B0(x) for all x.

The construction of A:
Stage 0: Proceed to stage 1.
Stage s + 1: Given Ae(x), A(x), and fe(x) for all e and x with \x\ <s. For

e > s and x with \χ\ =s, let Ae (x) = B0(x) andfe+ϊ (s) = b(s). For e < s and
x with length 5, Ae(x), fe+ϊ (s), and A(x) will be defined by the following s + 1
substages from s to 0.

Substage e(0 < e < s): Let fe(s) be the least number n> b(s) such that the
construction up to now can be performed in n steps.

Now, we say the requirement R2e is satisfied at stage s + 1 if the following
hold:

(1) 3JC(|JC| <s& A(x) Φ PAo(x)).

Requirement R2e+\ is satisfied at stage s + 1 if

(2) *y(Pe(\y\) * s & M?°®ΛU{y) Φ N*°(y))

where A \ s = [xixGA & \x\ < s}.
We say requirement R2e requires attention at stage s + 1 if it is not yet sat-

isfied and there is an x such that

(3) x£ Σ*[~e] & \x\ =s.

Requirement R2e+\ requires attention if it is not yet satisfied and there are
JC, /, and finite set C satisfying the following:

(4) |JC| <fe(s)&t=Pe(\x\),

(5) Cls=(A0@A) U
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(6) Vy(yeΣ*[*e] ®Σ*[*e] & 5 < \y\ <t-+C(y) = (A0®B0)(y))

(7) M?u(x)

The definition of Ae_ι(x) for \x\ = s is distinguished into the following
three cases.

Case 1. If R2e requires attention at stage s + 1, let x0 be the least x satisfying (3)
under the lexicographical order of Σ*. For all x with length s, define

Then we say that R2e receives attention at stage s + 1.

Case 2. If R2e+\ requires attention at stage s + 1 but R2e does not, then let
Xo, t0, Co be the least x, t, C satisfying (4)-(7), under the assumption that the class
of all finite sets has been effectively coded, and hence there is a well ordering on
it. Define Ae-X (x) = C(lx) for all x with length s and then say that R2e+\ re-
ceives attention at stage 5 + 1 .

Case 3. If neither R2e nor R2e+\ requires attention at stage 5 + 1 , then define
Ae_ι (x) = Ae(x) for all x with length s.

In all three cases, if e > 0, proceed to substage e - 1. At the last substage (i.e.,
e = 0), we will define the A_ι(x) for all x with length s. Then let A(x) =
A-ι(x) for \x\ = s and proceed to stage 5 + 2.

This ends the construction.

It is worth noting that our construction is a priority argument within a stage.
That is, during each stage the requirements all try to become satisfied. Some of
the requirements may receive attention. But only the highest priority one that re-
ceives attention receives really effective treatment for our set A by the reverse
order of the substages from 5 to 0.

We say that requirement Rm is active at stage 5 + 1 if Rm receives attention
but no requirements Rn with n < m require, hence receive, attention. It is ob-
vious that the construction is effective, and so A, Ae, andfe are all recursive.
And fe is a strictly increasing polynomial honest function such that Ae(x)
and A(x) can be computed infe(\x\) and/ e( |x | + 1) steps, respectively, for all
x and e.

To see that A succeeds we need only prove the following five lemmas.

Lemma 1. For any e, if R2e is active at stage 5 + 1 , then R2e is satisfied at
stage 5 + 2 and is met.

Proof: By the construction, if R2e is active at stage 5 + 1, then Ae>(x) = Ae(x)
for all e' < e and all x with length 5. Particularly, we have A{xo) = Ae-γ (x0) =
1 - P^°(xo) Φ P^°(xo) for some x0 with length 5. Hence R2e is satisfied at stage
5 + 2 and then R2e is met.

Lemma 2 For any e, ifR2e+\ is active at stage 5 + 1 and there is no require-
ment Rm> with m' < 2e + 1, that requires attention after stage 5 + 1 , then R2e+\
is satisfied at some stage after stage 5 + 1 .



p-t DEGREES 33

Proof: Suppose that R2e+\ is active at stage s + 1, then there are Jto> *o> Co sat-
isfying (4)-(7). Note that e < s + 1 < tQ. So, it R2e+\ is not satisfied before stage
tθ9 then R2e+ι will be active whenever it requires attention after stage s + 1 be-
cause there is no Rm' with m' < 2e + 1 that will require attention. Hence
Ae_x (x) = A(x) for any x with |x | > s + 1. This means that R2e+\ will require
attention, hence be active, at stage t for all t with s + 1 < t < t0, and even
the *o> *o> CO being chosen at stage t are the same as those of stage s + 1. Then
Co \ to = ̂ 4o θ A 1t0, and /?2e+i is satisfied at stage t0 by (7).

Lemma 3. Each requirement Rm requires attention at most finitely often.

Proof: By induction on m. For m = 0, it is obvious by Lemma 1 and the con-
struction.

Suppose that m>0, then there is sθ9 by the induction hypothesis, such that
there is no Rm' with m' < m which will require attention after stage s0. So, if Rm

requires attention after stage sOi then Rm will be active and will be satisfied at
some later stage t by Lemma 2. Then it is not difficult to see that Rm will not
require attention after stage t. So Rm requires attention at most finitely often.

Based on the above technical lemmas, our main results can be shown as the
following two lemmas.

Lemma 4. Requirement R2e is met for all e.

Proof: Firstly, it is obvious by (1) that if R2e is satisfied at some stage, then it
is met. Now suppose by way of contradiction that R2e is never satisfied at any
stage. Note that there are infinitely many s such that 3x(x £ Σ*[-e] & \x\ = s)9

and for every such s, R2e will require attention at stage s + 1. This means that
R2e requires attention infinitely often, contrary to Lemma 3.

Lemma 5 Rie+i *s met for every e.

Proof: Suppose by way of contradiction that R2e+\ is not met and has the least
index among the requirements which are not met. Then we have at first that

(8) D = M?0@A = N*\

Choose 5 0 by Lemma 3 such that, for any s > s0, there are no x, t9 C satis-
fying (4)-(7) at stage s and no requirement Rm with m < 2e + 1 that requires at-
tention at stage s. Then, by the construction, we have

(9) vx(|x| >So^A{x) =Ae(x)), and

(10) VJC(|JC| >so&xGΣ*[-e] -+A(x) =B0(x)).

It follows from (9) and the definition of fe that

(11) Vx(|jt| > so-+A(x) can be computed infe(x) steps)

& v#(|jc| < so-+A(x) can be computed in fe(s0) steps).

Now we can show that D <£ Aθ9Bo as follows. D <£ Bo is from (8) immedi-
ately. To show that D <f Ao, we need only show that D can be computed in
polynomial time with oracle Ao.
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Note that there are only finite many x with |jt| <fe(s0). We can consider
only such x that |x| > fe(so). Given x with \x\ > fe(s0)9 find the maximal s
such that fe(s — 1) < \x\. This can be done in polynomial time by the poly-
nomial honesty of fe. Since s > s0, by the choice of s0 we have that M?1 u(x) =
N?°(x) = MflU(x) for t = pe(\x\) and any two finite sets d , C2 satisfying (5)
and (6) at stage s. Note that, by (10), Ao ® A does satisfy (5) and (6) at stage
s. Hence we have Λff u(x) = Mfo@AU(x) = M?0@A(x) = D(x) whenever C
satisfies (5) and (6). Particularly, let C satisfy (5) and the following:

(12) vy(s< \y\ < t

Then C must satisfy (6). So it is sufficient to compute M?u(x) for the compu-
tation of D(x). Now, in the computation of M^u(x), any query zGCΊ can be
replaced by the query z E A[

Q-e] ® B^~e]? if \z\ > s, or by z E Ao ® AΊ if
|z | < s. Note that z G ^ o θ ^ ^ 3 z ! ( z = Ozi & zx E ^ 0 ) or 3z2(z = U 2 &
z2 E ;4), ^4(z2) can be computed in max(/e(|z2 |),Λ(so)) < fe(s - 1) < \x\
steps, and Aι

0~
e] ® B^~e] E 0 by the choice of v40 and £ 0 . So, D(x) can be com-

puted in polynomial time with oracle Ao, hence D <f Ao.
This completes the proof of the theorem.

Corollary 1. For any minimal pair ao,bo, there are a> a0 and b> b0 such
that a,b is a minimal pair. Hence there is no maximal minimal pair of p-t degrees.

Corollary 2. For any exact pair a0, b0 of an increasing sequence of degrees
{c«}/*eω> there are a > a0 and b > b0 such that a,b is also an exact pair of
{cn}nGω. Hence, there is no maximal exact pair.

Corollary 3. IfaOyboisa branching pair of c, then there are degrees a> a0

and b> b0 such that a,b is also a branching pair of c. Hence there is no max-
imal branching pair for any degree.

Corollary 4. For any degrees a, b with a < b, there exists degree d> a such
that a = b Π d, i.e., b is a-cappable.
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