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The Amalgamation Property

in Normal Open Induction

MARGARITA OTERO

Abstract It is known that open induction (OI), the fragment of Peano arith-
metic, fails to have the joint embedding property, a result due to Wilkie. On
the other hand we have proved that if we require our models to be normal,
that is, to be integrally closed in their fraction fields, the corresponding the-
ory NOI extending OI, has the joint embedding property. Here we prove
NOI does not have the amalgamation property.

1 Introduction Let £ denote the first-order language of ordered rings based
on the symbols 0,1, +, —, ,<• Open Induction (OI for short) is the fragment of
Peano Arithmetic axiomatized by the axioms for discretely ordered rings together
with the following axiom-scheme:

vx((θ(x,θ) A My > 0(θ(x,y) -+ θ(x,y + 1)) -+ *y > 0θ(x,y))9

where θ(x9y) is a quantifier-free £-formula.
In this article rings are always commutative with 1.
A first point in the study of models of OI is the following algebraic charac-

terization.

Theorem 1.1 (Shepherdson) Let Mbea discretely ordered ring. Mis a model
of open induction if and only if for all r in the real closure of the fraction field
of M there is an a E M such that | r — a \ < 1.

Shepherdson [6] proved several independence results for OI using this cri-
terion. In particular, he showed that OI does not prove the normality axioms.
We remind the reader that a domain is called normal if it is integrally closed in
its fraction field.

Let NOI denote the extension of OI by adding the normality axioms, that
is, for each « G N *

ιy+ ••• + zny
n = 0-+3w(x= wy)).
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Associated with OI we have the following two theories.

DOR: axioms for discretely ordered rings.
(Ordered domains satisfying -IVΛΓ(O<ΛΓ< 1).)

ZR: DOR together with axioms for Z-rings.
(Mis a Z-ring if for every n E N*, M/nM^ Z/nZ.)

We also have their normal counterparts NDOR and NZR, respectively.
Requiring normality for a discretely ordered ring, we get an arithmetic closer

to that of Z. We remind the reader that Z is normal and Q is algebraically closed
in the fraction field of any normal discretely ordered ring. More remarkably
van den Dries proved in [1] that Hubert's Irreducibility Theorem holds for nor-
mal discretely ordered rings.

Using Shepherdson's criterion, it is easy to see that every (normal) model of
OI is a (normal) Z-ring. Although the extension is strict, Wilkie proved in [7] that
every model of ZR can be embedded in a model of OI. The key lemma in his con-
struction is the following.

Lemma 1.2 (Wilkie) Let M be a model of ZR, and F its fraction field. Let
L be an ordered field dense in its real closure, extending M and \M\+-saturated.
Let r be an element of the real closure ofF such that \r — a\>\ for all a EM.
Then there is a z in L transcendental over F such that \ r - z \ < 1 and M[z] is
discretely ordered.

With the notation of the lemma we say that M[z] has been obtained from M by
the Wilkie-construction (against r).

On the other hand, provided we have ring homomorphisms φp:M-*Zp for
each prime p (where Zp denotes the ring of/7-adic integers) we define

(a )
Mψ = J - : a E M, n G N* and n \ φp(a) for each prime number p .

If M is a model of DOR then Mψ is a model of ZR (see [ID, and we say Mφ

has been obtained from Mby the Z-construction.
Note that both the Wilkie- and the Z-constructions preserve normality. That

is, with the above notation, if Mis normal then M[z] and Mφ are both normal
(van den Dries [1]).

Now to prove Wilkie's embedding theorem we start with a (normal) model
of ZR and iterate both the Wilkie- and Z-constructions to get a (normal) model
of OI.

In [2], Macintyre and Marker do a systematic study of primes and their res-
idue rings in (normal) models of OI. We shall use the following result later on.

Theorem 1.3 (Macintyre-Marker) Suppose Mis a (normal) discretely ordered
ring equipped with homomorphisms φp:M-* Zpfor each prime number p, and
q a positive prime element ofM with φp(q) a unit ofZpfor each prime number
p. Then there is an embedding M-* R, where R is a (normal) model ofOI, such
that the ideal qR is maximal. Moreover any other prime q' of Mx satisfying
Ψp(q') a unit ofZpfor each prime number p, keeps prime in R.

In Otero [5] we prove that models of NOI have the joint embedding prop-
erty (JEP for short). Among the usually studied fragments of arithmetic this
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property is specific for NOI. For, as Wilkie showed, OI does not have JEP (see
for example Otero [4]) and in [4] we proved that fragments of Peano Arithme-
tic where induction with (bounded) quantifiers is allowed do not have JEP either.

In [5] a natural question is left open: Does NOI have the amalgamation
property! Here we give a negative answer to this question.

Theorem 1.4 The theory of normal open induction does not have the amal-
gamation property.

As is remarked in [5], to prove JEP for NOI (that is, amalgamation over Z)
we made use of the fact that any model of NOI is an end extension of Z and a
flat Z-module. Here we get a counterexample to amalgamation producing two
models M and Mx of NOI, with Mx an extension of M which is neither flat as
M-module nor an end extension of M. Then for a suitable model M2 of NOI
extending also M we show that Mx and M2 cannot be amalgamated over M into
a discretely ordered ring.

2 The construction We need the following two lemmas to prove the
theorem.

Lemma 2.1 There is a normal model of open induction M and qx,q2

distinct positive infinite primes in M such that (#1,(72) is a prime ideal of M
and(qx,q2)ΠZ={0}.

Lemma 2.2 Let Mbea discretely ordered ring and F its fraction field. Let L
be an ordered field dense in its real closure, extending M and \M\+-saturated.
Let qx and q2 be two distinct positive infinite primes in M. Then
(i) If (qx,q2) Π Z = ( 0 ) then there is an x in L transcendental over F such that

M[x9qx/x,q2/x] is a discretely ordered ring.
(ii) If (qx,q2) is a radical ideal ofM, Mis normal andx is transcendental over

F, then M[x9qx/x,q2/x] is also normal.

Proof of Theorem 1.4: Let M be as in Lemma 2.1. By Lemma 2.2 there is a nor-
mal discretely ordered ring Rx = M[x,qx/x9q2/x] extending M with x transcen-
dental over the fraction field of M(in particular \x\ > 1). Being a model of OI,
M is endowed with ring homomorphisms φp;M-+Zp for each prime number p.
We extend them to Rx by φp(x) = 1 for each such/7. Now we iterate the Z- and
Wilkie-constructions to get a model Mx of NOI extending Rx.

On the other hand qx and q2 are distinct positive primes in M. So by The-
orem 1.3 there is a normal model of open induction M2 extending M in which
q2 is maximal and qx is prime. Hence since they are distinct and positive, there
exist u and v in M2 such that uqx + vq2 = 1.

Let Mf be any ordered ring amalgamating Mx and M2 over M. Then l/x =
u(qx/x) + v(q2/x) in M'\ therefore M' cannot have a discrete order.

Remark As we have mentioned above, Mx is neither an end extension of M
nor a flat M-module. The first essertion is clear. Let us prove the second one.
Suppose first R\ is a flat M-module. Then
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for any pair of ideals IXJ2 of M (see, for example, Theorem 2.7.4 in Matsu-
mura [3]).

Let // = (#/) (/ = 1,2). Then 1XΓ\12 = (qxq2) for qx and q2 are prime in M.
Now, qxq2/x = qx-q2/x = q2 q\/xbelongs to qxRx Π q2Rx, hence also belongs
to qxq2Rx. Therefore

Σ cιijkx
k-{i+j)q\qJ

2 = qιq2 Σ <*Ukq{qJ

2

UJ,k)GJ k-(i+j) = -l

for some aijk E M(where / i s a finite subset of N 3 ) . Therefore 1 = aqx + bq2

with a,b EM. This is a contradiction, hence Rx is not flat over M.
On the other hand (qΪ9q2) Π Z = {0}. Let S denote Z*. Then

with the z/s algebraically independent over the fraction field of S~ιRx, so a
similar argument shows that Mx is not M-flat.

This last fact was the idea behind getting a counterexample for the amalgam-
ation property for NOI; however, it is not used later on.

To prove Lemma 2.1 we need the following.

Lemma 2.3 Let B be a model of ZR and qx,q2 distinct positive infinite
primes in B. Then

(quq2)S-lBnB=(ql9q2)B.

Proof: For the nontrivial inclusion suppose a E B is such that an = uxqx + u2q2

for some « G N * and uΪ9u2 in B. Since qλ and q2 are prime in B, their images
ε1>/7 and ε2>/? are units in Zp for each/?. Let n -pψx pΓι be the prime fac-
torization of n in N. Get 5^ GZ9s

p= (Zi,P)~l (modpm) in Zp for each pm E

Let α,j/7 = ^(U/) E Z p (/ = 1,2) and get b E Z, b s α2f/^p (modpm) in Z^
for each/7w as above.

Since a = {ux/n)qx + (u2/n)q2= [(ux + bq2)/n]qx+ [(u2 - bqx)/n]q2, it
suffices to prove that α^p - 6ε1>/7 s 0 (modpm) and α1)/7 + 682,̂  Ξ 0 (modpm)
for each/?w as above.

The first assertion is clear by the choice of b. For the second one note
that a E B so αi)/7εi>/7 + ot2tPz2tP ss 0 (modpm), hence α1>/7 + 6ε2,p = Q:1JP +

ε1>/7 s 0 (modpm).

Proof of Lemma 2.1: Fix some ordered field Z, dense in its real closure and K r

saturated. We shall construct such Minside L. We begin with Ao = Z[qx,q2]φ

with qXiq2 E L algebraically independent over Q, #j > n for all « E N, and
#2 > \f{Q\)\ for all/(ι;) E Z[v]. We define, for each prime number/?, homo-
morphisms φp:Z[ql9q2] -+ Zp by φp(qj) = εitP for some fixed εitP unit of Zp

(i = 1,2). So Ao is obtained from Z[qι,q2] and these ^,'s using the Z-con-
struction.

Now, starting with this Ao we get M by iterating the Wilkie- and Z-construc-
tion; thus AM = Ai\zi\φ with φ(Zi) = 0 and taking unions at limit stages. By
stage ω ω we have M, a model of OI which is normal since Z f ^ , ^ ] is so and
the Wilkie- and Z-constructions preserve normality.
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We prove by induction that M has the required conditions. First, note that
φp(q\) and φp(q2) are units of Zp for each/?, so qx and q2 are also prime in M
(see Lemmas 3.3 and 3.11b in [2]). Hence we have left to prove:

(a) (q1,q2)AiCiZ=i0}and
(b) (quq2)Ai prime.
Let 5 denote, as above Z*.

7 = 0:
(a) (qi,q2)AonZ* C (quq2)Q[ql9q2] Π Z* = 0 .
(b) (^i,^2)5 ιA0 = (q\,q2)Q[q\,q2] is a prime ideal, so if u,v are in^40

and at; G (?i,# 2 Mo, then u G ( t f i , ^ ) ^ " 1 ^ , say.
Therefore u G (^i,^2)Sf~1v40 Π AQ = (quq2)A0 by Lemma 2.3.

y = / + 1: A+i =Ai[Zi]φ.
(a) Suppose Λ G ( ίb f tM/I^/]^ Then n = u(Zi)qχ + v(Zi)q2, so n =

«(0)#i + v(0)^2 Now applying Lemma 2.3 and induction we get n = 0.
(b) By induction (q\9q2) is a prime ideal of Λ , so (4i,42M/[Zχ] i s a l s o

prime in >4, [z/]. On the other hand, since (q\,q2)Ai[Zi] Π Z* = 0 we have
ι prime. By Lemma 2.3

so (9i»92Mι+i is a prime ideal.
Clearly (a) and (b) are preserved under taking unions.

Finally we prove Lemma 2.2. It is a generalization of Lemmas 3.22 and 3.23
in [2]. Their aim with those lemmas was to make reducible (in some extension)
an irreducible element of M. In ours the aim is to have in some extension of M
a common factor of two primes of M.

Proof of Lemma 2.2: Get M, qx and q2 as in Lemma 2.1 and L D M as in the
hypothesis of Lemma 2.2.

The proof of (i) is similar to that of Lemma 3.22 in [2]. We first get x tran-
scendental over F satisfying the standard cut, that is, x > m for all m G Z, and
x < a for all those a G M which satisfy a > m for all m G N.

Suppose there is/(«, v, w) G M[u, v, w] such that 0 <f(x9q\/x9q2/x) < 1.
We vmtef(x9qι/x,q2/x) = l/xsg(x) where g(v) G M[v] and g(0) * 0.

"Let f{x9qx/x9q2/x) = Σ"=-sdiXι where rf7 = Σk-u+j)=ι<iijkqiqJ2> then

Next we prove that there is an / such that | d/| > m for all m G N. First, sup-
pose there is rf/ =£ 0 for some / < 0. Then all the (ij) occurring in the summa-
tion of this dι must be either i < 0 ory < 0. This implies dι G (<7i,<?2) Hence,
either dt = 0 or dt φ. Z. By discreteness of the order this last one implies \dt\>
m for all m G Z. Now suppose rf/ = 0 for all / < 0, thenf(x9qι/x,q2/x) G M[x]
so one of the tf/'s must not be in Z. Otherwise/(ΛΓ,^I/V,^2/ ̂ ) £ Z[ΛΓ] which is
a discretely ordered ring, contradicting 0 <f(x9q\/x9q2/x) < 1.

The rest of the proof follows as in 3.22 of [2]. It is based on quantifier elim-
ination in K the real closure of F, and it also makes use of the prime factoriza-
t i o n o f g ( v ) i n K ( i ) [ v ] .

To prove (ii) we first make use of Lemma 3.23 in [2] to get R = M[x9qx/x]
normal. To prove that Rx =R[q2/x] is also normal suffices to prove that xRx

is a radical ideal of Rx (see for example 3.17 in [2]).
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We have

Ri/xRi « (M[x,u,v]/(ux - quux - q2))/(x) = M[u,v]/(ql9q2).

Hence Rι/xRι « (M/(quq2))[u9υ].
Now, since (qι,q2) is a radical ideal of M9M/(qί9q2) does not have nilpo-

tent elements, therefore (M/(ql9q2)) [u,v] does not have nilpotents either. This
means xR{ is radical.
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