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On Closed Elementary Cuts in Recursively

Saturated Models of Peano Arithmetic

BOZENA PIEKART

Abstract We strengthen some results of Kotlarski [5] by showing that there
exist infinitely many essentially different closed elementary cuts in each
countable and recursively saturated model for PA.

1 Introduction and notation Let PA denote Peano Arithmetic in any of its
usual formalizations. For M (= PA we set

γM= {N^eM:N<M};

when no confusion arises we omit the superscript M. We shall study the family
YM under the assumption that M is countable and recursively saturated. We use
standard terminology and notation, assuming that the reader knows the notion
of recursive saturation of models and has got some knowledge of initial segments
in models of PA. See Kaye [2] for all the necessary background.

The present paper was written under Professor H. Kotlarski's direction and
has grown out from his earlier papers [4] and [5].

We have organized the paper as follows. In this and the next two sections,
we review earlier results on elementary cuts in countable and recursively satu-
rated models of arithmetic. In Section 4 we prove our main result; i.e., we con-
struct infinitely many ak:k £: ω in M so that every M[ak] is closed and gaps
[ak), k E ω are essentially different.

Before we state results of [4] and [5], we introduce some more notation nec-
essary for their formulation.

Let Y\ = {N G Y: TV is not recursively saturated}.
For α G M w e denote

M(a) = {xG M: for some parameter-free term t(ϋ), MYx < t(a)}

M[a] - {xGM: for each parameter-free term t(ΰ), M N t(x) < a].
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For convenience we shall use the second symbol only when M[a] is non-empty
(i.e., no definable element of Mis greater than a); otherwise the symbol M[a]
will be treated as undefined.

Let us notice that M(a) is the least elementary cut containing a, and M[a]
is the largest elementary cut not containing a (provided M[a] is defined).

Theorem 1.1 Let M1= PA be countable and recursively saturated. Then
(i) if A Q Y has no greatest element with respect to the inclusion, then \JAG

Y\Yu
(ii) for TV E Y we have NG Y\ iff there exists an a EL M such that N = M(a),

(iii) Y\ is of the order type of\ + rationals,
(iv) Y is of the order type of Cantor set 2ω, with its usual ordering,
(v) for each a E Mgreater than any definable element ofM we have M[a] E

Y\Yu
(vi) Y\ Yι is of the order type reals +1.

Proof: See [4].

2 Isomorphisms of elementary cuts The following fact is known.

Theorem 2.1 Let M N PA, be countable and recursively saturated, and let
NUN2E: Y\ Y{. Then Nx is isomorphic to N2.

Proof: See, e.g., Smorynski [6].

The question if all cuts TV E Y\ are isomorphic has been posed by Roman
Kossak. The answer is negative.

Corollary 2.2 (This result was obtained by H. Kotlarski and by C. Smorynski.)
If MV PA is countable and recursively saturated then there exists an infinite
family A^YX such that ifNι,N2GA then Nx is not isomorphic with N2.

Proof: See [5] or [7].

Let us recall that for n E ω, Ύrn denotes the natural truth definition for Σn-
formulas. Kotlarski [5] defines the following functions Fn in PA:

Fn(0) = The Gόdel number of the formula ϋ2 = #i + 1.

Fn(x+ 1) = miny.Vφ < Fn(x)vu < Fn(x) <P (ΞΣn

=> (3wΎτn(φ,unw) => 3w<yTrn(φ,unw)).

Thus Fn(x + 1) is the maximum of all examples for all ΣΛ-formulas φ < Fn(x)
with all parameters u < Fn(x).

The simplest properties of the funtions Fn are

Lemma 2.3
(i) FA\-VaFn(a)<Fn(a+l),

(ii) the formula y = Fn(x) is Σn+ι,
(iii) //1 is a Σn-term then for some a PA h V& > a t(b) < Fn(b).

Proof: Obvious.
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Let Cn(x) be formula lyx = Fn(y) of PA.
Let ln(x) = maxz < x: Cn(z) and

Pn(x) = minz> x:Cn(z).

The following lemma is obvious.

Lemma 2.4 The following sentences are provable in PA:

Vxlγ[Cn(x)=> (ln(x)=Fn(y)&Pn(x)=Fn(y + 2))

&^Cn(x)*Un(x)=Fn(y)&pn(x)=Fn(y+l))].

The main lemmas about the funtions Fn are the following:

Lemma 2.5 Let M 1= PA, A any infinite subset ofω\ {0} and let a E M be
greater than any definable element of M and such that, for n GA,

MϊFn^dnWXa&Fn-daXPnia). (1)

Then

M(a)\M[a] = \J (ln(a),pn(a)). (2)
nEiA

Proof: Let x E (ln(a),pn(a)) for some n E A. Then ln(a) is definable from x,
indeed ln(a) = maxy < x: Cn(y) and pn(a) is definable from x as pn(a) =
miny > x: Cn(y) (cf. Lemma 2.4). Thus x E M(a), indeed x < t(a) where
/ =pn. Moreover, if x E M[a] then ln(a) E M[a] because M[a] is an elemen-
tary submodel of M. But then pn(a) = miny > ln(a): Cn(y) and /?„(#) E
M[a] < α. Contradiction and x φ. M[a].

Let us take x E M(#)\M[#]. There exist terms t,s such that x < t(a)9

s(x) > a and ,̂5 are Σn_x for some n G i . We show that ln(a) < x <pn(a).
We claim that x > ln(a). Indeed, otherwise x < ln(a) and so Fn_ι(x) <

FΛ_! (ln(a)) < a. But we have Fn_γ (x) > s(x) by 2.3 (iii). This implies s(x) < a,
hence we obtain a contradiction with the choice of s.

We also have* < t(a) < Fn_x(a) <pn(a), so ln(a) < x <pn(a).

Lemma 2.6 Let r be a natural number. Then for n>2 there exists a natural
number a such that PA h vZ? > a"Card[Cn_x Π (FΛ_i (ln(b))9 max(e:FΛ_i (e) <
/?«(*)})] is greater than 2/"F"-l(/«<*»".

Intuitively speaking Lemma 2.6 states that between /„(&) and^Λ(Z?) (in fact
between F Λ _ ! (ln(b)) and max{e:Fπ_! (e) <p n (b)\) there are very many values
of the function Fn_x.

Proof: See [5].

3 Closed elementary cuts For every model M we denote by Aut(M) the
group of all automorphisms of M. X c= M is closed iff for each Z? E M\X there
exists a g E ^4«ί(M) such that g{b) Φ b and, for all Λ: E X, g(x) = x.

Observe that if Λf 1= PA and J c M i s closed then Xis the universe of an
elementary submodel of M.

Kotlarski [5] proved three non-coarse theorems about such cuts.
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Theorem 3.1 IfMis countable and recursively saturated andNE Yis not
closed then there exists b E Msuch that N = M[b].

From this theorem follows that all N E Y except countably many are closed;
the question as to whether models of the form M[a] are closed was settled by
Kotlarski in [5].

Theorem 3.2 There exists a recursive consistent parameter-free type p in one
free variable such that, for every M 1= PA and every b E M which realizes p,
M[b] is not closed.

In order to state our results in a convenient form, let us introduce the fol-
lowing notions.

If M N PA and a E M, the set [a) = M(a)\M[a] will be called the gap
around a; once again, we define this notion only if M[a] is defined, i.e., if
a>M(0).

We say that two gaps [a),[b) in Mare essentially different if M{a) is not iso-
morphic to M(b). It is easy to see that [a), [b) are essentially different iff no
c E [b) realizes tp(α), equivalently, no c E [α) realizes tp{b).

An analysis of the proof of 3.2 (see [5]) immediately gives the existence of
infinitely many types pk so that if αk realizes pk, for all k, in M then [αk) and
[αr) are essentially different forkΦr and all M[αk] are not closed. (In personal
communication, Kotlarski pointed out that this result may also be obtained by
using minimal types in the sense of Gaifman [1]. Namely the proof of Theorem
3.9 in Gaifman [1] yields continuum many independent minimal types. It is not
difficult to verify that infinitely many of them are coded in M, so they are real-
ized in M because M is recursively saturated. Moreover if α,b EM realize two
independent minimal types then M(α) is not isomorphic with M(b).)

Theorem 3.3 There exists α recursive and consistent (with every completion
of PA) parameter-free type q in one free variable such that for every countable
and recursively saturated model Mfor PA and every b realizing q in M, M[b]
is closed.

We strengthen this result by constructing infinitely many recursive, consis-
tent (with each completion of PA) types qk, kEω such that if, for all k, ak real-
izes qk in Mthen gaps [ak) and [ar) are essentially different forkΦr and all
M[ak] are closed.

4 Non-isomorphίc closed cuts Let Od = set of natural odd numbers and
Ev = set of natural even numbers.

Below we will define countable infinite family {qr: r E ω} of recursive types
of PA such that the lemma mentioned below is true.

Lemma 4.1
(i) For any r E ω qr is consistent (Exactly: if ψo,... ,ψp-\ E qr then PA h

vw3e> u /Aj<pΦj(e)).
(ii) If a realizes qrfor any r then:

(a) M(a)\M[a] =Όn>2^EvVn(a),pn(a)),
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(b) for all natural even n > 2 M Y ~^Cn(a) and there exists an automor-
phism g of Msuch that g(ln{a)) Φ ln(a) and Vx < ln+ι(a) g(x) = x.

(iii) If aι realizes qι and ak realizes qk {for k Φ I) then M(at) φ M(ak).

We show that any such sequence meets our demands.

Theorem 4.2 If a{ realizes type qt and aj realizes type qj for i Φ j then:
(i) M(ai)φM(aj)9

(ii) for every i G ω M[tf, ] is closed, i.e.,

Vb £ M[a{\ Ig G Λut(M) g(b) = b and Vx G M[a{\ g(x) = x.

Proof:
(i) follows directly from (iii) Lemma 4.1.

(ii) Let α, realize qh Let us take any i ί M [ α / ] . Then either b £ M(tf ) or b G
M(α ί )\M[α /].

Case 1. If b $. M(a{) then there exists automorphism g such that g(b) Φ b and
g\M(aj) = id, because otherwise M{a{) would not be closed and by Theorem
3.1 there would exist c G M such that M[c] = M(έ3r, ), which is impossible by
Theorem 1.1. For such g g(b) Φ b and g\M[aι\ = id.

Case 2. For any b G M(a{) \M\a{\ there exists a natural even n > 2 such that
/„(#,) < b < Pn(ai) (by (ii) Lemma 4.1).

Let us take g such that Vx < ln+x (ai) g(x) — x (in particular g[M[#;] = id)
andg(ln(ai))Φln(ai).

Since/?„(#/) = minz > αt?: Cn(z), either £(/„(#,)) >pn{αϊ) or ̂ (jMtf/)) <
/„(*/). If g(ln(αi)) >pn{αi) then we have b<pn(αi) < g(ln(αi)) < g(b); other-
wise g(Z?) < g(pn(αi)) < /„(#,-) < Z?. Consequently in both cases g(b) Φ b.

Therefore it is sufficient to find the family of types for which Lemma 4.1 is
true.

Let 20(x) = x9 2m+ι (x) = 22m(x), and let {<pz: / G ω) be some recursive enu-
meration of the formulas of PA. For r E ω w e put

qr = {Fn^(r + ln(α)) = ln-i(α) :neθd,n> 3}

U {Fn_ι(ln(α))<α&Fn_ι(α)<pn(α):neEv,n>2}

U i-^Cn(α)&ldlwΦln(α) (2m(ln+ι(α) < d

&Vx<d fa [<Pi(x,ln(α)) & <Pi(x,w)]): n > 2, n G Eυ, m G ω}.
i<m

We show that, for the family of types defiend in this way, Lemma 4.1 is true.

Proof: We first prove (iib). Let us fix n(n G Eυ, n > 2).
Suppose α realizes qr.
Let us consider an auxiliary type

T(d,w) = {2k(ln+ι(α))<d:keω]

U \vx<d fa [<Pi(x,ln{a))*><Pi(x,w)]:me<*\ U {wΦln{α)\.
v i<m )

Γ is consistent because α realizes qr (for any r). Let us pick d, w realizing Γ.
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The following lemma is known:

Lemma 4.3 (Kotlarski, Smorynski, Vencovska) Let M f= PA be countable
and recursively saturated. Let a,b,c,d G M be such that:
(i) MN2Λ(c) <dforalln,

(ii) M N VJC < d [φ(x,a) & φ(x,b)] for all formulas φ. Then there exists an
automorphism g of M such that g(a) = b and, for all x < c g(x) = x.

Proof: See, e.g., Kotlarski [5] or Kaye, Kossak, Kotlarski [3].

By the above, there exists g G Aut(M) s.t. g(ln(a)) = w Φ ln(a) and Vx <

In+iia) gW =x

(ii.a) follows directly from Lemma 2.4 for A — Ev\ {2}.
Now we verify (iii) of Lemma 4.1. We only need to prove that: if / Φ k,

ak realizes qk and at realizes qt then no u G [ak) realizes the type q\\ because
if M(ak) = M(a{), then there exists automorphism / such that /(#/) G
M{ak)\M[ak] and/(α/) realizes qh

Let us assume that ak realizes qk and some u G M(ak) \M[ak] realizes qι for
/ Φ k. Then we have:

(1) V Fn-Λk + In(ak)) = ln-x(ak)
n>3

nGOd

and

(2) V Fn-lU+ln(u))=ln-l(ti).
n>3

n^Od

Since u G M(ak)\M[ak) then by (ii) there exists natural odd n > 3 such
that /„_! (ak) <u < pn-\ {ak) and Λf h ~> Cn_ι (ak). As a consequence we obtain
Fn-l(l+ln(u)) = ln-ι(u) = ln-l(ak)=Fn-l(k + ln(ak)). FunctionsFΛare(1-1),
and so /+ ln(u) = k + ln(ak). By (1) and (2) we have ln(u) < ln-ι(u) < u and
ln(ak) < ln-i(<tk) = ln-Λu) < ak; hence ln(u) = ln(ak) and k = /.

(i) We prove that qr is consistent for any fixed r.
For convenience we introduce the following abbreviations:

Ar

n(a):Fn_1(r + ln(a))=ln-ι(a)

En(a):Fn-ι(a) <pn(a) & Fn^(ln(a)) < a

and

Bmtn(a): 3rf3w Φ ln(a)(2m(ln+i(a)) < d

&vx<d /h [Vi(x,ln(a))*<Pi(x,w)])&-*Cn(a).
i<m

Thus qr = [Ar

n(a):n e Od, n > 3) U {Bmn(a):m e ω, n e Ev, n > 2} U
{En(a):nGEv,n>2}.

Now we observe that for all n,m

(3) PA\-Bm+ι>n(ϋ)~Bm,n(ύ).
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Let us take any finite subset Ar of qr and the greatest n such that the for-
mula Ar

n(a), En(a) or some formula of the form Bmn(a) is in ΔΓ. For conve-
nience we assume that, for this choice n,n is even and Δ r contains both the
formula Ar

n(a) and the formula of the form Bmfn(a). By (3) we may assume
that BmfΠ(a) is the only formula of this form, with index n, which occurs in ΔΓ.

Letusdenote£ = (Fn(Fn+ι(x)),max[e:Fn(e)< Fn+ι(x+ 1)}).
Fix any non-standard x. By Lemma 2.6 if x is sufficiently big, there are more

than 2m'F»iF»+lix)) elements of Cn Π E.
There exists only 2m'Fn{Fn+ι{x)) sets of pairs of the form (formula, param-

eter) where formula is one of the <p0,... ,φm-\ and parameter is smaller than
Fn (Fn+i (x)), thus at least two elements of the set EΠCn must satisfy the same
set of pairs. Let one of them be zn and the second wn. Both of them are values
of the function Fn. Let zn = Fn(z'n) and wn = Fn(w'n). Let us notice that for any
valuer such that zn < ax <Fn(z'n + 1) we have/„(#!) = zn,Pn(ai) =Fn(z'n+ 1);
moreover if d = Fn(Fn+1(x)), w = wn then 2m(ln+1(a1)) < Fι(ln+\(aι)) <
Fn(ln+ι(aι)) - Fn(Fn+i(x)) = d and ^Cn(ax). As a consequence we obtain
M¥Bmin(ax).

Moreover, if Fn-X(zn) <a<Fn^ι{zn

Jt 1) then Fn_λ(a) <Fn{zf

n+ 1) =
pn(a) (this inequality is true by Lemma 2.6 because there are more than

2Fn-Λzn) e l e m e n t s of the set <?„_! Π (F π _ 1 (z π ),max{/:F π - 1 (/)<F Λ (z;+ DJ))
and Fn_x(ln(a)) =Fn_ι(zn) < α, and so we have M\=En(a).

Therefore if n = 4 then we take any such a; otherwise any value a such that

Fn^Fn-^Zn) + r) < a < Fn^2(Fn-l (Zn) + T + D

(for this choice aFn_2(ln-ι(a) + r) = ln-2(a) and s o M M ^ f α ) ) .
Now we iterate this procedure, i.e., apply it to n — 2, n — 4 and so on. This

shows 3j > r/k ΔΓ( j>); in fact, we have shown a non-empty interval of such ele-
ments y. Hence qr is consistent. In this way the proof of Lemma 4.1 is com-
pleted.
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