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BCK and BCI Logics, Condensed Detachment

and the 2-Property

J. ROGER HINDLEY

Abstract Some of the main properties of the BCK and BCI logics of impli-
cation are summarized, focusing on their connections with their condensed
logics and with combinators and lambda-calculus. (A condensed logic is the
set of all formulas deducible from the logic's axioms by the condensed
detachment rule of Carew Meredith.) A full proof is given of the preserva-
tion of the 2- and 1-2-properties by condensed detachment, based on ideas
of S. Jaskowski.

1 Introduction and notation

1.0 Introduction This article is a summary of some of the main properties
of implicational BCK and BCI logics, focusing on their connections with com-
binators and their condensed logics. (A condensed logic is the set of all formu-
las provable from the logic's axioms by Carew Meredith's rule of condensed
detachment.)

The material outlined here will not be new; it will mainly be from the work
of N. D. Belnap, M. W. Bunder, S. Hirokawa, and R. K. Meyer, but above all
from that of S. Jaskowski.

The key definitions will be sketched in Section 1, then BCK-logic will be
treated in Section 2 and BCI-logic in Section 3.

A proof of the preservation of the 2- and 1-2-properties by condensed detach-
ment will be given in Section 4. It will be based on ideas from Jaskowski [24].
(A formula has the 2-property when each variable in it occurs exactly twice, and
the 1-2 property when each variable in it occurs at most twice.) The first pub-
lished proof of the preservation of the 2-property is in Belnap [3], which is prob-
ably not widely available now.

Most proofs other than the 2- and 1-2-preservation proof will be omitted.
Detailed references to the literature will be included, however.
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No attempt will be made to be comprehensive. BCK and BCI logics are at
present under active study by several workers and significant new results have
been discovered even in the short time since this paper was first drafted. (See the
most recent papers in the References.) In particular, algebras related to BCK and
BCI logics are outside the scope of this summary; so are connectives other than
implication.

/./ Propositional logic

Basic notation 1.1.1 Implicational propositional formulas will be denoted by
" α " , "0", V , "δ"> τ h e Y w i l 1 contain no constants, only variables (denoted
by "«", "6", "c", "d",...), and their only connective will be implication, "-•".

Syntactic identity of formulas will be denoted by " s " .
Each system to be discussed will use some of the following formulas as

axioms:

(B) (# -• b) -• ((c -* a) -» (c -• b)) (principal type of combinator B,
see Notation 1.2.1)

(B') (a -» b) -> ({b -+c)-*{a-» c)) (principal type of B' or CB)
(C) (a -* (b -• c)) -+(b-+(a-+ c)) (principal type of C)
(I) a-* a (principal type of I or CKK)
(K) a-> (b-+a) (principal type of K)
(W) (a -> (a -> b)) -+(a-+b) (principal type of W).

The following two rules will be used:
(i) Modus Ponens or Detachment: from a -> β and α, deduce β.

(ii) Substitution: from a deduce σ(a), where σ is any substitution of for-
mulas for variables which do not occur in non-axiom assumptions in the
deduction above a.

Definition 1.1.2 For any set Λ of formulas, Λ-logic is the set of all formu-
las (called cA-theorems) provable from members of cA (called Λ-axioms) by
Modus Ponens and Substitution. Iff β is an cA -theorem we say

and iff β is deducible from cΛ-axioms and all or some of aΪ9... ,an we say

« i , . . , « „ heA β.

The special cases Λ = {(B),(C),(K)} and Λ = {(B),(C),(I)} are called BCK-logic
and BCI-/og/c, respectively.

Notation 1.1.3: Variables and substitution The set of all variables occurring
in a formula a is called

Vars(α).

Let au... ,ak be distinct variables, δ i , . . . ,6^ be any formulas, and σ be the
operation of simultaneously substituting δ i , . . . ,δ^ for α l s . . . 9ak, respectively;
we shall use the notation

σ= [d{/au...,dk/ak], σ(a) = [bx/au . . . ,δk/ak]ot.
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We shall say the domain of σ is the set {ax,..., ak} and the range of σ is the set
of all variables occurring in δ{,... ,δk. The following notation from the litera-
ture will also be used.

(i) σ is an alphabetic or trivial variation of a (and σ(a) is an alphabetic or
trivial variant of a) iff {a\,... ,ak] Ξ> Vars(α) and δ i , . . . , δ * are mutually dis-
tinct variables.

(ii) σ is a purely structural substitution or a structuring relative to a iff
{au... ,0^} ^ Vars(α) and every variable occurring in δ ^ . . . ,δk occurs only in
one of δι,... ,δ^, say in δ/, and only occurs once in δ, .

(iii) σ is a variables-for-variables substitution or an identification iff
δ i , . . . ,δ* are variables.

(iv) σ is a unifier of a pair {αi,α2} of formulas iff σ(aχ) s σ(α 2).
(v) σ is a raosί general unifier of {αi,α2} iff

(a) σ is a unifier of {αi,α2}, a n ( ^
(b) every other unifier σ' of {aua2} factors through σ in the sense

that

σ'(ax) s σ"(σ(αΊ)), σ'(α2) s σ"(σ(α2))

for some σ" depending on σ'.

Lemma 1.1.4 For every formula a and substitution σ we can find a purely
structural substitution σstruc relative to a and a variables-for-variables substitu-
tion σvar such that σvar(σstruc(α:)) = σ(a). Also the range ofσstτuc can be made
disjoint from any given finite set of variables.

Proof: ([24] Lemma 2.1) Let au... 9ak be the variables in a and let

σ(a) s [δ{/au...,δk/ak]a.

Construct formulas δ*,... ,δk from δ ^ . . . ,δk by replacing each variable-occur-
rence in each δ/ by a distinct new variable. Then define

^struc = [δ*/t f i , . . . ,δ*k/ak].

Definition 1.1.5: The condensed detachment rule (Rule D) This rule was
introduced by Carew Meredith in the 1950's and is outlined as follows. (For
details, see Hindley and Meredith [17] §2.)

Premises: any pair of formulas a -* β,y. To find a conclusion, first change
7 by alphabetic variation to a 7' with no variables in common with a. Then
seek a unifier of [a,yf}. (If none exists, there is no conclusion.) If a unifier
exists, let σ be any most general unifier which satisfies the condition

Vars(σ(α)) Π [Vars(/3) - Vars(α)] = 0 .

Conclusion: σ(β).

The conclusion is easily shown to be unique modulo alphabetic variation and will
be called here

D((α->j8),γ).

Definition 1.1.6: Condensed logics For any set eA of formulas, condensed
cA-logic is the set of all formulas provable from members of eA by Rule D.
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(Clearly, condensed eA -logic is a subset of eA -logic; for further discussion see
[17] §7.)

Definition 1.1.7: The 2- and 1-2-properties A formula a has the 2-property
[1-2-property] iff each variable in a occurs exactly twice [at most twice].

Theorem 1.1.8: Preservation of 1-2 and 2 Rule D preserves the 1-2- and 2-
properties. That is, if Ό((a2 -»1^2)>«i) exists, then:
(i) if a 1 and ( α 2 -• βi) have the 1-2-property, then so does Ό((a2 -+ βi)><xι)l

(ii) if a 1 and (a2 -+ j32) have the 2-property, then so does D((α 2 -> 02)>«i)-

Proof: See Section 4, Theorems 4.5 and 4.6.

7.2 Combinators

Notation 1.2.1 Combinatory logic and λ-calculus are formal theories of oper-
ators; in each theory there is a set of terms (CL-terms or λ-terms) and a reduc-
ibility relation >. For more details see Hindley and Seldin [18]; Chapter 2 for
CL and Chapter 1 for λ-calculus. A short outline of CL is in [17] §§3-4 and a
thorough treatment of λ-calculus is in Barendregt [2]. We shall just note some
particularly relevant points here.

In both CL and λ-calculus a combinator is a term without free variables. In
both theories one can define combinators B, B', C, I, K, W with the reduction
properties

BXYZ > X( YZ), B'XYZ > Y(XZ), CXYZ > XZY,

VOX, YLXY>X, ViXY>XYY.

The >-relations in CL and λ-calculus do not correspond exactly; reducibil-
ity in CL is called weak reducibility (> w ) and reducibility in λ-calculus β-
reducibility (>\β).

A weak reducibility relation > λ w can be defined in λ-calculus, see Hindley
[16] §3; it is weaker than >λβ in the sense that X > λ w Yimplies X >Xβ Ybut not
conversely.

In CL and λ-calculus a (weak or β-) normal form is an irreducible term.

Definition 1.2.2 In CL a BCK-combinator is any combinator built using
occurrences of B, C, K only. Similarly: BCl-combinators, BBΊ-combinators, etc.

In λ-calculus a BCK-λ-term is a λ-term Γsuch that for each subterm λx.M
of T, the M contains at most one free occurrence of x. A BCK-λ-term with no
free variables is called a BCK-combinator.

A BCl-λ-term is a λ-term Γsuch that for each subterm λx.M of T, the M
contains exactly one free occurrence of x. A BCI-λ-term with no free variables
is called a BCl-combinator.

There is a precise correspondence between BCK-combinators in CL and those
in λ-calculus (and similarly for BCI); see [16] §1.

Notation 1.2.3: Type assignment Types are just formulas as defined in Basic
Notation 1.1.1. The variables in types will often be called type-variables to con-
trast with variables that occur in terms.

Types are assigned to certain CL-terms and λ-terms by certain axioms and
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rules; for details see [18], Chapter 14 for CL and Chapter 15 for λ-calculus. For
a term X whose free variables are among xu . . . ,*„, the notation

xι\oLU...,xn:oίn \-X:β

means that if we assign type aλ to xx,...,an to xn (and xx,... ,xn are distinct),
then we can deduce by the type-assignment rules that X receives type β. If we
can make such a deduction, we call X typable or stratified.

It can be shown that each typable term receives a principal type (or princi-
pal type-scheme or p. t.s.) of which all its other types are substitution instances.
For details see Hindley [15], summarized in [17] §6. The principal types of B,
B; C, I, K, W turn out to be just the formulas (B), (B')> (C), (K), (I), (W) in Basic
Notation 1.1.1 above.

It can also be shown that if X\: OL\,... ,xn: an h X:β and xx,... ,xn are
exactly the variables free in X, then there is a principal deduction giving, say,

such that every other deduction of a type for X from types for xi9... ,xn is
obtainable from the principal one by substituting types for type-variables.

Theorem 1.2.4: Strong normalization In CL and \-calculus every typable
term X reduces to a normal form. Further, all reductions starting at X are finite.

Proof: [18] Appendix 2, or other standard texts.

Theorem 1.2.5: Subject reduction In CL and λ-calculus9 types propagate
down a reduction; i.e., if

x{:au.. .,xn:an \~X:β

and X > Y, then

xx:oίU...,xn:an h Y:β.

Proof: [18] Chs. 14, 15, or other standard texts.

2 BCK-logic

2.1 Basics

Note 2.1.1 Roughly speaking, BCK-logic is the fragment of intuitionist logic
in which an assumption a may be used at most once in a proof of a -> β. The
first study of a logic with this restriction seems to have been Fitch [13]. We shall
only look at the implicational fragment of BCK-logic here.

Definition 2.1.2 BCK-/og/c (strictly speaking, the implicational fragment of
BCK-logic) is the set of all formulas (as in Basic Notation 1.1.1) provable by the
rules of Modus Ponens and Substitution from the following axioms:

(B) (<ϊ->6)->((c->α)->(c->&)),

(C) (a^(b-+c))^(b^(a->c))9

(K) a-+(b-+a).
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Theorem 2.1.3: Deduction theorem If a,δu... 9δn hBcκ β by a deduction
in which a occurs as a non-axiom assumption at most once, then

δ i , . . . , δ r t hBcκ (a-+β).

Proof: Straightforward; Cf. [17] Theorem 1.12.

Discussion 2.1.4: Relations to other logics (i) The restriction on the use of
a in the Deduction Theorem ties in with Lemma 2.3.3(iii) below which says, in
effect, that in BCK-logic an assumption a can be used at most once in a proof
of α -» β. This makes BCK-logic much weaker than intuitionist and classical
logics and allows it to serve as the base for a type-free mathematics in the style
of the early work of Church and Curry. Church and Curry started their work
using stronger logics and found their way blocked by contradictions, but if we
weaken the underlying logic by forbidding multiple use of assumptions, the con-
tradictions disappear and we can develop type-free higher-order mathematical
systems and prove them consistent. (Some examples are in Fitch [13], Bunder [6],
Bunder [7], Bunder and da Costa [11], and Komori [26].)

(ii) For implicational fragments we have

Classical logic D intuitionist logic D BCK-logic.

(Intuitionist implicational logic is known to coincide with BCKW-logic.)
(iii) The following two formulas are easily proved in BCK-logic, in fact in

condensed BCK-logic (see later).

(I) a -+ a (principal type of combinator
CKK),

(B') (a -> b) -* ({b -• c) -* (a -+ c)) (principal type of CB).

In contrast, the following is not provable in BCK-logic (cf. 2.1.4(i) above):

(W) (a -> (a -+ b)) -+ (a-+b) (principal type of W).

References 2.1.5 A passing mention of BCK-logic is made in Curry and Feys
[12] §9F5, p. 338. Some more substantial references are: Meredith and Prior [28]
§8 (summarized in Prior [32], p. 316 §12.71); Blok and Pigozzi [5] §5.2.3; Bunder
[10]; also the references in 2.1.4(i) above, and all titles containing "BCK" in the
references at the end of this paper.

2.2 Characterization of BCK-provability

Theorem 2.2.1: Characterization A formula a is BCK-provable iff a is the
result of a variables-for-vartables substitution in a classical tautology β which
has the 1-2-property.

Proof: [24] §6.

Corollary 2.2.2 ([24] Lemma 6.1) Each classical tautology with the 1-2-
property is BCK-provable.

Corollary 2.2.3 For formulas a with the 1-2-property, classical logic is no
stronger than BCK logic: i.e.,
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a is a classical tautology <=» a is provable in intuitionist logic

^a is provable in BCK-logic.

Proof: BCK => Int => Class, trivially. Class => BCK by Corollary 2.2.2.

Theorem 2.2.4: Decidability of BCK There is a decision procedure for BCK-
provability which outputs a proof of each provable formula.

Proof: [24] Theorem 6.5.

2.3 Correspondence between BCK-logic and combίnators

Note 2.3.1 The connection between systems of implicational logic and sys-
tems of combinators was probably known to Curry since the 1930's. The main
features of the correspondence between BCK-logic and combinators will be out-
lined here. For further details see [17] and [16].

Definition 2.3.2: BCK-abstraction in CL Let x be a term-variable. For each
CL-term Fin which x occurs at most once, a CL-term called λabdex. Yis defined
thus (algorithm (abde) of [12] §6A):

(a) \abdex. Y=KY if x does not occur in Y;
(b) λabdex.x = l;
(d) \abdex. UV s BU(\abdex. V) if x occurs in Vbut not in U;
(e) \abdex. UV = C(λabdex. U)V if x occurs in Ubut not in V.

Lemma 2.3.3
(i) \abdex. Y does not contain x.

(ii) (λabdex. Y)x > w Y.
(iii) Ifx occurs in Y more than once, then there is no way to define abstraction

with respect to x using only B, C, K; i.e., there is no term Y*, composed
only o/B, C, K and parts of Y other than x, with the property Y*x > w Y.

Proof: (i)-(ii) are straightforward, cf. [12] §6A, Theorem 2. For (iii): the reduc-
tions for B, C, K in Basic Notation 1.1.1 cannot change the single occurrence
of x in Y*x to multiple occurrences in Y.

Theorem 2.3.4: Abstraction and p.t.s. Abstraction by algorithm (abde)
preserves principal types. That is, ifx9y\9...9ym include all the variables free
in Y and x occurs at most once in Y, and there is a principal deduction giving

x:a9yι:δl9...9ym:δm\- Y:β9

then there is a principal deduction giving

y\: δ i > > ym : δm h \abdex. Y:(a^β).

Proof: Straightforward case-checking in the definition of \abdex. Y.

Theorem 2.3.5: Typability for BCK In CL and λ-calculus all BCK-combi-
nators are typable.

Proof: [16] Corollary 4.1.1.
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Theorem 2.3.6: Subject-conversion for BCK
(i) If X and Y are BCK-combinators and X> Y by weak reduction in CL or

λ-calculus, then X and Y receive exactly the same types and hence have the
same principal types.

(ii) In CL and λ-calculus, all reductions of a BCK-combinator terminate.
(iii) In CL the principal type of a BCK-combinator is the same as that of its

weak normal form.

Proof:
(i) In λ-calculus this is [16] Theorem 3.8. In CL, note that every type of X\s

a type of Yby Theorem 1.2.5. To prove the converse, note that by Theo-
rem 2.3.5 all BCK-combinators are typable, so any subterms of X that are
cancelled in the reduction X > w Fare typable. Hence we can apply the sub-
ject-expansion theorem in [12] §9C4.

(ii) Reducing a BCK-combinator does not duplicate any parts of terms, so terms
shorten as they are reduced.

(iii) By (i).

Warning 2.3.7 In λ-calculus Theorem 2.3.6(i) and (iii) fail for >λ/3, and the
principal type of a BCK-combinator may differ from that of its jS-normal form;
see D. Meredith's counter-example in [16] §3.4.

Note 2.3.8 The study of BCK-combinators and their types is by no means
complete; for further results see especially the papers by Bunder, Hirokawa, and
Komori in the References.

2.4 Condensed BCK-logic

Definition 2.4.1 Condensed BCK-logic is the set of all formulas provable
from (B), (C), and (K) by Rule D. These formulas are called condensed BCK-
theorems.

Theorem 2.4.2 The condensed BCK-theorems are exactly the principal types
of BCK-combinators.

Proof: [17] Theorem 6.7.

Theorem 2.4.3 If a is a condensed BCK-theorem, then so is every formula
obtained from a by a purely structural substitution.

Proof: Meyer and Bunder [30] show that this holds for every logic that extends
BBΊ-logic, and BCK extends BBΊ by 2.1.4(iii).

Theorem 2.4.4: The BCK-1-2 theorem Every condensed BCK-theorem has
the l-2-property.

Proof: Axioms (B), (C), (K) clearly have the 1-2-property. And by Theorem
1.1.8(i), Rule D preserves it.

Theorem 2.4.5: Uniqueness (Hirokawa [19]) In λ-calculus9 for each type a
there is at most one BCK-combinator in β-normalform whose principal type is a.
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2.5 Relation between BCK and condensed BCK

Note 2.5.1 Every BCK-theorem is a substitution instance of a condensed
BCK-theorem (because all the types of a combinator are instances of its princi-
pal type). But further, we have the following.

Theorem 2.5.2 Every BCK-theorem is obtainable from a condensed BCK-
theorem by a variables-for-υariables substitution.

Proof: By Theorem 2.4.3 and Lemma 1.1.4. (Another proof is in Bunder [10].)

Warning 2.5.3 It is tempting to conjecture that a BCK-theorem is a con-
densed BCK-theorem iff it has the 1-2-property. But this is false; for example,
the formula

a. ΞΞ a-+ (a-+ (&-> b))

has the 1-2-property and is a BCK-theorem, being a type of K(KI), but it is not
a condensed BCK-theorem. (If a was a p.t.s. of a BCK-combinator X, then it
would be a p.t.s. of the β-normal form of X. But this is impossible, because by
Ben-Yelles [4] Chapter 3 the only β-normal form with type a is λxyz.z, for which
this type is not a p.t.s.)

Theorem 2.5.4: Incompleteness of D Rule D is not complete for BCK-logic,
i.e., there are BCK-theorems that are not condensed BCK-theorems.

Proof: By 2.5.3 above.

3 BCIΊogic

3.1 Definition and basics

Note 3.1.1 BCI-logic seems to have been first studied in the 1950's by Carew
Meredith along with BCK-logic. Roughly speaking, a proof of a -* β is a BCI-
proof iff the assumption a is used exactly once in it. Here we shall be concerned
with implication only.

Definition 3.1.2 BCIΊogic (or strictly speaking, its implicational fragment)
is the set of all formulas provable by Modus Ponens and Substitution (see Basic
Notation 1.1.1) from the axioms

(B) (a^b)-*((c-+a)->(c+b))9

(C) (a->(b^c))->(b-+(a^>c))9

(I) a-+a.

Theorem 3.1.3: Deduction theorem Ifa9δχ9... ,δn HBCI β by a deduction in
which a occurs as a non-axiom assumption exactly once, then

*if Ά f"Bci (α->jS).

Proof: Cf. [17] Theorem 1.12.

Discussion 3.1.4: Relations to other logics (i) This theorem ties in with
Lemma 3.3.3(iv) below which says in effect that in BCI-logic a premise a can-
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not be used more than once in a proof of a. -> β (and must be used at least once).
The condition that a must be used at least once implies that BCI-logic is a restric-
tion of Church's relevance logic R_+ whose axioms are (B), (C), (I), (W). (See
Anderson and Belnap [1] Chapter 1 §3; the theorems of R^ are exactly the types
of λl-combinators.)

(ii) By 2.1.4(iii) the formula (I) is a BCK-theorem and (BO is a BCI-theo-
rem, so

BCK-logic D BCI-logic D BBΊ-logic.

(iii) The system called Linear Logic developed in the 1980's by J-Y. Girard
as part of his analysis of the concept of computation contains an implication con-
cept satisfying the condition that a premise a must be used exactly once in a
proof of a -• β. Implicational BCI-logic is in fact a fragment of Linear Logic,
though a very small fragment.

References 3.1.5 The earliest published results on BCI-logic are in [28] §7,
where they are attributed to work of Meredith done in 1956 and presumably not
published then. They are summarized in [32] p. 316 §12.7. For later work see
Meredith [29], Blok and Pigozzi [5] §5.2.3, and the references in the present Sec-
tion 3.

3.2 Characterization of BCI-provability

Theorem 3.2.1: Characterization A formula a is BCI-provable iff a is the
result of a variables-for-variables substitution in a formula β which is a C-
tautology {see below) with the 2-property.

Proof: Jaskowski [24] §6.

Definition 3.2.2 ([24] §3) A C-tautology is a formula that takes the values
T or \ but not F, for each valuation of its variables, when "->" is interpreted by
the following matrix:

-* T \ F

T T F F
\ T \ F
F T T T

Theorem 3.2.3: C and Classical Tautologies A formula a with the 1-2-
property is a Cf-tautology iff
(i) a is a classical tautology with the 2-property, and

(ii) a is not the result of a variables-for-variables substitution in a classical tau-
tology without the 2-property.

Proof: [24] Theorem 6.3.

Claim 3.2.4 No variable occurs just once in a C-tautology, so every C-
tautology with the l-2-property has the 2-property.
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Proof: (M. W. Bunder, informal communication.) Let υ occur only once in α.
By [24] Lemma 3.4, if υ is given the value T and all other variables the value \,
then a gets the value F or T according as the position of v is negative or posi-
tive in α. The following dual lemma is also easy to prove: if v is given the value
F and all other variables the value \, then a gets the value F or T according as
the position of υ is positive or negative in α. By these two lemmas, a is not a C-
tautology.

Warning 3.2.5 The use of C'-tautologies in the Characterization Theorem
3.2.1 could not be replaced by that of classical tautologies, as not every classi-
cal tautology with the 2-property is a BCI-theorem.

Proof: Consider the formula

If this was a BCI-theorem, it would be a type in λ-calculus of a BCI-combina-
tor X, and hence of its β-normal form X*. But the only β-normal form with this
type is λxyz.z (see Warning 2.5.3), and this is not a BCI-combinator.

Theorem 3.2.6: Axiomatization of C The following are equivalent:
(i) a is a C-tautology;
(ii) a is provable in the implicational fragment RM_+ of the logic R M of [I]

§8.15;
(iii) a is provable by Modus Ponens and Substitution from the axioms (B),

(C), (I), (W) and the following:

(M) a-* (a-+a) (the "mingle" axiom),

(•) ((((a ->b)^b)^a)^c)-+ (((((& -+a)-+a)-+b)-+c)-+c).

Proof: (i) <=> (ii): [1] §29.3.2 (by R. K. Meyer).
(ii) =* (iii): By Meyer and Parks [31], RM_ is axiomatizable by (B'), (W), (*)

and

(CI) a-+{(a-+b)-+b).

But (CI) is the p.t.s. of CI and (B') is the p.t.s. of CB, so (B'), (W), (*), and (CI)
are provable from (B), (C), (I), (W), (M), (*).

(iii) =* (ii): (B), (C), (I), and (M) are easily seen to be C'-tautologies; hence,
since (i) & (ii), they are R^-theorems. Also (W) and (*) are R^-theorems by the
result in Meyer and Parks [31] quoted above.

Theorem 3.2.7: Decidability of BCI There is a decision procedure for BCI-
provability which outputs a proof of each provable formula.

Proof: [24] Theorem 6.5.

5.5 Corresponding combinators

Note 3.3.1 A formula is BCI-provable iff it is a type of a BCI-combinator.
(See [17] and [16] for details.)
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Definition 3.3.2: BCI-abstraction in CL Let x be a term-variable. For each
CL-term Y in which x occurs exactly once, a CL-term called λbdex. Yis defined
by algorithm (bde) of [12] §6A thus,

(b) λbdex.x = l;
(d) \bdex. UVm BU(λbdex. V) if x occurs in Vbut not in U;
(e) λbdex. UVs C(\bdex. U)Vifx occurs in U but not in V.

Lemma 3.3.3
(i) λbdex. Y does not contain x;

(ii) λbdex. Y is defined iffx occurs in Y exactly once;
(iii) Further, ifx does not occur in Y exactly once, then there is no way to define

abstraction with respect to x using only B, C, I; i.e., there is no term Y*,
composed only ofB, C, I and parts of Y other than x, with the property that
Y*x > w Y.

Proof:
(i)-(ii) Cf. [12] §6A Theorem 2.

(iii) The reductions for B, C, I in Basic Notation 1.1.1 cannot cancel or
duplicate the single occurrence of x in Y*x.

Theorem 3.3.4: Abstraction and p.t.s. Abstraction by algorithm (bde) pre-
serves principal types. That is, ifx,y\,..., ym include all the variables free in Y
and x occurs exactly once in Y, and there is a principal deduction giving

x:a,yι:Sι,...,ym:bm h Y:β,

then there is a principal deduction giving

yι:δι,...,ym:δm^λbdex.Y:(a^β).

Proof: Special case of Theorem 2.3.4.

Theorem 3.3.5: Typability for BCI ([16] §5) In CL and λ-calculus all BCI-
combinators are typable.

Theorem 3.3.6: Subject-conversion for BCI
(i) LetXand YbeBCl-combinators. IfX>yNYin CL orX>λ(3 Yin λ-calculus,

then X and Y receive exactly the same types and hence have the same p. t. s.
(ii) In CL and λ-calculus, all reductions of a BCl-combinator terminate.

(iii) The p. t.s. of a BCl-combinator is the same as that of its normal form (weak
normal form in CL, β-normal form in λ-calculus).

Proof:
(i) In λ-calculus this is [16] Theorem 5.1. In CL, the subject-expansion the-

orem in [12] §9C4 applies, since reducing a BCl-combinator does not
duplicate or cancel any terms,

(ii) By Theorem 2.3.6(ii).
(in) By (i).

3.4 Condensed BCI-logic

Definition 3.4.1 Condensed BCI-/og/c is the set of all formulas provable
from (B), (C), and (I) by Rule D (Definition 1.1.5). These formulas are called
condensed BCl-theorems.
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Theorem 3.4.2 The condensed BCl-theorems are exactly the principal types
of BCl-combinators.

Proof: [17] Theorem 6.7.

Theorem 3.4.3 If a is a condensed BCl-theorem then so is every formula
obtained from a. by a purely structural substitution.

Proof: [30].

Theorem 3.4.4: The BCI-2 Theorem Every condensed BCl-theorem has the
2-property.

Proof: The axioms (B), (C), (I) clearly have it and Rule D preserves it by The-
orem 1.1.8(ii).

Theorem 3.4.5: Decidability of condensed BCI There is a decision procedure
for provability in condensed BCI-logic which outputs a proof of each provable
formula.

Proof: Theorems 3.2.7 and 3.5.3.

Theorem 3.4.6: Characterization of condensed BCI The theorems of con-
densed BCI-logic are exactly the C-tautologies with the 2-property.

Proof: Theorems 3.2.1 and 3.5.3.

Note 3.4.7 An alternative characterization of condensed BCI-theorems is in
Hirokawa [20] Theorem 3.

5.5 Relation between BCI and condensed BCI

Note 3.5.1 Every BCI-theorem is a substitution instance of a condensed BCI-
theorem (just as all the types of a combinator are instances of its p.t.s.). More
strongly, we have the following.

Theorem 3.5.2 Every BCl-theorem is obtainable from a condensed BCl-
theorem by a variables-for-variables substitution.

Proof: By Theorem 3.4.3 and Lemma 1.1.4. (Another proof is in [10].)

Theorem 3.5.3 A BCl-theorem is a condensed BCl-theorem iff it has the 2-
property.

Proof: (Cf. Meyer and Bunder [30]) By [3] every condensed BCI theorem has
the 2-property. For the converse, let a be a BCI-theorem with the 2-property.
By Theorem 3.5.2, a is obtainable by a variables-for-variables substitution from
a condensed BCI-theorem a*, but by [3] a* has the 2-property as well as a, so
a* must be just an alphabetic variant of a.

Theorem 3.5.4: Incompleteness of D Rule D is not complete for BCI-logic,
i.e., there are BCl-theorems that are not condensed BCl-theorems.

Proof: The formula (α->α)-*(flr-*tf)isa BCI-theorem (because it is a type
that can be assigned to I), but by Theorem 3.5.3 it is not a condensed BCI-
theorem because it does not have the 2-property.
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3.6 Particular BCI-theorems The following are some BCI-theorems which
may be of interest. They are also condensed BCI-theorems. In the list each the-
orem is shown on the left and the combinator of which it is a principal type is
on the right.

Parentheses omitted from formulas should be restored by association to the
right.

3.6.1 The following are from [30] and are provable in condensed BBΊ-logic
as well as BCI. Let B' s CB.

(1) (a-+a')-+(b->b')-+(a' -^b)-> (a->bf)
λuυwx.v(w(ux)) or B(B'B)(BBB');

(2) (α->α')-> (b-+c->c')^>b^ (c' - a) -> (c-> a')
λuvwxy.u(x(vwy)) or BB(B(BB)B)B);

(3) (α-*α')-> (b-+c-+c')^>b-+ (α'-• c) - (α-> c')
λuvwxγ.vw(x(uγ)) or BB(B(B B)(BBB ));

(4) (a-*c^c')-*(b-*cf -*c")^a^b-+c->c"

λuvwxy.vx(uwy) or B(B(B'B')B')(BB);

3.6.2 The following are from [24].

(1) ax -•...-• an-* (aλ -•.. .-• an-+b)-+b \uλ... unv.vux... un\

(2) (a -> bγ - * . . . -+ bn -+ a' -+ c) -> (a' -+ bλ - > . . . ^ bn -> a -+ c)
λuvwi... wnx.uxwx... wnv;

(3) (bι - > . . . - > bn -> a -> c) -> (a -> bx - > . . . -* *„ ^ c)

λwi w ! . . . wn-uwι.. .wnv;

(4) (#->6-»c) -> (d->a) -> (b-+d->c) λuvwx.u(vx)w;

(5) (fir ̂  a ' ) - > ( * ! - > . . . - > £ „ -^ α ' ^ c) -+ ( & ! - > . . . 6 Λ -^ έ7 -+ c)

λuvwi... WfjX.vwi... wn(ux);

λwt w.i ίλx ! . . .xny.wxx.. .xπ(w^));

(7) {a-• 6 - > a ' ) -> ((cι -+...-* cn->a-+d)-+e)

-> b-• ((ex -+...-> cn-+a' -+d) ->e)

λuvwx.v{λyι.. . j^z.xyi. . .j>Λ(t/zw));

(8) (α-^ ό) -• (c-> rf) -• c-> (c/-> a) -> Z? λwuwx.w(x(ι;w)).

Note 3.6.3 Formula (5) in 3.6.2 is also provable in condensed BBΊ-logic,
being a p.t.s. of (BB)"B r, where XnY is ^ ( ^ ( . . . (XY)...)) with n X's.

4 The 1-2- and 2-preservation theorems

4.1 Introduction In this section we shall prove that Rule D preserves the
1-2- and 2-properties (as stated in Theorem 1.1.8).

The first published proof of either of these results was the proof of 2-pre-
servation in Belnap [3]. Belnap's method also shows that Rule D preserves the
1-2-property, although he did not claim this; in fact the 1-2-theorem needs slightly



BCK AND BCI LOGICS 245

less proof. The core of [3] is an analysis of a series of repeated compositions of
two one-to-one functions.

It may be of interest that the proof of a different result in Jaskowski [24] con-
tains an argument rather like Belnap's, that would probably have led Jaskowski
to the 1-2-preservation theorem had be been concerned with it. Jaskowski's argu-
ment is an analysis of two equivalence relations instead of two one-to-one func-
tions, and does not go so far as Belnap's. It would not have given Belnap's
2-theorem without a little extra work, but would have given the slightly easier
1-2-theorem with very little modification.

In this section the 1-2-preservation theorem is proved by a modified
Jaskowski argument. A proof of the 2-preservation theorem is given afterwards
by adding an argument of Belnap's onto the end of Jaskowski's.

Note 4.2 Other proofs of the 1-2- and 2-preservation theorems are in Meyer
and Bunder [30] and Bunder [8].

The 2-preservation theorem and its background are discussed in Kalman [25],
though no proof is given. It is stated and used in Wos et al. [33] which refers to
Belnap for the proof.

Lemma 4.3 Purely structural substitutions preserve the 1-2- and 2-properties.
That is, if a has the 2- or l-2-property and σ is a purely structural substitution
relative to a then σ(a) has the same property (2- or 1-2-) as a.

Proof: Let σ(a) = [bχ/a\,... 9δk/ak] (a). If a variable #; occurs exactly n times
in a and is replaced by n copies of δ, in σ(α), then each variable in δ, occurs
exactly once in each copy and hence occurs exactly n times in σ(α).

Lemma 4.4 (/) Let [ a i, a2} have a most general unifier σ. Then there exist
a purely structural substitution σstruc relative to ax and a2, and a variables-for-
variables substitution σvar, such that

Ovar(tfstruc(a/)) ~ σ^a^ ( ' = ^2)9

and if we define a* = σstruc (α, ), then σvar is a most general unifier of {a*, al}.
(ii) If a i and a2 have no common variables then σstruc can be defined so that

there are no variables common to a* and α|•

Proof: For (i): apply Lemma 1.1.4 to σ. Clearly σvar unifies {CLUOL2) To show
σvar is most general, suppose another substitution r also unifies {αf,^! }• Then
the composition τ ° σstruc unifies {αi,α2}. ^ u t ̂ e m g ii. of {α!,α2) is σ, so

* ° σstruc = P ° <*

for some substitution p. Then for / = 1,2,

τ(α*) = T(astruc(a/)) s p(σ(θίi)) s p(σ v a r(a*)),

so σvar is most general. For (ii): use the "also" clause in Lemma 1.1.4.

Theorem 4.5: The D-l-2 theorem Rule D (the condensed detachment rule)
preserves the l-2-property. That is, ifax and (oci-^fii) have the l-2-property and
D((α2 -> βi)> aι) exists, then it has the \-2-property.

Proof: (Based on the proofs of [24] Theorems 1.1 and 2.2.) Let Ό((a2 -> β2),
αO exist and a{ and (a2 -> β2) have the 1-2-property. Make an alphabetic vari-
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ation if necessary to ensure that cxλ and (a2 -> β2) have no common variables.
A fairly routine proof shows that this will leave D((α 2 ~> 182)>«i) unchanged
modulo alphabetic variation. Let σ be an m.g.u. of {oί\,a2} satisfying the con-
dition in Rule D, namely

Vars(σ(α2)) Π [Vars(j32) - Vars(α2)] = 0 .

By Lemma 4.4 we can assume that σ is a variables-for-variables substitution.
(Note that by Lemma 4.3, σ s t Γ U C(αi) and σ s t Γ U C(α2 -• j82) have the 1-2-property,
where σ s t r u c is determined by Lemma 4.4.) Let

(1) a^σ(aι)mσ(a2)9 β = σ(β2).

Consider the formula a2 -> |3 2 : number all the variable-places in it from left
to right; say 1, . . . ,n are in a2 and n + 1, . . . ,m are in β2. Now σ substitutes
only variables for variables, so by (1) there are the same number of variable-
places in α and in αx as in α2, and in β as in β2; number all these places from
left to right as 1 , . . . ,n in α , l , . . . ,n in αx, and n + 1, . . . ,m in β.

Define the following relations on the set {1, . . . ,m) (cf. the proof of [24]
Theorem 2.2).

i ~\j iff either i =j > n, or i<n and j < n and the i-th andj-th places
in 0L1 contain the same variable.

i ~ij iff the i-th andj-th places in a2 -• /32 contain the same variable.

i ~oj iff t h e r e e x i s t h> > Jr+\ (r ^ 0) such that ix = i, ir+ι = j , and
(vk < r) ik ~x ik+ι or ik ~2 ik+ι.

Clearly — λ and —2 are equivalence relations, and hence so is ~ 0 Also

(2) i-ij^i-oj

Let r be a variables-for-variables substitution into a2 -• j32 with the property
that the variables in the /-th andy-th places are replaced by the same variable iff
i ~oJ- Such a r exists by (2) and the definition of ~ 2

Note that τ(a2) is a substitution instance of aΪ9 since i ~\j =* i — o7 Say
τ(a2) Ξ= p(ocι). Since ocx and a2 -• β2 have no common variables, we can define
a substitution 7' which has the effect of r on a2 -• β2 and the effect of p on a.χ.
Then τ r unifies {Q:1,Q:2}.

Further, any unifier of {αi,α 2} must substitute the same formulas into
places / andy such that / ~oj. Therefore rf is an m.g.u. of {OLUOL2}.

Hence r ' is the same as σ, modulo alphabetic variation, so by (1) we can
assume

αsrWarW, β = τ'(β2).

We must prove that β has the 1-2-property. By the definition of r and r ' it
is enough to show that each place-number / in β is related by —0 to at most one
other place-number in β.

Let / be a place-number in β, and consider any chain of form

(3) / = i\ ~qx il ~q2 h ~q3 ~qr ir+1

where qk = 1 or 2 for each k. By cutting out repetitions we can assume that
/*!,..., ir+ι axe distinct. We must show that the chain contains at most one other
number in β besides ix.
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Now zΊ is in β, so it is related by ~ι to nothing else (by the definition of - J ,
and by —2 to at most one other number (since a2 -> β2 has the 1-2-property). So
Qι = 2 and i2 is uniquely determined if it exists. (If it does not exist then r = 0.)

For k = 2 , . . . ,r + 1, the number ik is related by ~ ! and ~ 2 to at most one
other number each, since a\ and a2 -> β2 both have the 1-2-property; hence
qk = 2 if ^ _ ! = 1, and ^ = 1 if qk_\ = 2; also /^+1 is uniquely determined if it
exists.

But if ik is in β9 then it is related by ~ x to nothing else and by ~ 2 to only one
other number. This number must be 4_i, otherwise ik would not be in the
chain, so qk_λ = 2 and the chain cannot continue beyond ik.

Thus the chain ends as soon as it meets an ik in β with k > 2, so it contains
at most two place-numbers in β, as required.

Theorem 4.6: The D-2 theorem Zta/e D (ίΛe condensed detachment rule)
preserves the 2-property. That is, if ot\ and (a2 -* β2) have the 2-property and
D((α 2 ~* 02)>αi) exists, then it has the 2-property.

Proof: Let «! and ax -+ β2 both have the 2-property. Follow the proof of The-
orem 4.5; the only extra thing is that now we must show that each place-number
/ in β is always related to another place-number j in β by ~ 0 This is done as fol-
lows (adapted from [3]).

The key fact is that a chain (3) where each ik is a distinct place-number can-
not have more members than the number, m, of places in a2 -> β2.

Let / be in β. We shall construct a chain (3) with iλ = i and extend it as far as
possible, and show that it must eventually contain another number in β besides /.

Define i\ = i. Then ii9 being in β, is related by ~j only to itself and by —2

to exactly one other place-number, call it i2. If i2 is in β, then the chain has the
required two members in β. If not, then we extend the chain two steps at a time,
as follows.

Suppose we have already constructed a chain with an even number of mem-
bers, all distinct:

(4) i\ ~i i2 ~\ - - ~i iih-i ~2 hh-

(Note that ~ j , ~ 2 must alternate and begin with ~2> by the proof of Theorem
4.5.)

Suppose i2h is in aγ. Then by the definition of ~i and since a^ has the 2-
property, i2h is related by — i to exactly one other number and this number is in
α 1 ; c a l l i t / 2 Λ + 1 .

Now J'2Λ+I is distinct from il9... i2h. To see this, note first that i2h+x Φ i2h

by definition of i2h+\. Next, if i2h+ί - ij for some./ < 2Λ - 2, then i2h, being the
unique number related to /2Λ+I by ~i> would be the same as /y + 1 or /)_!, con-
trary to the distinctness of / j , . . . ,i2h. Finally, if / 2 Λ + 1 = / 2 Λ-I, then / 2 Λ + 1 would
be related by — t to /2^-2 and to i2hi so these two would be the same, contrary
to the distinctness of i\,..., i2h. Thus we now have the following chain of dis-
tinct numbers:

(5) ί\ ~2 *2 ~1 ~1 hh-\ ~2 hh ~1 '2Λ+1

Now / 2 Λ + 1 is in α 2 -• β2 which has the 2-property, so i2h+ι is related by ~ 2

to exactly one other number; call it / 2Λ+ 2 . By the same argument as above, it is
distinct from ix,..., i2h+ι Thus the chain (4) has now been extended from 2Λ
to 2h + 2 distinct members.
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Such an extension is always possible when /2Λ is in α j . But there are only m
place-numbers to choose from, so the chain must stop and thus some i2h must
be in β.
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