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Peαno's Smart Children: A Provability Logical

Study of Systems with Built-in Consistency

ALBERT VISSER*

Abstract The systems studied in this article prove the same theorems (from
the "extensional" point of view) as Peano Arithmetic, but are equipped with
a self-correction procedure. These systems prove their own consistency and
thus escape GδdePs second theorem. Here, the provability logics of these sys-
tems are studied. An application of the results obtained turns out to be the
solution to a problem of Orey on relative interpretability.

/ Introduction Consistency can be built into a system in various ways. The
two best known constructions are Rosser's and Feferman's, both of which take
a given formal system in the usual sense as initial data. Consider, for example,
Peano Arithmetic (PA). A proof in the Peano System will count as a proof in
the Rosser System based on PA, if there is no shorter Peano proof of the nega-
tion of its conclusion. The Feferman System can be described in various inter-
esting ways, modulo provable equivalence in PA of the formulas defining the
set of theorems. One such way is this: A proof in the Peano System will count
as a proof in the Feferman System based on PA, if the finite set of arithmeti-
cal Peano axioms smaller than or equal to the largest arithmetical Peano axiom
used in the proof is consistent.

The reasons such constructions occur in the literature are various:

(i) They serve as counterexamples in the study of the relations between
GδdeΓs first and second Incompleteness Theorems (see [4]).

(ii) They serve as didactic examples in philosophical discussions, like the

*I would like to thank Johan van Benthem, Dirk van Dalen, Karst Koymans, Henryk
Kotlarski, and Fer-Jan de Vries for stimulating discussions. I am also grateful to Erik
Krabbe for carefully reading parts of an early draft of this paper. And I am especially
thankful to George Kreisel without whose interest and questions the paper probably
would never have seen the light of day.

Received September 14, 1987



162 ALBERT VISSER

debate on intensionality in mathematics (e.g. [1]) and the discussion
on the possible bearing of the Incompleteness Theorems on the Minds
& Machines problem (see [10], [21], [3]).

(iii) Rosser's construction is used to sharpen GόdePs first Incompleteness
Theorem,

(iv) Feferman's construction is an important tool in the study of relative
interpretability (see [4], [13]).

The main objects of study in the present article are certain variants of both
Rosser's and Feferman's constructions. My motivations are closely related to
(i)-(iv) above:

(a) There is much interest in the study of bimodal systems in the current
literature on provability logic (see e.g. [12] and [16]). There are two
directions of research: The pure study of arithmetical self-reference and
the study of arithmetical self-reference as a tool for unifying self-
referential arguments in arithmetic (see [6], chapter 7). In the first line
of study one aims at characterizing the modal logic for a certain 'given'
class of interpretations. There is no objection here to having 'few'
interpretations and strong modal systems. In the second line one looks
primarily for a modal system which is sound for as many interpreta-
tions as possible, but is still rich enough to carry out the proofs of the
arithmetical arguments under study. The distinction between the two
lines described here is not precisely that between pure and applied. The
first line also has its typical applications: Solovay-style completeness
results yield a powerful machinery for producing arithmetical sentences
with rich but controlled properties. These sentences can be used to
prove various incompleteness and other kinds of results (for an exam-
ple, see Section 7 of this paper).

The contribution of this study lies along the first line. I provide
an example of a rich modal logic of not too standard a sort, valid for
two different arithmetical interpretations. This example can be used to
test conjectures concerning the conditions for uniqueness and explicit
definability of fixed points (see [15] for a discussion of these matters).
Questions of uniqueness and explicit definability generalize the prob-
lem of the precise connection between the first and second Incomplete-
ness Theorems; in this sense (a) generalizes (i). The logic can also be
used to illustrate the point that one can simulate the results of inten-
sional self-reference (as with Rosser's Theorem) to quite an extent by
applying provably extensional self-reference—the cost being an increase
in the complexity (modulo provable equivalence) of the sentences
involved.

(b) The modal derivability conditions are an improvement in the presen-
tation of systems with built-in consistency in the discussions mentioned
under (ii) above.

(c) The methods developed have as a spin-off an application to relative
interpretability: I answer a question posed by Orey for the case of PA.

As far as prerequisites go, knowledge of [4] and [16] should bring the
reader a long way.
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2 Contents of the article In Section 3 the necessary notions and notations
are introduced. Section 4 is a step-by-step introduction to the construction of
the systems that are central in this article. This section also illustrates the powers
of provably extensional self-reference and contains a discussion of the problem
of uniqueness and explicitness of the Gδdel and Henkin sentences of the vari-
ous systems considered. Section 5 treats the bimodal principles valid for the two
central systems; a Kripke model completeness theorem is proved. Section 6 has
a partial result on embedding Kripke models for our modal system into arith-
metic. In Section 7 this embedding result is applied to a problem about relative
interpretability.

3 Conventions, notions, and elementary facts

3.1 Point All the arithmetical results in the next sections will be stated for
Peano Arithmetic. PA, of course, is just a convenient peg to hang the discus-
sion on; almost any RE theory into which PA, minus induction, plus Σ2-induc-
tion, can be interpreted, would do. Where results on relative interpretability
appear one must also demand that the theories considered be essentially re-
flexive.

3.2 D and Δ (in different contexts) Let Proof(x,.y) be the Δ o arithmeti-
cal formula representing the relation: x is the Gόdel number of a PA-proof of
the formula with Gόdel number y. We assume for convenience that PA h
Vx3 !.yProof(x,y). Let Prov(y) = axProof(x,y). We write, par abus de langage,
'Proof(x,A(x u . . . ,xn))' for Proof(x, ry4(x l 5.. . ,xn)

n), where:

(i) all free variables of A are among those shown
(ii) rA(xu . . . ,xn)~] is the "Godel term" for A(x\,... >xn) as defined on

p. 43 of [16].

The modal operators D and Δ will appear both in the context of modal
logic and in the context of arithmetic. 'D^4(^i,... ,xn)' will stand for Prov
( Γ A {xx,... ,xn)

π). In arithmetical contexts ΆA (xu... ,xn)' will stand for
B(ΓA (xι,... ,xn)

π), where B(x) is the arithmetization of theoremhood in the
particular system with built-in consistency that we are considering at the place
of occurrence of ΆA(xι,... ,xn)\ To avoid confusion we will use ΔR, Δ κ,
etc. To differentiate arithmetical from modal contexts, we use A,B,..., for
arithmetical formulas and φ,ψ,. . . , for modal propositional formulas.

If t is a term for a provably recursive function we will have that (suppos-
ing that t is substitutable for x in A) PA h (ΏA(x)) [t/x] *+ OA(t). We will
employ terms for provably recursive functions only, so we may indeed treat
xu . . . 9xn in ΠA(xγ,... yXn) simply as free variables. Similarly for Δ.

40' will be an abbreviation for πD-i, and ' V for -ιΔ-ι.
When we want to consider systems with other axiom sets than PA, we will

write Proofα, Provα, Ώa, etc., where a is a formula that represents the axiom
set of the system under consideration in an intensionally correct way in PA. We
fix a formula TΓ correctly representing the axiom set of PA. Thus, our notation
'• ' is just short for D r
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3.3 Dtxand D* Define:

IΓΓ*(J>) **τr(y) /\y <x,

Ώ\xA** ΠπlxA,
O\xA** -iDbrvl,
Π*A*=>3xΠtxA.

It is clear that PA h ΠA <-• D M , but the difference in form will be of some
importance when Rosser-orderings come into play. (The usefulness of D* in this
connection was discovered by Svejdar; see [18].)

3.4 Witnessing and the Rosser-ordering Let A be of the form 3xA0(x).
Define t wit A *=* A0(t). Here we assume that bound variables in Ao are
renamed, if necessary, to make t substitutable for x in Ao.

Let A be of the form 3xA0(x) and B of the form 3xB0(x). The Rosser-
orderings between A and B are defined as follows:

A < B ** lx(A0(x) ΛVj<x -*B0(y))
A<B^ 3x(A0(x) ΛVj<i -iB0(y)).

We will always apply witnessing and the Rosser-ordering to the precise forms
in which the relevant arithmetical formulas are introduced.

In connection with the Feferman System we will consider formulas of the
form D*C < D*Z>. These formulas are of the more general form A < B, where
A is 3x3yA0(x,y) with Ao in Δ o and where B is 3x3yB0(x,y) with Bo in Δ o .
It is of some interest to know the complexity of such formulas A < B; prima
facie A < B is Σ 2. We have the following theorem:

Theorem PA h 3x(3yA0(x,y) ΛVZ< X^U-^BQ{Z,U)) ++ Vulx(3yA0(x,y) Λ

\fz<x-ιB0(z,u)).

Proof: The "->" side is trivial. For the "<-" side reason in PA as follows: Sup-
pose that Vulx(3yA0(x,y) Λ VZ < χ-ιB0(z,u)). It follows that 3xlyA0(x9y).
Let x0 be the smallest such x. Consider any u. Pick an x such that 3yA0(x,y)
and Vz < χ-ιB0(z, u). Clearly x0 < x and hence Vz < xo-^Bo(z, u). We then con-
clude that 3yA0(x0,y) Λ VZ < xO" l^o(^>w)

Both Svejdar [18] and Lindstrom [9] show that in every degree of relative
interpretability over PA there is a sentence of the form A < B where A and B
are as above. Thus, every degree of relative interpretability contains a Δ 2 sen-
tence.

5.5 Relative interpretability Ά < B' stands for the arithmetization of:
PA + A is relatively interpretable in PA + B. PA h A < B <* VxD (B -> 0 \xA)
is a result due to Orey and Hajek. We list a number of principles valid for D
and <:

(11) PA h Ώ{B^A)-*A <B
(12) PA\-(A<BΛB<C)^A<C

(13) PA h (A < B A A < C) -* A < (B v C)
(14) PA h A < B -> ( 0 5 -• 0^4)
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(15) PA h OA < B -> D (B -* OA)
(16) PA h ̂  < OA
(17) PA hΛ < £ - > (A Λ DC) < ( B Λ DC).

The principle (17) is new and is due to Franco Montagna. We will prove (14),
(15), and (17). First we treat of (14) and (15). Given (II) and (12) it is easily seen
that (14) is equivalent to

(I4r) PA\- ± <B-+Π-iB.

Thus it is sufficient to prove

(Jl) For all P i n Πi, PA h P < B -> D (J?-» P) .

First note that for every n9 PA h VxD (B-+0 \xA )++Vx>nΠ\(B-+0 \xA).
Pick q so big that D \q contains Robinson's Arithmetic. We then have for S in
Σi that PA h Vx > q D (D \xS <-• S), so for P in Uι PA h Vx > # D (0 \xP +->
P). Hence

PAt-P<B++Vx>qΠ(B->0 txP)
<-> Π(B-+P).

We now turn to (17). We prove

(J2) For all S in Σl9 PA \-A < B-+ (A Λ S) < (BΛS).

Suppose that S is Σ^ Let q be as above. Note that

PAhVx>^D(5-^ ΠΪX((DAS)^D)).

It follows that

PA h VxD (5 -* 0 \xA) -+ Vx > qU {{B A 5) -* 0 tx(^l Λ 5))
^VxD((^Λ5)-^0rx(y4 Λ S ) ) .

For further details see [19].

3.6 On systems Philosophically, I think it is best to make the whole appa-
ratus for generating theorems part of the identity conditions of systems. For our
purposes however, it is more convenient to confuse the systems considered with
the arithmetical predicates that codify theoremhood in the system in an inten-
sionally correct way. I will say that a system with associated arithmetical predi-
cate A if a variant of a system with predicate B if PA h Vx(v4 (x) +-> B(x)).

The notion of 'system' is kept more or less open in this paper. The usual
formal systems are still paradigms of systemhood. The systems we consider here
are in some sense derived from the usual systems: they use the proofs of for-
mal systems as data. A second point is that the systems considered may be seen
to be extensionally equal to the formal systems on which they are based, given
the information that the original systems are consistent.

4 Systems with built-in consistency, an introduction This section serves sev-
eral purposes. First, it exhibits various ways of 'loading' systems with desired
'modal' properties. Secondly, it contains brief discussions of the various systems
with built-in consistency that can be found in the literature. Thirdly, the prob-
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lems of uniqueness and of explicitness of Godel and Henkin sentences of the sys-
tems introduced are considered. (The rationale behind the attention to these
specific problems is that these problems were historically at the crib of prov-
ability logic for D, and also that these problems turn out to be a quite pleas-
ant starting point when one wants to get acquainted with the systems studied
here.) In the fourth place, I give examples of the powers and possibilities of
provably extensional self-reference. Specifically, I show how to use provably
extensional self-reference to construct four nonequivalent Orey sentences.

In this section V stands for PA h, and A,B, C stand for formulas of the
language of PA. Note that by our conventions we have that YA{x) => YvxA(x),
but not YΏA(x) -» ΠVxA(x).

For the record we state here the usual principles valid in PA for D.

P (The Peano System) The provability principles of PA are:

(LI) YA => YUA
(L2) hΠ (A -+ B) -* (UA -> ΏB)
(L3) hD,4-»DD,4
(L4) YΠ(ΠA-+A)-+ DA.

We will use these principles without explicit mention.

R (The Rosser System) The Rosser System is defined as follows: A A <=>
ΏA < Π^A.

Some principles valid for the Rosser System in PA are:

(1) YA =* YAA
(2) h π Δ l
(3) YAA-+ΠAA
(4) h^DJ. -» (AA ++ ΏA).

Some direct consequences of (l)-(4) are:

(5) h Δ ^ -* UA (4)
(6) YΠA-+ΏAA. (3),(4)

It is perhaps worth noting that the set of theorems of the Rosser System is prov-
ably infinite. Reason in PA as follows: in case -ι D _L this is trivial. In case D _L
for any A, clearly one of A, ~*A, -ι-ι^4, -ι-i-υ4,.. . , will be Rosser-provable.

In the Rosser System we have two explicit but nonunique Henkin sentences:

(7) hT<->Δτ (1)
(8) h l . ^ Δ _ L . (2)

Consider a Gόdel sentence of the Rosser System, i.e., a sentence G such that

(9) H G ^ - i Δ G .

We have

(10) YΠG-+ (BAG A DπΔG) (6),(9)
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Of course we can also prove

(11) hD-πG->D±

but not from the modal principles collected up to now; we have to go back to
the underlying Rosser-ordering. A slight change in the definition of Δ removes
this defect as we will see under K.

The uniqueness or nonuniqueness of Gόdel sentences in the Rosser System
is still an open problem. Guaspari and Solovay show that if one allows variants
of Prov in the definition of Δ, the answer may be yes and may be no (see [5]).
I am not aware of any argument that there are no explicit Gόdel sentences for Δ.

Open question Are there explicit Gόdel sentences for ΔR?

Open question If one allows Σx variants (with one existential quantifier in
front of the Δ) of Prov in the definition of ΔR, can there be explicit Gόdel sen-
tences for ΔR?

K (KreiseΓs symmetrized Rosser System) KreiseΓs variation on the Rosser
System is reported in [7], pp. 298-302.

Define A A *=* 3x [Proof (x,A) ^ Vu,v,b,c < x((Proof(u,b) Λ Proof (*;,<:)) -> c Φ
neg(£))]. Clearly, AA is Σλ. The Kreisel System satisfies principles (l)-(4) and
the additional principle

(12) h-i(Δyl Λ Δ-vl).

We can now prove (11) modally:

hDiG-> D Δ G Λ DΔπG (6),(9)

-> D ( Δ G Λ Δ - I G )

->D±. (12)

Note also that hD_L -* "{A\ AA} is finite".

R' (A minor variation of Rosser's System) Yet another defect of the Rosser
System is that we have no appropriate bimodal counterpart for the underlying
principle

t-DJL -* (ΠA < Π-^A v Π-*A < ΠA).

This can be easily repaired. Define

R6 = 0

ΓR^ U [A], if Vrooϊ{n,A) and (-.>!) $. Rf

n

RΛ + 1
 = \ _ ,

^R^, otherwise.

Let AA be the arithmetization of 3nA E R«+i. Clearly, AA is Σ^ We have
that \-AA <r* [JA < A~iA, and even hvx(x wit AA ++ x wit ΠA < Δ-υ4).
This last fact happens to characterize ΔR'.

Principles (l)-(4) hold for Δ, plus the additional principle

(13) HΠ_L -> (AA v A-iA).
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A direct consequence is

(14) \-ΠA -> (AA v Δ-υ4). (4),(13)

Finally, note that \~ARA -> Δ R Ά

BM (The Bernardi-Montagna System) We now jump up directly to a system
which is richer, from the modal point of view, than both Δ κ and ΔR ' . This sys-
tem was discovered by Claudio Bernardi and Franco Montagna (see [2]). Define

BM0 = 0

IBM,, U [A], if Proof(w,^4) and BMn U {A} is consistent

in propositional logic

BMΛ, otherwise.

Let AA be the arithmetization of 3nA G B M Λ + 1 . Clearly, AA is Σ{. Also,
principles (l)-(4) and (13) hold for Δ . We also have, by elementary reasoning,

(15) \-A(A -*B)-+ {AA -> AB).

(15) in combination with (2) entails (12), so the principles valid for Δ B M com-
prise those valid for Δ κ and ΔR (at least insofar as we have found such prin-
ciples).

mBM (The modified Bernardi-Montagna System) For our purposes we want
the following additional principle

(16) HΔ.4-+ΔD.4.

It is not plausible for one to prove (16) for the BM System without additional
assumptions about the order of the proofs of PA; e.g., given • J_, why would
one have Δ D l rather than Δ~ιD J_? We can, however, modify the BM Sys-
tem in such a way that we get (16).

Let hprop stand for derivability in propositional logic. Define

mBMo = 0

ΓmBMrtUM), if Proof (n,A) and mBMΛU{^} t/p r o p^D_L
mBM r t+1 =<

IjnBMrt, otherwise.

Let A A be the arithmetization of 3nA G mBMΛ + 1. Clearly, A A is Σp
It is easily seen that (l)-(3) and (15) are valid. We may verify (4) in PA as

follows:

Trivially, A A -• ΠA. Suppose that -iD_L and ΠA, say Proof (x, A). The
only reason A could be left out of mBM x + 1 is that mBMx U {̂ 4} hp r o p

-i D _L. But then D -ι D _L and hence D ±, which is a contradiction. So we
conclude that A e mBM J + 1 and thus AA.

(13) can be proved in PA as follows:

Suppose that D ±. For certain x and y we will have that Proof(x,A) and
Proof(j>,-i^4). Let z = max(x,j). If -iΔ^4 and -ιΔ-vl we will have that
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mBM z + 1 U {A} hPrθp π D l and mBM z + 1U {-^A} h P r o p ->D±. Hence
mBM z + 1 hprop i D l .

Finally, we turn to (16). Clearly,

(17) f—iΔ-iDj.

from which it follows that

h D l - ^ Δ D l (13),(17)

moreover

hΔDJ_-»ΔD,4 (1),(15)

hence

HD_L-> (Dy4-> ADA)

also

h-iD± -> (ΔDi4 <+ ΠΠA) (4)

thus

\—iDl -> (ΏA-+ ΔΏA).

So we may conclude that (16) holds. (Conversely, one can derive (17) from (4),
(12), and (16).)

Let us list for the sake of convenience the principles valid for Δ m B M with
brand new names:

(Bl) VA => VΔA
(B2) hΔ (A -* B) -> ( A A -> AB)
(B3) h ^ Δ ±
(B4) \-ΠA-+AΠA
(B5) \-AA-+ΠAA
(B6) h - i D l -* ( Δ ^ 4 ^ D^l)
(B7) hD± ^ ( Δ ^ v Δ - . ^ ) .

We note some important consequences of these principles. First, a strengthen-
ing of Lob's Axiom

(18) \-A(ΠA-+A)-+ AA.

Proof: hΔ (UA -+ A) -> D (ΠA -> ̂ ) (5)

^ Δ D 4̂ (B4)

-> Δ^l. (B2)

The second consequence is the principle of provable extensionality

(19) \-\J(A <r+B)->Ώ(AA~ AB).

Proof: hΠ (A <-> B) -> D Δ {A ++ B) (6)
^U{AA^ AB). (B2)
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The next principle is an immediate consequence of (12) and (B7)

(20) hD_L -» (AA <-> VA).

Let us define D°± = J_, D"+1_L = D D W 1 , D ω ± = T. We will say that an
arithmetical formula A is modally closed if A is built up from T,_L with the
propositional connectives and D , Δ (in other words, if A is an interpreted sen-
tence of the closed fragment of the bimodal propositional logic with operators
• and Δ ) .

(21) Suppose that A is modally closed. Then there is an a E {0,. . . ,ω) such
that HΔ.4 <-• \ja±.

Proof: Consider B built from T, ± with the propositional connectives and D.
First there is the familiar fact that

\-(B A ΠB) <-> Πβ±, for some/5 E {0,.. .,ω}.

Hence

hΔ£*-» A(B /\ ΏB)
<+ Δ D 1 3 ! .

Secondly we have that hΔD°J_ <-• D°_L, and hΔD 1 + Ύ J_ <+ D2+7_L (as is easily
seen by considering the cases Π± and - i Q l separately). Combining these results
we see that \-AB <-> D δ ± , for some δ E {0,.. . ,ω). (21) follows by a trivial
induction on A. (Note that we didn't use (B7) in the argument.)

We now turn to the Henkin sentences of Δ . We have already seen in (7)
and (8) that _L and T are explicit Henkin sentences. For Δ m B M we can show that
they are the only explicit Henkin sentences. Consider H satisfying:

(22) VH^AH.

If H is explicit, it follows that H is modally closed. Hence by (21)

bfiΓ<-> D α ± , for some α G ( 0 , . . ,ω} .

If a Φ 0, a Φ ω, it follows that for some n E {1,2,. . . }

hD"± ++ ΔDΛ_L

Open question Are there nonexplicit Henkin sentences of Δ m B M ?

Next we turn to the Gδdel sentences of Δ . Under R and K we have seen
in (10) and (11) that these have the Rosser Property. We show that they are
nonexplicit and nonunique.

Consider G satisfying (9). If G were explicit, G would be modally closed.
Hence by (21) VG <-* -iDα_L (a E {0,... ,ω)). If a Φ 0, we get that

\-AG^ Δ-iDαJ_ (B1),(B2)
~Δ± (18)
<->!. (B3)

So, by (9), hG. Thus a = 0, which is a contradiction. If a = 0, we have that
\-G and thus hΔG, i.e., by (9), I—"G, another contradiction. Hence G cannot
be explicit.
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To see that G is not unique we show that VG is also a Gόdel sentence and
that VG is not provably equivalent to G. First we show

(23) l-VG^-iΔVG.

To prove (23) it is clearly sufficient to show

(a) h-iΠl->VG
(b) HDl-^πΔVG
(c) hD_L-> (VG^-πΔVG).

We prove (a) by contraposition

HΔ-πG-D-iG (5)
-> ( D Δ G Λ D Δ - I G ) (6),(9)

->D±. (12)

To prove (b), we show first

hΠD± -+(ΔVG-> DVG) (5)
->DΔG) (20)

- D - . G ) (9)
-> D±). (as in the proof of (a))

Hence

hΔVG-> ( D D l -> DJL)

thus

h Δ V G - D Δ V G (B5)

-> D ( D D l -> D l )
-> D D l

and so, combining,

hΔVG-> D ± .

The proof of (c) goes as follows:

hD_L->ΔDJ_ (B4)
- Δ (VG <-> ΔG) (Bl),(B2),(20)
->(ΔVG<^ΔΔG) (B2)
-> ( Δ V G ^ Δ-.G) (9),(B1),(B2)
-• ( - I Δ V G H VG).

Next we show that VG is not provably equivalent to G. It is clearly suffi-
cient to prove

(24) H D ( G ^ VG)-*D_L.

Clearly,

H(GΛ VG) - ^ ( Π Δ G Λ - I Δ - G)

^πDi (B7)
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and

K Π G Λ Π V G ) -> ( Δ G Λ Δ I G )

- ± . (12)

Combining, we get that

hD(G+-> VG) -• D ( ( G Λ VG) v ( Π G Λ - I V G ) )

-» D-iΠJ_

-* D±.

Another way to prove (24) is by noting that

hΠD± -* ( D ( G ^ V G ) -* D ( G ^ ΔG) (20)
-* Π±).

We leave it to the reader to verify that our procedure yields no further inde-
pendent Gόdel sentences, i.e.,

(25) h G ^ V V G .

In Section 5 we will see that as far as our modal principles are concerned we can-
not show more than this: if there is a Godel sentence of Δ then there is a sec-
ond, nonequivalent one.

Open question Are there three pairwise nonequivalent Godel sentences of
ΛΠ1BM9

The R, K, R', BM, and mBM systems are all Σu yet they escape the sec-
ond Incompleteness Theorem. By a well-known result of Feferman (see [4]) these
systems cannot be provably closed under the axioms and rules of predicate logic;
in other words, we do not have HΔv4 <+ DAA. If Δ is one of Λ B M ,Δ m B M we
can say a bit more. Let Δ be one of Δ B M , Δ m B M . Let Q be the conjunction of
the axioms of Robinson's Arithmetic. We clearly have \-Q, and hence hΔ<2,
and thus hD Δ (λ It immediately follows from the provable Σ{ -completeness of
Robinson's Arithmetic that

(26) \-AA-^[JAAA.

Let G be a Godel sentence of Δ. We have

(d) hDi. -> (ΔGv Δ--G) (B7)
(e) hΔG->D Δ ΔG (26)
(f) hΔG->D Δ G

- + D Δ i Δ G (9)
(g) hΔG-+DΔ_L (e),(f)
(h) hΔ^G->D Δ Δ--G (26)

- + D Δ Ί Δ G (Bl),(12)

(i) HΔ-iG->DΔ-iG

-+ Π Δ Λ G (9)

(j) HΔ-πG-+DΔ± (h),(i)
(k) h Π ± ^ D Δ ± (d),(g),(j)
(1) h D i . - ^ ( D Δ ^ ^ D ^ ) (k)

(m) I—iDl -» (DΔv4 <-> ΏΠA)
<-> ΠA)

(27) \-BΔA <+ DA. (l),(m)
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So ΔB M and Δ m B M are provably axiom sets for the theorems of PA. The same
thing can be proved for ΔR by a slightly refined variant of the above argument.
What about ΔR and Δκ? Γm not certain, but a good guess is that it would be
so for ΔR but not for Δ κ .

We now turn to systems that are provably closed under the axioms and
rules of predicate logic.

F (The Feferman System) The Feferman System was invented by Feferman
(see [4]) as an illustration in the study of the conditions for GόdeΓs second
Incompleteness Theorem. Orey discovered important applications of its prov-
ability predicate in the theory of relative interpretability (see [4], [13]). A modal
study of this provability predicate was made by Montagna [11].

Let us start by giving two rather different intuitive descriptions of the Fefer-
man System (or, to be faithful to the conventions of Section 3.6, I should say:
let us describe two variants of the Feferman System).

Suppose the arithmetical axioms of PA are enumerated by Ai,A29A3,...,
in the order of their Godel numbers (i.e., / <j => rAi~

] < rAJ~
1). We call a set

X of arithmetical axioms of PA initial if Aι E. X and j < i => Aj E X.
The Feferman System is simply the first-order system in the language of

PA axiomatized by F = (J {X\Xis a finite, initial, consistent set of arithmet-
ical axioms of PA}.

Clearly, from the extensional point of view F coincides with the usual
axiom set of PA. The Feferman System can be viewed as a system, where to be
licensed to use axiom At one needs the external information that [Aj\j <7} is
consistent.

The second way to introduce the Feferman System is as follows. Suppose
we enumerate the proofs in the system PA by TΓJ , ττ2, ττ 3 , . . . . As soon as we hit
upon a proof τr, of _l_, we extract the axiom Aj with largest Gόdel number from
7Γ/. We backtrack and scratch out all the proofs employing axioms Ak with k >

j . Then we go on enumerating proofs, skipping those employing axioms Ak

with k>j. As soon as we meet another proof of JL we repeat the procedure. We
call a proof stable if it occurs in our enumeration and is never scratched out.
The stable proofs are the proofs of the Feferman System.

Under this last description the Feferman System can be seen as a fully effec-
tive procedure that will eventually yield all stable proofs. The catch here is, of
course, that someone who does not know the consistency of PA will not be able
to predict, at least not prima facie, when a proof is stable. In fact, the situation
is even subtler: someone knowing PA, but not its consistency, will ipso facto
not know that all proofs are stable, but he will know of every proof that it is
stable.

We now turn to the formal definition of the Feferman System. Define

τr*(x) **τ(x) Λ OΓxT
AA**Ώτ*A.

The following are equivalents of A A:

(28) HΔ.4 <+ix(Π\xA Λ ObdT).

where / is a primitive recursive function with
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[ the largest of the Godel numbers of the arithmetical axioms
f(n) =\ occurring in TΓ, if n = Γ7rπ for some proof TΓ

1̂ 0, otherwise

we have

(29) \-AA <-• a* (Proof (x, ,4) Λ 0\f(x)T).

Remembering that D M <=» 3xΠ txA, we have

(30) \-AA++A*A < D*_L

(31) \-AA*+Π*A < Ώ*-*A.

(31) brings out the similarity between the Feferman System and the Rosser Sys-
tem. By 3.4 and (30) or (31) we see that Δ is Δ 2 .

(B1)-(B6) are valid for Δ . In [4] all of these except (B4) are mentioned. In
[11] a modal study is made of (Bl), (B2), (B3), (B5), and (B6). The validity of
(B2), (B3), and (B6) is immediate. To prove the other principles we will use the
well-known fact that PA is provably essentially reflexive, and henςe

\-VxΠ(ΠlxA^A)

from which it follows that

hVxDOΓxT.

Proof of Bl:

YA =» for some n V D \nA

=» for some « h D \nA Λ 0 ΓΛT

=> YAA.

Proof of B4: We will prove the stronger principle

(32) Let S be Σ{, then \~S -> ΔS.

Let ΏQ stand for provability in Robinson's Arithmetic. For some q, PA h
ΠQA -• D \qA. Let S be Σx. We have that

Ϊ-S-^ΠQS

-> ΏlqS
-> (ΠtqS Λ OlqT)
-> AS.

Note that we do have (B4) for Λ m B M , but not (32). (In fact, assuming (32) for
Δ m B M quickly leads to the inconsistency of PA.)

Proof of B5: It is clearly sufficient to prove (6); i.e., \-\3A -> AΠA. To do
this we formalize the reasoning for (Bl) as follows:

\-ΠA -+3x\3ΠlxA
-> 3xB(ΠlxA Λ Ot cT)
-• ΠAA.

Just as for A m B M , Δ F has precisely two nonequivalent explicit Henkin sen-
tences. I will now show that ΔF has in fact infinitely many pairwise nonequiva-
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lent Henkin sentences. First we need to know a bit about Σ-minded sentences.
A sentence A is Σ-minded if both A A ΠA and ->A Λ D -ιA are provably equiv-
alent (in PA) to a Σi formula. A good example of a Σ-minded sentence is the
ordinary Σι Rosser sentence. We have that

(33) If A is Σ-minded then \~AA <- (ΏA Λ (D ± -• A)).

Proof: Suppose that A is Σ-minded. To prove left to right, it is clear that
bAA -» ΠA. Moreover,

h(Δv4 Λ D_L)-> (^4-> (~vl Λ D-υ4)
-+ Δ(-v4 Λ D-i>4) (B1),(B2),(32)
- > Δ ± (B1),(B2)
->J-. (B3)

To prove right to left, we have that

h(ΏA Λ (Ώ± -> A)) -+ (Π± -* (A Λ ΠA)
-+A(AΛΠA) (B1),(B2),(32)

- Δ Λ ) . (B1),(B2)

Moreover,

h(D^ Λ (D± ->A)) -+ ( π D l -> ΔΛ). (B6)

Note that our proof uses only (Bl), (B2), (B3), (B6), and (32). (33) is an
example of the phenomenon of reduction: an arithmetical predicate takes a sim-
ple, uncharacteristic form on some restricted set of formulas. A further, more
involved example of reduction will be given in Section 7.1.

To prove that there are infinitely many pairwise nonequivalent Henkin sen-
tences I have to borrow some material and definitions from [20]. The reader not
familiar with this paper can at least get the essential idea of the argument by con-
sidering the ordinary Σ{ Rosser sentence R (i.e., any sentence satisfying \-R ++
D-IJR < ΏR) and S = ΠR < D-i/i, and by proving for himself that R and S
are Σ-minded and satisfy (-/?<-• (ΠR A (D_L ->#)), hS<-> ( D S Λ (D_L -> S)).

Consider a tail model K. We write [[</>] for the set of nodes that force </>,
[φ] for [0] (K,PA), and <0> for <φ> (K,PA). Note that [φ Λ D ψ j i s upwards
closed and that h([φ] Λ D [φ]) *+ [φ Λ Dφ]. It follows that \-([φ] Λ D [φ]) ++
ix h(x) G lφ Λ D0B , and hence that [φ] Λ D [φ] is provably equivalent to a
Σi sentence. Combining this with the fact that I—«[φ] ++ [->φ], we find that
[φ] is Σ-minded.

Now consider the tail model shown in Figure 1, where the pt are only
forced as shown. Clearly, \\-Pi++ ( D A Λ ( D ± -• A))> hence, by the Embedding
Lemma and the fact that [/?,] is Σ-minded \~[pϊ\ *+ Δ [/?/]. On the other hand,
for / Φj |(- (pi +*Pj) -• - i D l , hence h[(A <̂ /7y) -> - i D ± ] , and so h([/?/] ^
[/?/]) -> " i Π ± . Thus the [pt] are pairwise nonequivalent Henkin sentences of
Δ. Since n can be freely chosen it follows that there are infinitely many pair-
wise nonequivalent Henkin sentences of Δ.

We state two open problems:

Open problem Are there Henkin sentences of ΔF that are not provably equiv-
alent to Σι sentences?
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P\ Pi Pn-\ Pn

0

O

o
Figure 1.

Open problem What are the possible truth values of the literal Henkin sen-
tences of ΔF?

We turn next to Gόdel sentences. Let G satisfy (9), so as in the case of
Δ m B M G is nonexplicit. (We can, using the observations about tail models
above, also see this "vom hόheren Standpunkt," for consider the 'minimal' tail
model, i.e., the linear one. The 'propositions' of this model correspond precisely
to the closed fragment of Lob's logic. Clearly, the interpretations of this closed
fragment are going to be closed under Δ (modulo provable equivalence). It fol-
lows that the modally closed sentences are provably equivalent to arithmetical
interpretations of elements of the closed fragment of Lob's logic. In this model
the 'equation' (φ <-• π ( Π φ Λ (DJ_ -*</>)) has no solution, hence no modally
closed sentence solves the equation in PA!) The argument for the nonunique-
ness of the Gόdel sentences of Δ m B M depended upon (B7), so we can't use it
here. The problem of the uniqueness of G thus remains open. This problem was
first posed by Montagna [11].

Montagna's problem Is G unique?

The Gόdel sentence of ΔF is an Orey sentence. Before defining what an
Orey sentence is, I want to note that the fact that G is such a sentence only
depends upon (Bl), (B2), (B3), (6), and (32). Let us call a Δ that satisfies these
principles precocious.

An Orey sentence is a sentence A that has the property A < T and -\A <
T. (Strictly speaking, my usage is at variance with the tradition: e.g., Gόdel
sentences and Rosser sentences are sentences that solve certain fixed equations;
on the other hand, we say of a sentence A satisfying h(Π^4 v D-vl) -» D_L
that it has the Rosser Property. Rosser sentences have the Rosser Property, but
other sentences do as well. So the more correct usage would be: sentence with
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the Orey Property.) Trivially, the negation of an Orey sentence is again an Orey
sentence.

We now show that the Gδdel sentence of any precocious Δ is an Orey sen-
tence. Suppose that Δ is precocious. First we prove

(34) \-A < S7A.

Proof: Let B = -ΊA we have

\-VxΠ(Π\xB-+B) =>
\-VxΠA(ΠϊxB-+B) =* (6)
hVxD (Δ D \xB -> AB) => (B2)
hVxD (D \xB -* AB) => (32)
h/xD(V,4 ->0lx4) =>
\Ά < VA.

Secondly, one easily proves, using (II), (12), (13)

(35) \-A < -u4 -*A < T.

We have

hG < VG ( 3 4)

< ΔG (B1),(B2),(B3),(I1),(I2)

< i G (9),(H),(I2)

hence by (35)

hG< T

moreover

h- G < V - i G (34)

<-ΔG (B1),(B2),(I1),(I2)

< G (9),(I1),(I2)

hence by (II), (12), and (35)

h-iG < T.

A curious fact is that the Godel sentences of ΔF is precisely the Orey sen-
tence discovered independently by Lindstrδm and Svejdar (see [9] and [18]); by
3.4 this Orey sentence is Δ 2 . In Section 7 we will see that there are infinitely
many nonequivalent Orey sentences.

Before leaving the subject of Orey sentences, I want to note that Orey sen-
tences are Σ r and Hi -flexible and that they are Kent sentences. Let Γ be a set
of formulas. A formula A is Γ-flexible if, for all B in Γ, hD -i (A <-» B) -* D ±.
A sentence A is a Kent sentence if (A Λ ΠA) is not provably equivalent to a Σi
sentence. I will show that an Orey sentence is a Kent sentence and leave the proof
that Orey sentences are Σ ^ and Πj-flexible to the reader. Suppose that A is an
Orey sentence and suppose, for a reductio, that A is a Kent sentence. Then
clearly (-vl v O-vl) is provably equivalent to a Πj sentence and hence
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\-(A < T Λ -IA < T) -* (-IA v O-vl) < T (Π),(I2)
• ^ • N v O π X ) (I1),(I2),(J1)
-> D04 ->0-υ4)
-> 0^4 < T (Π),(I2)
- D 0 - v 4 (15)
->DJ_.

mF (The modified Feferman System) The modified Feferman System is a
modification of both the Feferman System and of the BM System. Define

mFo = 0

[m¥n U [A], if Proof{n,A) and mF,, U {,4} is consistent
mF Λ + 1 =\ .

l^mF^, otherwise.

Let AXA be the arithmetization of A G mF^ + 1 . Define further

AA *=> lxAxA
Δ M <=> 3jtDΔ j cΛL

It is easily seen that \-AA <-* ΠAA, and hence that VAA <-• Δ M . Moreover we
have that hΔ.4 <+ ΠA < A*-^A, and even

hVx(x wit AA ++ x wit ΏA < A*A).

This last observation brings out the Rosserlike character of Δ.
We claim that Δ satisfies (B1)-(B7). The argument for the validity of

(B1)-(B6) is similar to the one for the case of ΔF. We treat of example (B5).
Define ΠXA *=*ly<x Proof(y,A). Clearly HvxD-πDDxJ_, and hence, by

induction on x in PA, hV cD (AXA <-• ΏXA). It follows that

hΔΛ -> ΠA
-» 3xD ΠXA

The argument for (B7) is similar to the one for the case of Δ m B M . Just like
Δ F ,Δ m F satisfies (32), i.e., Δ m F is provably Σi-complete. Prima facie, A is Σ 2 .
It is seen to be Δ 2 by the following observation

(36) t~*AA <* (-iΠA v (D± Λ A~*A)). (B6),(B7)

Concerning the Henkin sentences of Δ m F the same remarks can be made
as for ΔF. Just like Δ m B M , Δ m F has at least two nonequivalent Godel sentences.
Clearly, Δ m F is precocious. It is now easy to see that the two nonequivalent
Godel sentences and their negations give us four pairwise nonequivalent Orey
sentences. In Section 6 we will show that Δ m F has in fact infinitely many pair-
wise nonequivalent Godel sentences; thus, there are infinitely many pairwise
nonequivalent Orey sentences.

Δ m F is our final system and the main object of study of this paper. In Sec-
tion 5 we will study the principles (B1)-(B7) from the modal point of view. In
Section 6 we give a partial result on embedding Kripke models for our modal
system into arithmetic. In Section 7 we will apply the result of Section 6 to rel-
ative inter pretability.
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5 The system BMF

5.1 Description of the system BMF is the smallest system, containing the
tautologies of propositional logic, closed under modus ponens and the follow-
ing axioms and rules:

(LI) Vφ => hDφ
(L2) hD(φ -> φ) -> (Dφ -> Ώφ)
(L3) hDφ-+DDφ
(L4) hD(Dφ-+φ)-> Dφ
(Bl) Vφ => hΔφ
(B2) hΔ(φ -> ̂ ) -> (Δφ -> Δi£)
(B3) h-iΔJL
(B4) hDφ-+ΔDφ
(B5) hΔφ-»DΔφ
(B6) h-πD-L-^(Δφ^Dφ)
(B7) hD± ->(Δ0 v Δ-iφ).

This list is very long and rather redundant. A more economical list would
consist of (Bl), (B2), (B3), (B5), (B7), and the principles

(B8) hDφ^(ΔφvD_L)
(B9) hΔ(Dφ->φ)-> Δφ.

(B8) is easily derived from (LI), (L2), and (B6). (B9) follows from (LI), (L2),
(L4), (B2), (B4), and (B6).

Let me briefly indicate how to derive the long list from the short one: (LI)
follows from (Bl) and (B8); (L2) from (B2) and (B8); (L4) from (B8) and (B9);
and (B6) from (B8). We show how to derive (B4) by a familiar trick

(a) hφ-+ (D(φΛ Dφ)-+ (φΛ Dφ)) (LI)
(b) hΔφ -* Δ (D (φ Λ Dφ) -* (φ Λ Dφ)) (a),(Bl),(B2)
(c) HΔφ->Δ(φΛDφ) (b),(B9)
(d) hΔφ -* Δ Dφ (c),(Bl),(B2)
(e) h- D JL -> (Dφ -> Δ Dφ) (d),(B6)
(f) hDl->(ΔDlvΔπDl) (B7)
(g) h π Δ π D l (B3),(B9)
(h) hD±-*ΔD_L (f),(g)
(i) hD±->Dφ (L1),(L2)
(j) hΔD±-^ΔDφ (i),(Bl),(B2)
(k) hD±-^ΔDφ (h),(j)
(1) hDφ-^ΔDφ. (e),(h)

Finally, (L3) follows from (B4) and (B8).
We list a few further convenient consequences of BMF:

(BIO) hΔφ-^Dφ
(Bll) h D φ - ^ D Δ φ
(B12) hD± -> (Δ(φ v φ) *+ (Δφ v Aφ))
(B13) h D ( φ ^ ^ ) - ^ D ( Δ φ < ^ Δ ^ ) (Provable Extensionality)
(S) hDφ->(ψ~χ)=*

hDφ -• (v[φ/p]++v[χ/p]). (Substitution Rule)
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5.2 Nonuniqueness and nonexplicitness in BMF Clearly, the discussion in
Section 4 on nonuniqueness and nonexplicitness of Henkin and Gόdel sentences
under mBM can be carried out in BMF; e.g., one can show

hD(/?<+ - iΔp)-> D(Vp<-> ->ΔVp)
VΏ(p*+ ->Δ/?) -» (D (/?<-» V/?)-> Π ± ) .

5.5 ΛΓπp/te Semantics for BMF

5.3.1 Definitions

(a) Let if be a finite, nonempty set. Let S be a binary relation on K. The
structure (K9S) is called α lolly if

(i) for each k,kf in #, kSτk'. Here S Γ is the transitive, symmetric,
and reflexive closure of S

(ii) for each k in K, there is precisely one kr in AT such that kSk'. We
will call £' with kSk' the S-successor of /:

(iii) there is #/ most one /: in AT such that, for no k' in #, k'Sk.
It should be clear that a lolly looks like this:

~ S
S S s V Λ

s

(b) A lolly such that for every k in K there is & kr in K such that ΛΓ'SA: is
called a c/Vc/e.

(c) A structure (K,R, S) is called a lolly-frame if Γ̂ is nonempty, i? and S
are binary relations in K, and

(i) R is transitive
(ii)jR is upwards wellfounded

Let K0={kinK\ for no k' in K, kRkf}

κx = κ\κ0
SQ = S\KQ

5 j = the transitive, symmetric, and reflexive closure of So.
(iii) kGKx => (kSk'^kRk')
(iv) Suppose that k(ΞK0. Let [k] = {kf\k'S$k}. Then <[k],S0\[k])

is a lolly. Moreover, if k'Rk, then Λ:'ΛA:/' for all k" in [Λ:]
(v) keK0 and fcSA:' =» k' G AΓ0.

(d) A lolly-model is a structure <ΛΓ,i?,S,||->, where <K,R,S) is a lolly-
frame and Ih is a relation between elements of K and formulas of the
language of BMF, satisfying:

(i) k Ih T
( ϋ ) k ¥ ±

(iii) k Ih (φ Λ i/0 ** (k Ih 0 and k Ih i£)
(iv) A: Ih (Φ v ψ) <^ (k Ih Φ or A: Ih 0)
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(v)*lh (φ->ψ)^(k\\-φ^k\\-ψ)
(vi) A: Ih -iφ**kW Φ

(vii) k Ih Dφ ** for all k' such that kRk\ k' ||- φ
(viii) kh Aφ*=* for all A:' such that kSk', k' ||- φ.

5.3.2 Remark It is easy to verify that lolly-frames also satisfy

kRk'Sk" => kRk\ and kSk'Rk" => JUtt".

A lolly-frame is best visualized as a conventional frame for provability logic
where the top nodes are blown up to lollies, as shown in Figure 2. Here, e.g.,
Figure 3 means Figure 4. Note that we don't draw the arrows to exhibit the tran-
sitivity of R. Also, since R <Ξ S, we don't write 'S9 next to ^-arrows.

5.3.3 Soundness Consider any lolly-model K = (K,R,S,\\-). We write K Ih
φ for: for all k E K, k Ih φ. We then have that BMF h φ => K Ih φ.

Proof: The proof is entirely routine.

5.3.4 Completeness Suppose that BMF \f φ; ί/zeπ ί/zere is a finite lolly-
model K such that K\\fφ.

We proceed with some preliminaries for the proof of 5.3.4.

5.3.5 Definition Let Γ and Δ be sets of formulas of the language of BMF.

( a ) Γ h Δ ^ t h e r e are finite Γo c Γ, Δo £ Δ such that BMF h AVΓO-+ WΔ0

(the empty conjunction is T, the empty disjunction JL)
(b) Let X b e a set of formulas. Γ is X-saturated if Γ is consistent and, for

each A c I , Γ h Δ = > there is a φ E Δ such that φ E Γ.

Γ s s^ \ C^ s ^\ i
> » y ( —• —^— t y

> R

Figure 2.
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} s \ s S~Λ

X, / A \R JR

•
Figure 3. Figure 4.

5.3.6 Lemma Suppose that Γ \f Δ, ύwtf to X be a set of formulas. There is
a set Y^Xsuch that YUT is X-saturated and 7,Γ \f Δ.

Proof: The proof is entirely routine.

5.3.7 The Henkin construction Let X be a finite set of formulas that is
closed under subformulas, such that π D l E Jfand (Δφ G X^ ΠφGX). We
now construct a Kripke Model. AT, the set of nodes of the Kripke model we are
constructing, consists of those sets of formulas y such that

(i) y is Jf-saturated
(ii) if φ is in y and not in X, then φ is of the form Δ ^ and both ψ and

ΔΔi/' are in y.

Clearly, y consists of elements of X plus, for certain χ in X Π y, Δ χ , Δ Δ χ ,
Δ Δ Δ χ , . . . . As is easily seen, K is finite and nonempty (by 5.3.6). For x,y G
k we define:

xRy^> (Ώφ ex=> </>,Δφ,Δ2</>, . . . G y)
and (there is a Πψ G y with Dψ <£ x)

xSy ^ ( ( π D l ) G x and xi?y)
or (D ± G x, D ± G j> and (Δ</> G x => φ G j')
and ((Δφ £ x and Δφ G ̂ ί) =* φ £y)).

Finally, we define x |(- Pi^Pi G x.

Claim 1 R is transitive and irreflexive (and hence, upwards wellfounded).

Claim 2 xRySz => xRz.

The simple proofs of Claims 1 and 2 are left to the reader.

Claim 3 For φ G X, x \\- φ <=> φ G x.

Proof: We prove this claim by induction on φ in X. The only nontrivial cases
are when φ is of the form Πψ or Aψ.
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Case 1: Suppose that φ = Πψ.
Subcase 1.1: Suppose that Πψ E x and xRy. Then ψ E y, hence by IH y Ih ψ.
Therefore, x\\-Πψ.
Subcase 1.2: Suppose that D^ <£ x. Let xR = {χ,Δχ,Δ2χ, . . . | D χ G x ) . We
claim that xR,\3ψ \fψ, for otherwise {Dχ,ΠΔχ,. . . | Dx E x) h D(Dψ-> ψ);
hence {Dχ| Dx E x] h D^ and thus D^ E x. Quod non. By 5.3.6 there is a set
Xo^X such that x0 U xR U {D^} is X-saturated and x0 U x* U [ D^} 1/ ̂ . As
is easily seen, x0 U xR U { D^} E K. Define 7 = x0 U XR U { D^}. Clearly, xRy
and ^ £ y and so by IH y |(/ ̂ . Hence x |(/ Dψ.

Case2; Suppose that φ — Aψ. In case ( - ι D l ) E x , this reduces to the previous
case. So we assume that D l G x .
Subcase 2.1: Suppose that Aψ G x and xSy. Then ψ G y, hence by IH y Ih ψ.
So we conclude that x\\- Aψ.
Subcase 2.2: Suppose that Aψ £ x. Let x* = }χ | Δ x E x) U {D ± } and xs =
(x I Δx ^ Λ:, Δ χ G l j . We claim that JC5 1/ x5, for otherwise x h ΔWx5, ergo
(by (B12), using the fact that D _L E x) x h W { Δx | x E xs]. Hence x h Δx for
some x in x5, which is a contradiction. By 5.3.6 there is an x0Q X such that
x0 U x 5 is X-saturated and x0 U xs \f x5. Let y = x0 U x s . We now show that
j G ^ . Suppose that v E j> and v £ X. Clearly ^ E x5, hence Δ^ E x. Since
Av $LX, v and Δ ΔΪ> are in x, and since p E x and *> ^ X, v must be of the form
Δp. We conclude that p and ΔΔp are in xs. Next we show that xSy. We have
D -L E x, D JL E 7, and Δx E x => x E ^. If Δx <£ x and Δx E ^ , then x E x5,
so x ^ y. So we conclude that xSy.

Since ^ E x5, we have that φ $. y. So by IH 7 \\f ψ and hence x \\f Aψ.

Claim 4 ΓΛer̂  is α y such that xRy <=> (-1D ±) E x.

Claim 5 For ei ery x /Άerβ is a y such that xSy.

We leave the simple proofs to the reader. (For the proof of Claim 5, note that
Δ ± E X )

The model we constructed is not quite a lolly-model yet, so a small trans-
mutation is needed. Consider any x such that D ± E x. Clearly we can produce
a sequence x = x0SxιS... Sxn+U where x, = xn+χ for some i < n + 1 and where
if k < j and xk = xi then k = i and j = n+ 1. We define a small lolly model Z x

as follows: <{x0,... ,xn),R',S'9\\-'y, where

(i) R' is empty
(ii) yS'z *=>y = Xj and z = x,+i for some j G {0,...,n]

(iiϊ) y hf Pi^PiGy.

Claim 6 For y G {x0, . . . , *„} #«d </> G AT, j> IK </> ^ J Ih φ.

Proof: By induction on φ in X for all xy simultaneously. The atomic case and
the cases of Λ, v, -1, and -• are trivial. If φ is Π\p it is sufficient to note that,
since R' is empty, Xj h' Πψ and that, on the other hand, D_L E xy for each xy.
Hence by Claim 3, xy Ih D ± , so Xj \\- Πψ.

Suppose that φ = Aψ. Note that X/ Ih Δ ^ => x / + 1 \\-ψ9 and X/ |(/ Δ ^ =>
xM ||/ 0. Hence x, Ih' Δ ^ « x / + 1 Ih' Ψ S x / + 1 Ih 0 ~ xz Ih Δ ^ .
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With each x such that D _L E x we associate a small lolly-model Lx as
above. Define

K* = {x <E K\-^Π±. <Ξ x] U {(y,x)\ΠL E x E K, where y is in the

domain of Lx}

^o = {(y,x)\ • -L e ^ £ ^ and jμ is in the domain of L J

AT = {xeκ\-*π± ex]
uR*υ^> (ufv are in K* and «/?t;) or

(u is in ΛΊ*, i; is in KQ , where y = <j>,x> and wi^jc)

uS*v^ uR*v or (w is in KQ, υ is in KQ, u = {y,x)9 v = (z9x) and
yS'z, where S' is the relevant relation of Lx)

u Ih* A <=> (w E # * and A Ξ u) or (w E AΓo > u = (y,x) and A Ξ J^)

K = <ΛΓ*,Λ*,SMh*>.

We claim that
(A) K* is a lolly-model

(B) If w E A?, then (w Ih* Φ «=* w Ih φ) for ψ G X I f w G #0* and « = (y9x),
then (M Ih* Φ ** y Ih Φ) for φ e X.

Proof of (A): One easily verifies that K* is finite and that R* is transitive,
irreflexive, and hence upwards wellfounded. Moreover, u E K* *=> there is a υ
in 7^* such that uR*υ. The definition of 5* implies that u E ϋΓ* =» (uS*v^
uR*υ). We leave to the reader the easy verification that <[< j,x>], 5Q f [<^, J>]>
is isomorphic to the lolly-frame part of Lx (for (y9x) in AΓQ ). Clearly, if
uR*(y,x) then uR*(z,x) for all z in the domain of Lx. Also, if u E UΓQ and
w5*y, then VGKQ.

Proof of (B): By induction on φ in X, simultaneously for all u in K*.

• If w E #o and « = <y,x) then « Ih* Φ ̂=> J lh; Φ

~j>lhφ.
(The first equivalence is by a completely trivial induction.)

• Suppose that u E K*. The case where φ is atomic is trivial and so are
the cases of Λ, V, -», and -ι.
• Suppose that φ = Πψ

• Suppose that u h Πψ and uR*υ. If υ is in K*, we have that uRv,
hence t; Ih ^, so by IH υ Ih* ψ. If v is in KQ , say t; = <j,x>, we
have that w7?x. Using Claim 2, we can show that uRy. It follows that
y Ih ̂ . Hence by IH υ Ih* ^, so we conclude that u Ih* Π^.

• Suppose that u Ih* D ^ and wi?j. If (~>D±) E j , we have that
uR*y; hence j Ih* ψ, so by IH y Ih ̂ . If D ± E j , then w7?* <^,^>
and (y,y) Ih* ̂ . Hence by IH y Ih ̂ , so we conclude that u Ih D^.

• The case where φ = Aψ is similar.

Proof of 5.3.4: Suppose that BMF \f φ. Let ^o be the smallest set that is closed
under subformulas and contains φ and π Q l , and let J^ = vV0 U [Aφ\O\l/G
Xo] U { Πφ\ Aφ E Λ^J. Construct a finite lolly-model K* as in 5.3.7 for X. By
5.3,6 there is an J^-saturated x0 c X such that x0 ^ Φ *o w ϋ l correspond to a
node of K*, say w, and w |[/* φ.



PEANO'S SMART CHILDREN 185

5.3.8 Application In Section 4 under mBM we showed that neither in BMF
nor in PA is there an explicit Godel sentence for Δ , where Δ is interpreted in
PA as Δ m B M , or ΔF, or Δ m F . In the case of BMF this fact can be easily shown
by considering the following Kripke Model:

S

o
6 Embedding circle-tail models in arithmetic We would like to generalize the
result of Solovay [17] to the logic BMF, interpreting Δ as Δ M F . To do this we
must embed lolly-models in arithmetic. This program, however, meets with a
difficulty I could not solve: in a nutshell, the problem is how to handle the sticks
of the lollies. It turns out that if the sticks are absent a straightforward embed-
ding is possible. For the record I state the obvious open problem:

Stick problem Can lolly-models be embedded in arithmetic?

Even if we do not achieve arithmetical completeness for BMF, it seems to
me that the partial result proved here is of interest: the Embedding Theorem
gives us the powerful machinery to construct arithmetical sentences (see also Sec-
tion 7). Moreover, the methods employed add to our experience with Solovay-
style arguments: we have the first example here of an embedding of structures
that are not (completely) upwards well-founded. (In this section I follow the pre-
sentation of [20].)

To get a true embedding of circle-models in arithmetic we must add a tail
to the circle-models. Consider a finite circle-model; we hang a down-going ω +
1 -tail (in R) under it, as in Figure 5. We can arrange it so that the nodes of the
finite model at the top are numbered 1, . . . , N, and the nodes of the down-going
tail (except the bottom) TV + 1, N + 2 , . . . , and the bottom is numbered by 0.
The nodes numbered N + I, N + 2, . . . , 0 will be called tail elements. We stipu-
late that at each of the nodes only finitely many atoms are forced and that on
all elements of the tail, including 0, the same atoms are forced. We call the
resulting models circle-tail models. Clearly, a circle-tail model is a circle-model.

An immediate consequence of our definition is

6.1 Tail Lemma
0 Ih φ ** there is a k such that, for all m > k, m Ih φ
0 \\f φ <=> there is a k such that, for all m > k, m \\f φ.

Proof: By a simple induction on φ.

Let [ φ j = {k\k Ih φ) . Then, by the Tail Lemma, ftφU is either finite or
cofinite.

Note that circle-tail models satisfy the principle:

(C) hΠ(D± -+ Δφ)-+ D ( D ± -+φ).

1 would be very surprised if (C) were arithmetically valid. A lolly-model to refute
(C) can be easily found.
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Figure 5

Open problem Is (C) arithmetically valid when Δ is interpreted as Δm F?

For the rest of this section the following are to be kept in mind:

(i) We fix a circle-tail model K

(ii) We assume that K is suitably described in arithmetic. Specifically, we
assume that R and S are given Δ o definitions in such a way that all
their simple properties are verifiable

(iii) We interpret Δ as Δ m F in arithmetical contexts
(iv) 'K stands for PAh
(v) We assume that 'Proof satisfies the following plausible assumptions:

hD.4 -> Vxly > x Proof(j>,y4)
hVwVi;(Proof(u,v) -• v < u).
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We now need to define a variant of Solovay's reluctant function: the function
that dares not go anywhere for fear of having to stay. Our variant will not dare
to go anywhere for fear of coming there too often. To this end, define by the
Recursion Theorem

COFα <=> Vxly > x hy = a

hO = O

a, if for some a such that hkRa Proof(£,-ιCOF#)

a, if for some a such that hkSa Proof(£,-ιCOFtf)
h(k+l)=< a n d (-ϊCOFα) G m F H 1

hk9 otherwise.

It is easy to see that the arithmetization of '(-iCOFα) E mF/ t+1

> is Δ 2 and hence
that A is Δ 2 . An important difference with Solovay's original construction is
that we use 'COFα' instead of 7 = a\ Later we will see that hCOFα ++ I = a;
but to show this we need A to be defined using 'COF' rather than Ί\

We now prove a sequence of lemmas about A.

6.2 Lemma Let S* be the transitive reflexive closure of S. Then

hVxVy(x < y -> hxS*hy).

Proof: By a trivial induction on z with x + z = J.

6.3 Lemma
(i) H(vz < x As E ΛΓO Λ A* = j>) -• ΛAx = j

(ii) \-VxVy(hx = y -> DAx = ̂ ) .

Proof of (i): The proof is conducted in PA as follows. The proof is by induc-
tion on x. The case where x = 0 is trivial. Suppose that x = u + 1, Vz < x hz E
Ku hx = y, and hu — v. There are three possibilities:

(a) hx was computed by the first clause of the definition of A. So we then
have that υRy and Proof(w,-ιCOF^), hence, AvRy and ΔProof(w,
-iCOFj>). By the induction hypothesis, Ahu = v, so we conclude that
Ahx = y.

(b) hx was computed by the second clause of the definition of A. So we
then have that vSy and Proof(w,-ιCOFj>). Since v E Ku we also have
υRy. So hx was also computed by the first clause.

(c) hx was computed by the third clause. Clearly, hu ~ υ — y = hx and
Vz < u hz E K\. By the induction hypothesis ΔAw = f. Moreover,
either for no w Proof(w,-ιCOFw) or for some w Proof(w,-iCOFw)
and not vRw (whence not vSw, since by hypothesis u < x implies that
υeKλ).

Hence we have ΔVH> < w~»ProoJ'(w,->COFw) or (ΔProof(w,-iCOFw) and
Δ(-ιiλRw Λ -IIΛSW)), so we conclude that Ahx = y.
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Proof of (ii): By the argument used in the proof that VAΛ -> ΏAΛ one shows
that hvwvι>(w E m¥υ -• D(w E mF^)). The claim now follows by an easy
induction in PA.

We define IΛMa <=> 3x hx = a Λ VxVy((hx = a Λ x < y) -+ hy = a).

6.4 Lemma hVα(COFtf -• LIM#).

PAΌO/ By 6.2 it is clear that hv# ((COF# ΛaGKx)-> LIMα), so it is sufficient
to show that hvα((COFα Λ a E AΓ0) -> LIMα). We reason in PA as follows:

Suppose that COFa and a G Ko. Assume that a is on the circle C with,
say, a = qx Sq2S... SqnSqn+x = qx. Let x0 be the unique number such that hx0 E
Kλ and h(x0 + 1) E Ko. Clearly, h(x0 + 1) = ̂ y for somey. By 6.3(i) Ah(x0 +
1) =gj, so we conclude that ΔW{COF^|/ = 1,...,/?).

Now suppose for a reductio that -iLIMα. Clearly, by 6.2 C O F ^ , COFα2,
. . . ̂ O F ύ ^ . It follows from the definition of h that Δ~iCOFαi,Δ-iCOFα 2 ,
. . . , Δ~ιCOFαΛ (or how else could h move on and on?). Hence, ΔW{COFα/|/ =
1,. . . ,n] and ΔΛh{-iCOFα/|/= 1,...«}, therefore Δ_L and thus 1 . So we con-
clude that LIMtf.

6.5 Lemma h3αLIMα.

Proof: It is easily seen that h3αCOFα.

6.6 Lemma \-3x hx E Ko++ • _L .

Proof: Reason in PA as follows:
Right to left is trivial.
From left to right, suppose that hx = qu where ax is on the circle C,

given by qλSq2S. . .SqnSqn+i = qx. We have that Πhx = qx by 6.3(ii), hence
DW{COFtf,|/ = 1,...,«}. h moved up to qx by the first or by the second
clause. In either case we have D - i C O F ^ .

We now show for k = 0,...,/? - 1 that /A{ ΠAk-^COFqj\j = 1, . . . , * - + 1),
by (external) induction on k. The case where k = 0 is simply D - i C O F ^ . S\xχ>-
posεthat /&{ D Δ ^ C O F t f J y = 1 , . . . , £ + 1}. By (Bll) ff\{ D Δ H 1 -iCOFαyly =
1, . . . ,/ :+ 1}. We now need to show D Δ ^ + 1 -πCOFα^+ 2. Clearly

Π((hx = qx A /A{^COFqj\j = 1 , . . . , A : + 1 j) -> ly > x Λy = qk+2)

hence

D((Ax: = ff1 Λ/XVf-iCOF^ ly = 1, . . . , £ + 1}) -> Δ - i C O F ^ + 2 ) .

We conclude using (LI), (L2), (Bl), (B2), and (Bll) that

(ΠAkhx = Qι A/A{ΠAk-^COFqj\j = 1,. . . ,k + 1}) -• D Δ ^ + 1 π C O F ^ + 2 .

Moreover, by ( B l l ) we have from D/υe = ̂  that ΠAkhx = qx. So finally

D Δ * + 1 - π C O F β * + 2 .

We have found that /A{ D Δ " " 1 - > C O F ^ | y = 1 , . . . , Λ ) . On the other hand, we
have D W { C O F α , | 7 = 1 , . . . ,/i), hence D Δ ^ ^ j C O F g y l j = 1 , . . . , Λ ) . Com-
bining we find D Δ " " 1 ! and hence D ± .
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Consider / in Ko. We call the 5-successor of / σi, and the S-predecessor TΓ/.

6.7 Lemma
(i) HCOFu Λ uSv) -> VCOFi;

(ii) h ( ^ G ^ A COF.y) -» ΔCOFσy
(iii) \-(yeK0Λ D±)-> (ΔCOFσy -> COF^)
(iv) h ( ^ G ^ 0 Λ D _]_)-> ( C O F j ~ ΔCOFσy).

Proo/:
(i) Reason in PA as follows. Suppose that COFw, uSv, and Δ-iCOFu.

By 6.4 LIMu. Suppose that hx = u and for all y > x hy = u. For some z
(-iCOFf) E mFz. Consider w such that w > x, w > z, and Proof(w,-iCOFι;).
Clearly, (-iCOFf) E rnF^+j. Hence h would move up to υ at w + 1. Quod non.
So we conclude that -1Δ-1COF1;.

(ii) Immediate from (i) using \-(y E Ko Λ C O F J ) -> D_L, which follows
directly from 6.6, and hD± -> (WA ++ AA).

(iii) Reason in PA as follows. Suppose that y E Kθ9 D J_, and ΔCOFσ^.
From D _L we have by 6.6 that for some z E Ko COFz. By (ii) ΔCOFσz. Hence
by 6.4, (Bl), (B2), and ΔCOFσy, Ay = z and thus y = z. (We have 1^-Reflec-
tion for Δ!)

(iv) By (ii) and (iii).

6.8 Definitions

(i) Let / be a function from the propositional variables of the language
of BMF to the sentences of PA. We define ( ) f from the formulas of
the language of BMF as follows:

• (Pi)f=f(Pi)
• ( Ϋ commutes with the propositional connectives (including T,_L)
• {Πφ)f = D (φ)f (note that ' D ' shifts its meaning!)

• (Aφ)f= A{φ)f

(ii) Consider φ in the language of BMF. If [ φ j is finite, we set

[φ] = W{COF/|ί Ih φ} (we take W 0 = ( 0 = 1 )

If [0]1 is cofinite, we set

[φ] = /XV{-iCOF/|/ \\f φ) (we take /XV0 = (0 = 0)

Note that [φ] is simply an arithmetization of 3x E [φ]] COFx
(iii) Define Fpt = [p,-], and <φ> = (φ) F .

6.9 Embedding Theorem Kφ> ̂  [φ].

Proof: It is clearly sufficient to show in PA that [ ] 'commutes' with the logi-
cal constants, including D and Δ . The cases of the propositional constants are
trivial (using 6.4). We show that (i) h[Πψ] <-• D [φ] and (ii) h [ Δ ^ ] ++ Δ[ψ].

Proof of (i): In case {/|/ Ih D^} is infinite, we have that [ D ^ J = I ^ J = ω,
hence [ D ^ ] = [ψ] = (0 = 0). It follows that h[Πψ] ++ΏIΨ]. Suppose that
{/|/ Ih φ] is finite. Reason in PA as follows:

From right to left, let j u . . . Js be the complete set of nodes such that
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jk |h D ^ andyV \\f φ. Suppose that D [ ^ ] . Clearly, D-iCOFy*. Suppose that

Proof(/7,-iCOFyV) and hp = y. There are two possibilities:
Case 1: yRjk. If yRjk, clearly h(p + 1) =jk.
Case 2: ~^yRjk. It follows that if COFx, then -*xRjk, for if we had yS*xRjki it
would follow that yRjk.
In both cases, COFx-> -ιχRjk.
On the other hand, it is easily seen that if x \\f Πψ then xRjk for some k.
Hence, COFx -+ x \\- Ώφ, so we conclude that [ D ^ ] .

From left to right, suppose that COF/ for some / such that / Ih D^.
Because / Φ 0, h must have moved up to / at a certain point by clause 1 or
clause 2 of the definition of h. In either case we have that D-iCOF/. Suppose
that hx = /. By 6.3(ii), Ώhx = i. If / E Ko we have by 6.6 DJ_, and hence
D [ψ]. If i G Kγ we see that D -iCOFz and Πhx = i imply DVy(COFy -> [Ry),
thus we conclude that D [φ].

Proof of (ii): Clearly, h[--D±-> (Aψ++Πψ)], hence h^Π_L-^([ Aφ]++Π[ψ])
by the fact that [ ] 'commutes' with the propositional connectives and D. Also,
h-i D _L -> (Δ [φ] ++ D [ψ]). So we may conclude that h~ D ± -• ([ Aψ] ++ A [φ]).

To complete the argument we need to show that hD± -• ([Δi/Ί <̂  Δ [ψ]).

hD±-»([Δ^] «( [Δ^] Λ D±)
<̂  [ΔψΛ D±]
>̂ W{COFy|y Ih Δ ^ Λ D±)

++ W{COFπ/|/|ĥ Λ D±)
^ W { ΔCOF/| / Ih ̂  Λ D JL } (6.7(iv))

+* ΔW{COF/|ι H Λ D I ) (B12)

^ Δ [ ψ Λ D-L]
^ Δ [ ψ ] ) . (B1),(B2),(B4)

6.10 Remark The reduction result proved as (33) in Section 4 clearly applies
to Δ m F . It implies that for the arithmetical embedding of traditional tail models
we have that hΔ [</>] ++ (Π[φ] Λ ( D ± -^ [φ])). We can now understand this
result in a new way: the arithmetical embedding of traditional tail models is sim-
ilar to the arithmetical embedding of circle-tail models which have just single-
ton circles I (This point will become even clearer in the light of Lemma 7.3.)

6.11 Application There are infinitely many nonequivalent Gδdel sentences
for Δ m F .

Proof: It is clearly sufficient to prove that for any n there are n nonequivalent
Gδdel sentences for Δ. Consider the circle-tail model shown in Figure 6.

Let s be a sequence cxc2. . .cn of 0's and Γs. Consider an atomp s . Let

<*oi It" Ps *=> c i = 0
au\\-Ps^Ci= 1
bj Ih Ps for all j
OlhA

Define Gs = [ps]> It follows immediately from the Embedding Theorem that
\-Gs++ -πΔG s. Moreover, if s Φ s' then h D ( G 5 ^ Gs>) -+ Ώ±.
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Figure 6.

Because Gδdel sentences of Δ are Orey sentences it follows that there are
infinitely many nonequivalent Orey sentences.

7 Δ m F meets relative interpretabίlity In this section ' Δ ' will stand for 'Δ m F '
in arithmetical contexts, '[-' will stand for T A P . We fix a circle-tail model K.

For convenience we now repeat the derivability conditions we collected for
relative interpretability in 3.5:

(11) VΠ{B-+A)^A <B
(12) \-(A <B AB <C)^A <C
(13) HA < B Λ A < C) -> A < (B v C)
(14) \-A <B^ (0B-+0A)
(15) \-0A <B->Π(B-+0A)
(16) K4 < OA
(17) K4 < B -• (A Λ D C ) < ( 5 Λ D C )

(Jl) for allPinΠj, PA \-P < B-+ Π(B^P)
(32) for all S in Σu PA V A < B -> (v4 Λ S) < (B ΛS).



192 ALBERT VISSER

We add the (for our purposes) essential (34) of Section 4

(J3) \-A<S7A.

Note that (15), (16), and (17) are redundant in our present list.
We list some immediate consequences of our list:

(J4) K4 < AA. (B1),(B2),(B3),(I1),(J3),(I2)

Define A = B^A <B ΛB < A.

(J5) \-(A=A'AB = B')^(A<B++A'<B') (12)

(J6) \-/A{Ai<Bi\i= 1 , . . . , Λ }

-* W ( Λ | / = 1, . . . , / i } < W [ ^ | / = 1,...,/!} (I1),(I2),(I3)
(J7) ^B^(BvOB) (I1),(I6),I3)
(J8) If P G Πi, then hD ((B v OB) <-> P)

-+ (B <C++Π(C-+ (Bv OB))) (I1),(J5),(J7),(J1)

We now wish to take a closer look at the interaction between < and the sen-
tences [φ] constructed in Section 6. The classes of sentences [</>], constructed
for different circle-tail models, are too poor to refute all modal principles not
valid in PA in a language with D and <. For example, Per Lindstrδm has shown
that there is a Σ{ sentence A such that

\fA < τ-> Π(A < T).

On the other hand we will see that

\-[φ] <τ-+Π([φ] < T).

This weakness, however, turns out to be a strength: [φ] <T reduces to a sim-
pler formula. (We encountered the phenomenon of reduction before in connec-
tion with Feferman's Predicate.)

We define an ad hoc modal operator ( )* as follows: [φ*]| is the smallest
set X such that \φ\ Q X, and if j G X Π Ko then σj G X. In other words,
[φ*]l is obtained by adding to [ φ j all circles C such that CD [0]] Φ 0.

7.1 Reduction Theorem \-[φ] < A <-> D (A -+ ([</>*] v 0[φ*])).

To prove this we need a few lemmas.

7.2 Definition We define a recursive function h0 as follows:

hoθ = 0

{ a, if for some a such that hokRa, Proof(/:,-ιCOF#)

hk9 otherwise.

Here 'COF' is as in Section 6. Note that COF is based on h and not on h0.

7.3 Lemma
(i) h(Vz < x hz G Kx) -> Λx = Λo*

(ii) Le/ 5* Z?e ̂ Λβ transitive, reflexive closure of S; then hvx hoxS*hx.

Proof: The proof in both cases is by a simple induction on x in PA. These induc-
tions are much like the proof of 6.3(i).
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7.4 Corollary [φ] is Δ 2 .

Proof: It is clearly sufficient to show that sentences of the form COF/ are Δ 2 .
In case / E ^Γo we have by 6.9 that hCOF/ <-• ΔCOFσ/, hence COF/ is in Δ 2 .
In case / E AΓi we have by 6.4 and 7.3 that

hCOF/ <-> (3x hox = i Λ VxVy((/zox = / Λ * < jθ -> Ao = *))•

7.5 Definition Consider X <Ξ ^ . We call X upwards persistent if (/ E X and

iSj)=>jeX.

7.6 Lemma Suppose that Jφ]] is upwards persistent. Then [φ] is proυably
equivalent to aΣx sentence.

Proof: In case [φj is infinite this is trivial. So, supposing that IφJ is finite,
we show that

H Φ ] ^ W [ 3 j c Λ o x = /| ίΊhΦ}.

We reason in PA as follows:
From right to left, suppose that hox = i for / E [ φ l . iS*hx by 7.3(ii),

hence by the upwards persistence of IΦB, hx E EΦJ . Thus Vz> x hz€Ξ EΦJ ,
so we conclude that [φ].

From left to right, suppose that COF/ for / E |[φ]|. In case / E AΓi we
have by 7.3(i) 3x Aox = /. Suppose that iEK0, say / is on circle C Clearly there
is a w on C and a j such that hy-u and for all z < y, hz E Kx. By 7.3(i) Ao7 = «.

Then I φ I is upwards persistent, / is in dφj , / is on C, hence C Q ttΦI.
We conclude that u G [ φ j , and so 3^ /zoj E EφJ .

7.7 Lemma Suppose that i is on circle C. Then hCOF/ < W[COFy|y E
C).

Proof: Reason in PA as follows: By 6.7(ii) we have that D(COFττ/-> ΔCOF/);
hence by (II) (ΔCOF/) < COFTΓ/. By (J4) and (12)

COF/ < COFTΓ/

and similarly we have that

COFTΓ/ < COFTΓ2/

COFTΓ*- 2 / < COFTΓ"" 1 /.

Here we suppose that n is the number of elements of C. By (II), (12) and the
above we have that

COF/ < COF/
COF/ < COF 7i7

COF/ < COFTΓ' 2 - 1 /;

hence by (13)

COF/ < W{COFτr*ί |0 <zk<n).

In other words

COF/< W[COFj\je C).
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7.8 L e m m a \-[φ] = [φ*].

Proof: It is immediate that h[φ*] < [0], so we need to show that \-[φ] <
[φ*]. Reason in PA as follows: First, note that by 7.9 • ([0] <-> ([</> Λ ΠJL] V
[0Λ^D±])) .Henceby(J6)and(I l ) [ 0 Λ D _ L ] < [0* Λ D ± ] -> [φ] < [φ*].

It follows that we may restrict ourselves to φ with [03 c j ^ 0 . So suppose that
[03 <Ξ Γ̂o Clearly [0*3 consists precisely of those circles C such that [03 Π
C is not empty. We have by 7.7 and (J6)

W{COF/|/|h0) < W{W{COFy|y'GC}|Cn [03 * 0 } .

In other words, [0] < [0*].

7.9 Lemma ([0*] v 0[φ*]) is proυably equivalent to a Uι sentence.

Proof: Note that I—«([φ*] v 0[φ*]) <-• [-ιφ* Λ D-»φ*]. Moreover, as is easily
seen, [~i0* Λ D~ιφ*3 is upwards persistent. Apply 7.6, and we are done.

Proof of 7.1: We have

H0] < A <-> [0*] < ,4 (7.8),(J5)

~ D 0 4 - > ( [ φ ] vθ[φ*])) . (7.9),(J8)

7.10 Corollary \-[φ] < T ^ D ( D ± -+ [ 0 * ] ) .

Proof: We leave it as an exercise to the reader to show that

\-O(A v 0,4) <-> D(D_L ->.4).

7.// O« α question of Orey Orey asks: for which sets Γ of propositional for-
mulas in the variables pu . .. 9pn are there arithmetical sentences Bl9... ,Bn

such that Γ = {φ\φ(Bu. . . ,Bn) < T}Ί (I learned this formulation of Orey's
problem from Per Lindstrom. Actually, the question is asked for arbitrary essen-
tially reflexive theories T. I think that inspection of the argument of this paper
shows that the answer given here applies to consistent essentially reflexive RE
theories Γinto which PA restricted to Σ2-induction can be translated.)

Let us say that {0|0(2?!,. . . ,Bn) < T] is the interpretability class of
/? ! , . . . ,Bn. A moment's reflection shows that interpretability classes Γ should
satisfy

(i) T E Γ
(ii) l ί Γ

(iii) 0 h P r o p ψ and 0 e Γ => ψ G Γ.

We will show that, conversely, every set Γ of propositional formulas in
/?! , . . . ,pn satisfying (i), (ii), and (iii) is an interpretability class.

Proof: Let Γ be a class of propositional formulas in pu ... ,pn satisfying (i),
(ii), and (iii). The plan of the proof is to construct a circle-tail model K and to
take 2?/ =[/?,-]. 7.10 tells us that what happens below the circles is really irrele-
vant, so we start by stipulating an arbitrary tail, say b0... b3Rb2Rbu where no
atom is true at the nodes bj. We then proceed to construct the circles.

Γ c = {0|0 is a propositional formula in the variables/?!,... ,pn and 0 £
Γ). Note that Γ and Γ c are both closed under provable equivalence in propo-
sitional logic (in the language based onpu... ,pn). Let 0 ! , . . . , φ k be represen-
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tatives of the equivalence classes of Γ and let ψι,..., ψm be representatives of
the equivalence classes of Γ c . Define:

Ko= {(ij)\\ < / < £ , 1 < y < m )
{iJ)S(ϊJ') **j=j' and ((1 <i<k and /' = / + 1)

or (/ = k and /' = 1)).

Let us say that the nodes </,y> for fixed j form a circle Cy.
Consider a node </,y>. Clearly φz (/Prop ψy , so there is an assignment / of

truth values to A , . . . ,pn under which φ, is true and ψy is false. Pick such an
assignment / and put </,y> \V ps^fps — τ

Clearly, on every circle Cj there is a node </,y> such that </,y> Ih φ, .
Hence (D J_ -» φ*) and Π(D J_ -> φf) are forced everywhere in the model.

On the other hand, no node </,y> on Cj forces \^ , hence </,y> \\f Ώ± -+
ψ*. It follows that (D(D_L -> ^/) -> D ± ) is forced everywhere in the model.

Put Bs = [ps]. Note that for any propositional formula χ i n P \ , . . . ,pn we
have that χ ( £ 1 ? . . . ,Bn) = <χ>. We have by 6.9 that

t-D(D±-+ [φ*]) =* (7.10)
h[0, ] <T^ (7.9),(I1),(J5)
KΦ/> < T =>
hφ/(^i, . . . ,fiΛ) < T =» (Reflection Principle)

Moreover, by 6.9

hΠ(D± -• [ ^ / ] ) -> DJ_ => (7.10)
KW<T-D1^ (6.9),(I1),(J5)
Hψj) < T-> D± =>
bψj(Bu...,Bn) <T->DJL =>
-Λ(ΨJ(BU. . . ,£„) < T ) . (Reflection Principle)

Note that the uses of the Reflection Principle are eliminable here: we could just
have proved the necessary lemmas externally, i.e., in nonformalized form. (In
case the theory under consideration is not PA it may even be necessary to rea-
son externally.)

It follows immediately that Γ = [φ\φ(Bu... ,Bn) < T} .

7.12 Remark Note that in the proof of 7.11 it would have sufficed to con-
sider representatives φ7 of the equivalence classes in Γ that are minimal in the
implication ordering. Similarly, we need only consider representatives ψj of the
equivalence classes of Γ c that are maximal in the implication ordering.
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