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Logical Constants Across Varying Types
JOHAN van BENTHEM

Abstract We investigate the notion of “logicality” for arbitrary categories
of linguistic expression, viewed as a phenomenon which they can all possess
to a greater or lesser degree. Various semantic aspects of logicality are ana-
lyzed in technical detail: in particular, invariance for permutations of indi-
vidual objects, and respect for Boolean structure. Moreover, we show how
such properties are systematically related across different categories, using
the apparatus of the typed lambda calculus.

1 The range of logicality Philosophical discussions of the nature of logical
constants often concentrate on the connectives and quantifiers of standard predi-
cate logic, trying to find out what makes them so special. In this paper, we take
logicality in a much broader sense, including special predicates among individ-
uals such as identity (“be”) or higher operations on predicates such as reflexivi-
zation (“self”).

One convenient setting for achieving the desired generality is that of a stan-
dard Type Theory, having primitive types e for entities and ¢ for truth values,
while forming functional compounds (a, ) out of already available types a and
b. Thus, e.g., a one-place predicate of individuals has type (e, f) (assigning truth
values to individual entities), whereas a two-place predicate has type (e, (e, ?)).
Higher types occur, among others, with quantifiers, when regarded in the
Fregean style as denoting properties of properties: ((e,?),¢). For later reference,
here are some types, with categories of expression taking a corresponding deno-
tation:

e entities proper names
t truth values sentences
(t,1) unary connectives sentence operators
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(t,(t,1)) binary connectives sentence connectors

(e,t) unary individual predicates intransitive verbs

(e, (e, 1)) binary individual predicates  transitive verbs

(e, t),t) properties of predicates noun phrases (“a
man”)

((e,t),((e,2),t)) relations between predicates  determiners (“every”)

(e, t),(e, 1)) unary predicate operators adjectives/adverbs

((e,(e,t)),(e,t)) argument reducers “self”, “passive”

Many of these types (and their corresponding categories of expression) can
contain logical items. For instance, identity lives in (e, (e, t)), reflexivization in
((e,(e,t)),(e,t)). Moreover, the type ((e,?), (e, t)) contains such logical items as
the operation of complement, or identity, whereas ((e,?),((e,t),(e,t))) would
add such operators as intersection or union. Conversely, existing ‘logical’ items
may be fitted into this scheme. For instance, in his well-known set-up of predi-
cate logic without variables, Quine introduced the following operators in addi-
tion to the usual connectives and quantifiers: reflexivization (as mentioned
above) as well as various forms of permutation on predicates. One notable
instance is the operation of conversion on binary predicates: a logical item (as
we shall see) in type ((e, (e, ), (e, (e,t))).

The purpose of this article is to analyze a general notion of logicality,
encompassing all these examples, by drawing upon some insights from contem-
porary logical semantics of natural language (see [7]). In the process, a great
number of questions concerning various aspects of logicality will be raised in a
systematic manner.

In fact, the above sketch may already have suggested some of these gen-
eral questions to the reader. First and foremost, What is a suitable notion of
logicality, applicable to all types at once? But then also, Will logical items be
found in all types, or if not, in which ones? And finally, What are the connec-
tions between logical items across different types? For instance, intersection of
unary predicates, in the type ((e,1),((e,1),(e,1))), seems a very close relative of
the more elementary conjunction of sentences, living in the type (¢,(,7)). We
shall examine all these questions, as well as many others, in due course.

When analyzing the notion of ‘logicality’, it seems natural to start from the
standard connectives and quantifiers. And in fact we shall find various aspects
of their behavior which may be called ‘logical’, and which can be generalized so
as to apply to items in other types as well. Most of these aspects fall within the
semantic approach, characterizing logical constants by their invariance behav-
ior across different semantic structures. Roughly speaking, logical constants will
be those items whose denotation is invariant under quite drastic changes of
semantic models. There is also another broad tradition, however, localizing logi-
cality rather in some key role to be played in inference. On this view, logical con-
stants would be those items that support rich and natural sets of inferential
patterns. The latter perspective can be pursued entirely within syntactic proof
theory. Nevertheless, we shall find some semantic echoes of it too, especially
when we consider the interplay of logicality with general (Boolean) implication.

As may be clear from the preceding considerations, our aim is not so much
to characterize such and such a set as consisting of precisely ‘the’ logical con-



LOGICAL CONSTANTS ACROSS VARYING TYPES 317

stants, but we are more interested in the multi-faceted phenomenon of ‘logical-
ity’, which may occur, to a greater or lesser degree, with many expressions in
natural language. One telling example here is the type ((e, ), ((e,?),?)) of gen-
eralized quantifiers, as realized in determiner expressions such as “every”,
“some”, “no”, etc. Insisting on merely the standard first-order examples here
would make us blind to the many ‘logical’ traits of such nonstandard quantifiers
as “most” or “many”. In fact, the standard examples have so many nice prop-
erties together, of quite diverse sorts, that it may not even be reasonable to think

of their conjunction as defining one single ‘natural kind’.

2 General invariance The traditional idea that logical constants are not con-
cerned with real content may be interpreted as saying that they should be pre-
served under those operations on models that change content, while leaving
general structure intact. This is actually not one intuition, but a family of them,
as there are various ways of implementing such ideas. We shall consider several
here, starting with perhaps the most natural one.

Related to the preceding aspect of logicality is the feeling that logical deno-
tations should be uniform, in the sense that they should not have one type of
behavior for certain arguments and a vastly different one for arguments only
slightly different. Perhaps, in this day and age, it is even natural to localize this
uniformity in the existence of some computational procedure recognizing the
relevant logical connection. Such further traits will also be encountered in what
follows.

2.1 Individual neutrality Logical constants should not be sensitive to the par-
ticular individuals present in a base domain D,. This idea can be made precise
using permutations, or more generally bijections defined on that domain, which
shuffle individuals. For instance, the logicality of the quantifier “all” (i.e., inclu-
sion among unary predicates, or sets of individuals) may be expressed as follows.
Forall X, Y < D,

all XY if and only if all #[X]« (Y], for all permutations = of D,.

Likewise, a Boolean operation like complement on sets will show a similar ‘com-
mutation with permutations’. For all X € D,

7 [not(X)] = not w[X].

And finally, of course, the relation of identity will be unaffected by such per-
mutations. For all x,y € D,

x =y if and only if 7 (x) = 7w (»).

The common generalization of all these cases is as follows. Let the hier-
archy of type domains D, be given by the obvious induction:

D, is the base set of individual entities
D, is the set of truth values {0,1}
D, p) is the set of all functions with domain D, and range D,.

Now, any permutation = on D, can be lifted to a family of permutations
defined on all type domains in a canonical manner:
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Me =T
m,; is the identity map (truth values retain their individuality)
Tia,p) (f) = (7 (x), 7 (Y)(X,¥) € f}, for f€ D, p).

Definition An item f € D, is permutation-invariant if
w.(f) = f for all permutations = of D,.

It is easy to see that this notion subsumes the above three examples.

Using this notion, we can now search types systematically for their invar-
iant items. E.g., e itself will not contain any (if there is more than one object),
whereas r—and indeed all types constructed from ¢ only —will have all its inhabi-
tants trivially invariant. (This means that all higher operations on truth values
are also considered to be logically ‘special’.) In fact, our main interest will lie
in the ‘mixed’ types involving both e and ¢. Here are some important examples
(cf. Chapter 3 of [7]):

* (e,(e,t)): the only invariant items are identity, nonidentity, and the
universal and empty relations.

® ((e,1),t): the invariant items can all be described as accepting arguments
with certain sizes and rejecting all others (‘numerical quantifiers’). For
instance, “everything” accepts only sets of the cardinality of D, (i.e.,
only D, itself), “something” accepts only sets of size at least one. But
also, less smooth candidates qualify, such as

#(X) iff X has between 2 and 7, or exactly 10, elements.

* ((e,(e,t)),(e,1)): here too there are many invariant items. We merely
show that the earlier reflexivization is among them:

SELF(R) = {x € D,|(x,x) € R}.
The calculation is this:

since R = w (7 ~!(R)), by definition,
7 (SELF)(R) = 7 (SELE(r " (R)) = 7 ({x € D,|(x,x) € 7~ (R)}) =
7({x € D.|(7(x),7(x)) € R}) = {x € D,|(x,x) € R} = SELF(R).

Finally, we consider one case where permutation invariance by itself already
comes close to singling out the usual logical constants (cf. Chapter 3 of [7]).

Proposition Among the n-ary operations on sets, the only permutation-
invariant ones are those defined at each tuple of arguments by some Boolean
combination.

Proof: We sketch the argument, in order to show how the present kind of invar-
iance enforces a certain yniformity of behavior (see Figure 1). Consider binary
operations, for the sake of convenience. Let f be permutation-invariant. What
could f(X, Y) be? The relevant Venn diagram has four natural ‘zones’, and we
can see that f(X, Y) must either contain or avoid these in their entirety. E.g.,
if f(X,Y) were to contain ¥ € X — Y, while missing v € X — Y, then we could
define a permutation 7 of individuals interchanging only «# and v, while leav-
ing everything else undisturbed. But then n(X) = X, «(Y) = Y, and yet
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D,

Figure 1.

7(f(X,Y)) # f(w(X),w(Y)). So, f must choose some union of regions: which
is described by a Boolean combination of its arguments.

Thus, we see that permutation invariance already captures a lot of ‘logi-
cality’.

Moreover, the notion just defined raises several questions of its own. To
begin with, Which categories possess invariant items at all? Here, it is useful to
distinguish types into two main varieties. Every type can be written in one of
the forms

(ai,(az,...,(a,,t)...)) or
(a;,(ay,...,(a,,e)...)).

The first, with ‘final £, will be called Boolean types, since they carry a natural
Boolean structure (cf. [17]). The second may be called individual types.

Proposition All types contain permutation-invariant items, except those indi-
vidual types all of whose arguments a; contain permutation-invariant items.

Proof: By induction on types. Note first that every Boolean type has at least one
invariant item, being the function giving the constant value 1 throughout (for
all tuples of arguments). Moreover, e has no invariants (provided that there is
more that one individual object). Now, consider any complex individual type
of the above form.

Case 1: All g; have invariant items, say xi, . ..,X,. Let f be any item in the type
being considered. Its value

Sx1) () .. (Xn)
will be some individual object in D,. Let 7= be any permutation shifting that
object. Then 7 (f)(x1)(x2) ... (x,) = T (/) (w(x)) (7 (x2)) . .. (w(x,)) (by the
invariance of the x;) = 7 (f(x1)(x2) ... (x,)) (by the definition of 7 (f)) #
f(x1)(x2) ... (x,) (by the choice of 7). Thus, 7(f) # f. L.e., our type has no
invariant items f.

Case 2: At least one g; has no invariant item, say ;. By the inductive hypoth-
esis, a; itself must be of the form

(ai1,(agn, .. (aik,e) ... ),

where all ¢;; have invariant items. (Or, @; may be the type e itself.) Now, we
define an invariant item in our original type as follows:
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¢ if a; was e, then take the function f defined by f(x;)(x2) ... (x,) = x;
e otherwise, if the a;; have invariant items y,, ..., ¥, take the function
defined by f(x1)(x2) - .. (X,) = X1 (V1) ... (Vi)-

That both these functions are permutation-invariant may be seen by direct cal-
culation, or by an appeal to the more general results of Section 4 below.

As an application, we note that, e.g., the category of ‘choice functions’
from sets to objects, of type ((e,),e), has no logical items.

Digression It may be useful, here and elsewhere, to also admit product types
a-b, whose meaning is fixed by the stipulation that

Da~b = Da X Db'

For instance, we can then move back and forth, as convenience dictates, between
such types as (a;,(a3,b)) and (a;-a,,b). Moreover, we obtain new cases of
interest, such as (e,e-e). The earlier permutations, and the corresponding notion
of invariance, are easily extended to this case. For instance, it may be checked
that the type (e,e-e) has just one invariant item, being the ‘duplicator’

X~ (x,x).
We shall make use of this particular observation below.

As a refinement of the above result, one might ask for a general counting
JSformula telling us, for each type @, how many invariant items it contains. For
several types, the answer is known (cf. [7]; in general, the number will depend
on the size of the individual base domain). No general result is available, how-
ever, for enumerating the phenomenon in all types.

Instead, we turn to some further issues concerning permutation invariance.

One is the location of the borderline with noninvariant items. Many ex-
pressions are not strictly invariant, but they still only refer to some specific
structure on the universe, in the sense that they will be invariant for all auto-
morphisms, i.e., all permutations of individuals which also respect this additional
structure. For instance, as opposed to “all”, the expression “all blonde” is not
permutation-invariant. (Suppose there are as many sailors as soldiers, so that
we can permute individuals by some 7 which maps sailors onto soldiers. How-
ever, “all blonde sailors are brave” might be true, whereas “all blonde soldiers
are w(brave)” might be false: the blonde soldiers could be located anywhere.)
Nevertheless, this complex determiner is invariant for permutations which have
the additional property of respecting blondeness (only) as may easily be seen.
Thus, in a sense, permutation invariance is only one extreme in a spectrum of
invariances, involving various kinds of automorphisms on the individual domain.
In particular, there are certain forms of automorphism invariance that still
resemble logicality quite closely (see Section 5 below).

On the other hand, one could also consider stronger notions of invariance
than the one with respect to arbitrary permutations. Permutations at least respect
distinctness among individuals: they are, so to speak, ‘identity automorphisms’.
What about demanding invariance for arbitrary functions on individuals,
whether one-to-one or not? We have not adopted this constraint, because many
standard logical constants would not survive this test; e.g., “no X are Y” does
not imply that “no F[X] are F[Y]” for arbitrary functions F on D,.
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There is another line of possible strengthening, however. In higher types,
there are many further kinds of permutation that could be considered, with their
corresponding notions of invariance. An example is found in [11] which dis-
cusses dyadic quantification in natural language, i.e., quantifier complexes oper-
ating directly on binary relations, rather than on unary properties. The simplest
relevant type here is ((e,(e,?)),?), as opposed to the original Fregean type
((e,t),t). Examples of dyadic quantification are provided by iterated unary cases
such as “every boy R some girl”, but also by more genuinely polyadic construc-
tions such as “every boy R some different girl”. Now, these various ‘degrees’ of
polyadicity can be measured by accompanying forms of invariance for smaller
or larger classes of permutations on ordered pairs of individuals. Of course, the
earlier individual permutations induce permutations on pairs of individuals. But
there are also many permutations of pairs which do not arise in this way. And
yet, there certainly are dyadic quantifiers which are also invariant with respect
to such larger classes of changes. For present purposes, it will suffice to men-
tion one example. So-called ‘resumptive’ constructions in natural language essen-
tially express dyadic quantification over pairs, as in

“someone hates someone”:  3Ixy-Hxy
“no one hates no one”: = 3xy-Hxy (1)

These particular dyadic quantifiers define predicates of binary relations that are
even invariant for a/l permutations of ordered pairs of individuals. It remains
an open question as yet, however, what stronger notions of permutation invar-
iance would be appropriate for arbitrary ‘logical’ items in the type of dyadic
quantifiers.

Even so, the potential of the permutation/invariance aspect of logical con-
stants should have been sufficiently established by now.

2.2 Context neutrality and other uniformities The invariances considered up
until now take place within one type-theoretic structure, with a fixed base
domain of individuals. But logical constants are also indifferent to certain
changes of context, or environment. For instance, the earlier account of permu-
tation invariance would not have changed at all if we had replaced permutations
by arbitrary bijections between D, and some other base set.

Yet another type of neutrality may be observed concerning generalized
quantifiers. In general, a quantifier may be viewed as assigning, to each universe
D,, some binary relation among its unary predicates, such as inclusion (“all”),
overlap (“some”), disjointness (“no”), etc. But in principle this relation might
depend on the surrounding individual domain. For instance, there is a claimed
reading for the determiner “many” where “many XY would express that the
proportion of Y’s in X is higher than that of the Y’s in the whole universe D,.
In that sense, “many” is indeed context-dependent. Nevertheless, for truly logical
quantifiers, one usually adopts the following principle of context neutrality:

Forall X, Y < D, c D,,
O(X, Y)-in-D, if and only if Q(X, Y)-in-Dy.

The general intuition here is that a logical constant should depend only on the
‘individual content’ of its arguments.
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We can give a general formulation of this principle, to make it applicable
to all types. For technical reasons, however, this is more easily done in a rela-
tional than in a functional Type Theory (see [16]). In this set-up, types are
formed from one basic type e by (possibly iterated) formation of finite se-
quences, with the central stipulation that

D(al,‘..,an) =Da1 X... X Dan'

That is, (ay,...,a,) is the type of n-ary relations with arguments of the types
indicated. There are mutual translations with our earlier functional Type The-
ory here. Let us merely observe that the empty sequence encodes the truth value
type ¢, so that, e.g., the relational type ((e),e,( )) might correspond to the pre-
vious functional type ((e,?), (e, (,1))) (being the characteristic function of the
corresponding 3-place relation). Now, given two base sets D, S D., we can
define an obvious restriction of objects in the hierarchy built on D, to those in
the hierarchy on D,:

{ X, if xe D, for individuals x in D,
e x|D, = . .
undefined, otherwise

® R|D, = {(ry,...,rn) € R|r;|D,=r;, for relations R of type
for each i (1 =i < n)} (ai,...,a,).

(In a functional hierarchy, there would be no guarantee that restrictions of func-
tions remain total functions; but with relations this is not necessary.)

Now, we may demand that a logical constant be context-neutral in the sense
that its denotation in one type hierarchy based on some individual domain D,
always be equal to the restriction of its denotations in type hierarchies based on
larger individual domains.

This requirement does have some bite. For instance, it rules out an expres-
sion like “everything”, which is crucially dependent on D,. But of course,
“every” as the binary inclusion relation between unary predicates does pass this
test. Another problematic case is negation. The value of “not X is context-
dependent, in that it is a complement taken with respect to the current individual
domain. Note, however, that the corresponding relation of type ((e),e), being
‘y ¢ X, is in fact context-neutral.

Finally, there is a related and more general phenomenon to be observed in
natural language. Context neutrality also expresses a certain /ocality: to evalu-
ate a logical item on certain arguments, it suffices to restrict attention to the
smallest universe containing all individuals occurring (hereditarily) ‘in’ those
arguments. Now, various constructions in natural language also carry a certain
restriction to specific subdomains. One well-known example is the phenomenon
of conservativity with generalized quantifiers:

O(X,Y) if and only if Q(X, Y N X).

I.e., the first argument sets the scene of evaluation for the second. This phenom-
enon has a wider scope. C. S. Peirce already observed how predicate logic obeys
the following ‘Copying Rule’ (provided some conditions are observed on free-
dom and bondage of variables):

AN (oY) e
AN oAy )
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Thus, there are general mechanisms operative which restrict evaluation to cer-
tain subdomains. In that sense, locality and context neutrality for logical con-
stants are merely (extreme) instances of tendencies to be observed for all kinds
of linguistic expression.

Finally, even with permutation invariance and context neutrality combined,
some very curious customers will pass the test. For instance, the behavior of
predicate operators might still be as erratic as this:

f(XY) = X, if | X| =6
Y, if |Y| =7and |X]|#6
XNy, otherwise.

One might try to exclude such cases by means of stronger general postulates in
the above spirit. (Compare the use of “Restriction” in [1].) Nevertheless, these
attempts have not been overly successful. No generally reasonable notion of uni-
formity or ‘smoothness’ has emerged ruling out these cases. What we shall do
instead is pass on to the study of some special types of conditions, which may
not be reasonable as general constraints on all logical constants, but which cer-
tainly do determine some very natural classes among them.

3 Fine-structure There are various aspects of the behavior of the standard
logical constants which should be brought out, if not as general desiderata on
logicality, then at least as a means of creating finer divisions among the logi-
cal constants themselves. The examples selected here are largely derived from
one particular area where this theme has been developed in detail, namely that
of determiners and quantifiers. But as we shall see, there is always a possibil-
ity for type-theoretic generalization.

3.1 Monotonicity The standard predicate-logical quantifiers are monotone,
in the sense of being unaffected by certain changes in their arguments. For
instance, “every XY” is right-upward monotone:

every XY, Y € Y' imply every XY’
and left-downward:
every XY, X' € X imply every X'Y.

In all, there are four types of monotonicity here, as displayed in Figure 2, fol-
lowing the Square of Opposition. The interest of this observation may be seen,
e.g. in Chapter 1 of [7], where it is proved that (modulo some further conditions)
this double monotonicity uniquely determines the standard quantifiers.

levery? Inol

Tsome? Tnot everyl
Figure 2.
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But monotonicity is a much more general phenomenon in natural language,
which other kinds of expression can share to some degree. Notably, a nonstan-
dard quantifier like “most” is still upward monotone in its right-hand argument:

most XY, Y < Y’ imply most XY".

(It lacks both kinds of monotonicity in its left-hand argument, however.) More-
over, monotonicity also makes sense in other categories. E.g., a preposition like
“with” is monotone in the sense that, if you fall in love with an iron lady, and
iron ladies are ladies, then you fall in love with a lady.

The proper general formulation of the phenomenon again involves the ear-
lier ‘Boolean’ ¢-structure in our Type Theory. First, we define a general notion
of inclusion, or implication, =, on all types, via the following induction:

onD, Cis <

onD,, Eis =

on D, ), fE gif, for all x € D,, f(x) E g(x).
In specific cases, such as the type (e,t), this meets our intuitive expectations
(being set inclusion for (e,?)).

Now, a function fin type (a, b) may be called monotone if the following
‘direct correlation’ holds:

for all x,y € D,, x © y only if f(x) & f(y).

This generalizes the earlier ‘upward’ form of monotonicity. The ‘downward’ var-
iant would correspond to an ‘inverse correlation’ (antitone):

for all x,y € D,, x E y only if f(y) E f(x).
For instance, an adjective like “blonde” is monotone:
if all X are Y, then blonde X are blonde Y,
whereas Boolean negation is antitone:
if all X are Y, then non-Y are non-X.

Should all logical items be monotone or antitone? The problem is that this
would rule out many reasonable candidates. For instance, the quantifier one
thing (3!x) is not monotone, either way (even though it has some related sub-
stitutes; see [3]). Therefore, we do not commit ourselves to this general
requirement.

Nevertheless, there is an interest in studying monotone logical items. And
in fact even stronger notions may be formulated, inspired by the ‘double
monotonicity’ of the standard quantifiers. Recall that all types could be writ-
ten in the form

(a;,(a,,...,(a,,y)...)), with y some primitive type.
Let us call an item f in this type totally monotone if
Xy E Vi X E yp dmply f(x1) ... (%) ES(V1) - (V)

And similar notions are possible with combinations of monotone and antitone
behavior in all arguments. It would be of interest to classify all permutation-
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invariant, totally monotone items in all types, thus generalizing the earlier char-
acterization of the standard quantifiers. By way of example, the special case of
binary operations on predicates may be taken. Here, the totally monotone items
are essentially the expected ones:

fi(X,Y)=X
f2(Xa Y) =Y
HXY)=XNY
fi(X,Y)=XUY.

Remark The preceding discussion of monotonicity has been ambivalent
between two points of view. On the one hand, language-independent items can
be monotone, according to the definition presented. On the other hand, linguistic
expressions can occur monotonely in other expressions, in an obvious derived
sense, via the corresponding denotations. There are some questions here, con-
cerning the syntactic criteria enabling us to recognize when a given occurrence
is monotone (with respect to all interpretations.) This is actually a more general
issue. Even with an adequate set of semantic criteria for logicality, it might still
be a difficult, perhaps even an undecidable matter, to show that any given lin-
guistic expression satisfies them. An example will be found in the Appendix to
Section 3.1.

Boolean Homomorphisms It is of interest to strengthen monotonicity
towards the preservation of further Boolean structure. Notably, Keenan and
Faltz [17] stress the importance of Boolean homomorphisms, respecting the nat-
ural Boolean structure which is present on all domains corresponding to the ear-
lier Boolean types (ending in ¢):

S(xMy) =f(x) N f(y)
Sxuy) =f(x)Uf(y)
S(=x) = =f(x).

(Monotonicity is then a derived property.) Examples of homomorphic behav-
ior may be found, e.g., with proper names:

Judith (jokes and juggles) « (Judith jokes) and (Judith juggles)
Judith (jokes or juggles) < (Judith jokes) or (Judith juggles)
Judith (does not jive) « not (Judith jives).

But it may also occur with prepositions, and other types of linguistic expression.
In particular, there are some interesting /ogica/ homomorphisms. Here is one
example. The earlier relation reducer “self” is a homomorphism in its category,
as may be seen in such equivalences as:

(hate and despise) oneself « (hate oneself) and (despise oneself)
(not trust) oneself « not (trust oneself)).

In fact, the following observation explains the special position of this item:

Proposition Reflexivization is the only permutation-invariant Boolean
homomorphism in the type ((e,(e, 1)), (e,1)).
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Proof: We assume an individual domain with a sufficiently large number of ele-
ments so as to avoid trivialities. The argument presented here shows a typical
way of determining the constraints induced by these conditions. So. let f be any
permutation-invariant Boolean homomorphism in the type ((e, (e, 1)), (e, ?)).

(1) As homomorphisms preserve disjunction, the following reduction is
possible, for any relation R,

SR = U [fUy).
(x,y)ER
(2) Now, for these singleton relations, there are two cases: (I) ‘x # y’ and
(I) ‘x = y’. In both of them, the value of fis severely restricted by per-
mutation invariance. In fact, the possibilities are as follows:

(I) ®a {X}, {y}’ {x>y}’De_ {x’y}sDe— {x},De_ {y}s De
(II) ®: (x)’De_ {X}, De'

(3) Homomorphisms have another preservation property: they preserve dis-
Jointness of arguments. Together with permutation invariance, this rules
out all possibilities for (I) except &.

Example If f({(x,»)}) = {x], then, by a suitable permutation leaving x fixed
and sending y to some y’ # y, ¥’ # x, f({(x,y’)}) = {x} also holds, whereas
{(x,»)} and {(x, y’)} are disjoint relations. If f({(x,»)}) = {x,»}, then, by a suit-
able permutation, f({(»,x)}) = {x,»]} too, again contradicting the preservation
of disjointness. Etc. By similar arguments, one can rule out the third and fourth
possibilities in Case (II).

(4) Finally, since homomorphisms cannot give value 0 everywhere, the
value & cannot be chosen in Case (II). So we have value & in Case (I)
and value {x} in Case (II). But, the resulting formula is precisely the
description of reflexivization. This concludes the proof.

On the other hand, logical homomorphisms are absent in other important
types. For instance, they are not found in the determiner type ((e,?),((e,?),?)):
no plausible quantifiers are Boolean homomorphisms.

The reason behind both observations may be found in Chapter 3 of [7],
which presents the following reduction:

Boolean homomorphisms in type ((a,t), (b, t)) correspond one-to-one in a
natural fashion with arbitrary functions in the lower type (b,a).

In fact, given some function fin type (b,a), the corresponding homomorphism
Fin ((a,t),(b,t)) is described by the formula

)\x(a,t) ')\zb'aya € x'f(Z) =VYa-

Now, some calculation will show that in this correspondence F will be
permutation-invariant if and only if fis. So, to find logical homomorphisms in
((e,(e,1)),(e, 1)), or equivalently, in ((e-e, 1), (e,t)), we have to find permutation-
invariant functions in type (e,e-e). And, as was observed before, of those there
was only one, the ‘duplicator’, which indeed induces reflexivization via the above
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formula. Likewise, homomorphic logical determiners would have to correspond
to permutation-invariant (choice) functions in type ((e,?),e). But, as we said
before, of the latter there are none.

Continuity One feature of homomorphisms in fact suggests a notion of
wider applicability. Call a function continuous if it respects arbitrary unions/dis-
junctions:

Jix) = Wi f(x5).

As in the proof of the preceding Proposition, this expresses a certain locality,
or ‘pointwise’ calculation of f: it is enough to collect values computed at single-
ton arguments.

Continuity, while stronger than Monotonicity, is valid for quite a few
important logical constants. For instance, together with permutation invariance,
it is used in [6] to analyze the Quine operations reducing binary to unary predi-
cates. Essentially, in addition to the earlier-mentioned reflexivization, one
obtains projection:

proj; (R) = {x|3y- (x,¥) € R} (= domain (R))
proj;(R) = {x|3y-(»,x) € R} (= range (R)).

To obtain the broader case of nonreducing operations on binary relations, one
needs a result from van Benthem ([7], p. 22):

The continuous permutation-invariant items in type ((e,(e,t)),(e,(e,t))) are
precisely those definable in the following format: AR (¢ (e 1y MNXe*NYe*
3u,-3v,- {Boolean combination of identities in x,y,u,v).

This includes such prominent examples as Identity, Converse, and Diagonal.

Continuity may also be used to bring some order into the possibilities for
logical operations in a Relational Calculus, being an algebraic counterpart to
predicate logic (see Section 5 below for more on this).

3.2 Inverse logic In certain ways, the preceding discussion has also intro-
duced a viewpoint whereby logical constants are approached through their role
in validating patterns of inference. After all, the various notions having to do
with the interaction with general inclusion, =, may be thought of as inference
patterns, involving the particular logical constant under consideration as well
as Boolean “and”, “or”, “not”, etc.

In this light, for instance, the earlier characterization of reflexivization may
be viewed as a piece of ‘inverse logic’. Usually, one starts from a logical item,
and determines the inferences validated by it. Here, inversely, we gave the infer-
ences, and found that only one logical constant in type ((e, (e, ?), (e,t)) would
validate the set of patterns

SXNY) o f(X)Nf(Y)
SXUY) o f(X)Uf(Y)
S(=X) & —f(X).

Actually, these questions have been considered in more detail for the special
case of generalized quantifiers (see [3]). Here one can study various sets of sy/-
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logistic patterns, and see if they determine some particular logical constant. Sev-
eral outcomes are relevant for our general picture:

e The basic patterns here are not Boolean but purely algebraic, as in the
forms

oxy (Conversion) oxXY Qovz

oYX oxXZ

e Outcomes may indeed be unique, as in the result that Conversion and
Reflexivity essentially characterize the quantifier “some” (modulo some
reasonable assumptions).

e Without any further limiting assumptions, inferences may also under-
determine logical constants, in that different candidates would qualify.
(In terms of pure syllogisms, for instance, “at least two” validates the
same patterns as “some”.) In fact, there is also a positive side to such
underdetermination: different ‘solutions’ to a set of inferential patterns
may exhibit a useful duality. The latter happens, for instance, with the
algebraic inferences governing the Boolean operations on sets (cf. [6]):
conjunction and disjunction cannot be told apart.

¢ Finally, there are also prima facie plausible inferential patterns which
admit of no logical realization. For instance, there are no nontrivial
permutation-invariant quantifiers validating the syllogistic pattern of Cir-
cularity:

(Transitivity)

OXY QYZ
ozx

Inverse logic is also possible in other types, however. One instance is pro-
vided by the above reference to operations on predicates. We shall return to such
further examples in Section 5 below.

3.3 Computability Yet another perspective upon logical constants is pro-
vided, not by their semantic meaning, or their syntactic deductive power, but
by the complexity of the computations needed to establish their truth. For
instance, would a certain simplicity be one of their distinguishing traits?

Again, there may be no general argument for this view, but it can still serve
as an interesting principle of classification. For instance, there is a natural hier-
archy of computability for generalized quantifiers (see Chapter 8 of [7] on the
relevant ‘semantic automata’). Such quantifiers may be computed by automata
that survey all individuals in the domain, marked for (non-)membership of the
relevant two predicates to which the quantifier applies, and then, after this
inspection, produce a truth value YES or NO. In this way, the well-known Auto-
mata Hierarchy comes into play. Notably, the lowest level of finite state
machines turns out to suffice for computing all first-order quantifiers definable
in standard predicate logic. Nonstandard higher-order quantifiers, such as
“most”, will in general require computation by means of push-down store auto-
mata having unbounded memory. Thus, the distinction between more traditional
and other logical constants also turns out to have a computational basis.
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In line with the general spirit of this paper, the question arises if such a
computational perspective can be generalized to all semantic types. And, indeed,
there are unmistakable computational aspects to other types of linguistic expres-
sions. For instance, assigning adjectives like “tall” to individuals seems to presup-
pose systematic location in some comparative order of being-taller-than. And
a modifier like “very” again prescribes an almost numerical ‘intensification’ in
order to assign a predicate like “very tall”. (See [12] for some broader develop-
ments of the automata perspective in other types.) Nevertheless, no totally con-
vincing generalization has yet emerged. Whatever the precise outcome, we would
expect the basic logical constants to occur at some moderate computational level.

4 Definability There is a standard logical language used for interpretation
in the type-theoretic models employed up until now. Its major, well-known syn-
tactic operations are application, lambda abstraction, and (perhaps) identity.
One natural question is how far this language can serve as a uniform medium
for defining logical constants. We shall look into this matter in Section 4.1.
There is, moreover, a more ‘auxiliary’ use of this language. As has been
observed repeatedly, it seems as if ‘the same’ logical constant can occur in dif-
ferent guises. This polymorphism of, e.g., Boolean operators, but also of quan-
tifiers or identity, may be described systematically using such a type-theoretic
language. Section 4.2 contains an elaboration of this second theme.

4.1 Type-theoretic definitions Let us consider a language with variables for
each type a, and the following rules of term construction for a typed lambda
calculus:

e if 7is a term of type (a,b) and o one of type a,
then 7(o) is a term of type b

e if 7is a term of type b and x a variable of type a,
then Ax-7 is a term of type (a,b).

Sometimes we shall also use a third rule, to obtain a full theory of types:

¢ if 7,0 are terms of the same type,
then 7 = ¢ is a term of type ¢.

All these terms have standard interpretations in our earlier type hierarchies.
One immediate connection between terms in this language and logical con-
stants is the following:

all closed terms in the theory of types define permutation-invariant objects
in their type.

This follows from the following observation about arbitrary terms, which is eas-
ily proved by induction:

Proposition For every term 1 with the free variables x,, . . .,x,, every per-
mutation w (lifted to higher types as usual), and every interpretation function
[ 1 in a hierarchy of type domains, w([717, 7)) = L7170y w4,
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The converse does not generally hold, e.g., infinite models will have uncount-
ably many permutation invariants, outrunning the countable supply of type-
theoretic terms. Nevertheless, the correspondence is one-to-one in an important
special case (see [10]):

Proposition In a type hierarchy starting from a finite domain of individu-
als, every permutation-invariant item in any type is definable by some closed
type-theoretic term of that type.

Thus, in a sense, studying further restrictions on logicality may be trans-
lated into searching for reasonable fragments of the full type-theoretic language.

One obvious fragment is that of the typed lambda calculus, which has
much independent interest. This language does not suffice by itself for defin-
ing all permutation invariants; even so, it has remarkable powers of definition.
One illustration concerns the functional completeness of Boolean operators. As
all beginners learn, the standard logical constants “not”, “and”, and “or” suf-
fice for defining all truth-functional connectives. In our type-theoretic perspec-
tive, this means that all ‘first-order’ pure ¢-types have their items defined using
only three particular constants from the types (z,¢) and (¢,(¢,¢)). But what about
higher Boolean types, such as ((¢,¢),¢) (‘properties of unary connectives’), etc.?
Perhaps surprisingly, the above few constants still suffice, in the following sense
(see [9]):

Proposition Every item in the pure t-hierarchy is definable by some closed
term of the typed lambda calculus involving only the constants —,A(V).

Moreover, it is not hard to extend this result to cover the case of an arbi-
trary finite domain D, (‘many truth values’), with respect to some suitably
enlarged set of basic connectives.

One interesting interpretation of this result for logical constants is the fol-
lowing. We have to supply only a few hard-core logical items at an elementary
level: the lambda calculus machinery will take care of the rest.

Of course, within this broad general scheme, one can also consider much
more detailed questions of functional completeness. For instance, it has often
been observed that there is no predicate-logical analogue of the above functional
completeness result for Boolean connectives. In what sense could one say that
the standard first-order quantifiers are ‘expressively complete’? Here, our ear-
lier results provide an answer: The standard first-order formalism is certainly
expressively complete for doubly monotone quantification (and indeed, for some
wider forms too; see [3]).

Next, we consider the effect of another general desideratum on logical con-
stants, viz. the context neutrality of Section 2.2. There it turned out to be con-
venient to shift to a relational perspective, as will be done here as well.
Moreover, it will also be useful to change over to another type-theoretic lan-
guage, having the usual quantifiers 3 and Vv (over all types). (The lambda oper-
ator then becomes redundant, in a sense.) We shall say that a ¢-type formula
¢ = ¢(x,) defines an item f of type a in some model if fis the only object satis-
fying the statement ¢.

When is such a definition ¢ context-neutral, in the sense of the following
relativization?
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Let ¢ define fin a model constructed on D,,
and f* in the model constructed on D;f 2 D,.
Then f*|D, = f.

The following gives at least a sufficient condition:

Proposition Let ¢ define a unique object in every model, and let every quan-
tifier occurring in ¢ be relativized, i.e., in the form 3x < y, Vx < y (where ‘x <
y’ stands for ‘x is a member of some tuple in y’). Then ¢ defines a context-neutral
denotation.

Example The universal quantifier is defined by the restricted formula
Vy=xVvVz=x(x(y»z2)eVu<y:u=z).

The above condition is not necessary, however. In fact, it only produces
predicative examples, referring to ‘subobjects’ of the argument x. In order to
obtain context-neutral items such as the quantifier “most”, one has to allow
impredicative definitions ¢ too, referring to higher types, provided that they
remain within the subhierarchy upward generated by the (transitive €-closure
of the) argument x. (Incidentally, this predicative/impredicative distinction itself
provides another suggestive classification of logical constants.)

We conclude with a question (cf. [20]). The extensive use of type-theoret-
ical languages itself raises a new issue of logicality. What is the logical status of
transcendental operations, like application, lambda abstraction (or definite
description, etc.)?

4.2 Changing types Some logical constants seem to cross boundaries
between types, living in different guises. For instance, we saw in Section 3 how
“self” in type ((e, (e, 1)), (e, t)) could be derived from duplication in type (e,e-e).
Likewise, the basic identity between individuals in type (e, (e, ?)) can also occur
in type (((e,1),1),(e,t)), operating on complex noun phrases (as in “be a man”).
Again, there occurs a ‘canonical’ transfer of meaning, as was observed by Mon-
tague:

AX((e,1),1)* NVe X (AZe*BE (¢, (¢,1)) (2) (1))
(‘y is a man’ if ‘a man’ holds for ‘being y’).

And finally, Boolean operations in higher types can be derived from their base
meanings in the truth tables. A case in point is the metamorphosis from sentence
negation to predicate negation:

AX(e,1)*ANVe'NOT ;1) (x(1)).

There is a system to such changes, as will be seen now.

In fact, type changing is a general phenomenon in natural language that
shows many systematic traits (see Chapter 7 of [7], and [10]). We shall outline
a few points that will be necessary for our further investigation of logical con-
stants.

Generally speaking, expressions occurring in one type @ can move to
another type b, provided that the latter type is derivable from the former in a
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logical calculus of implication (and perhaps conjunction). The basic analogy
operative here is one discovered in the fifties: Functional types (a, b) behave very
much like implications @ — b. Then, transitions as mentioned above correspond
to derivations of valid consequences in implicational logic.

Example (Derivations are displayed in natural deduction trees)

* (4,1) = ((e,1),(e,1)):

1 2
e (et)

o (41)

withdraw 1
withdraw 2

(e,?)
((e,1),(e,1))

* (e, (e ) = (((e,1),1),(e, 1)) is quite analogous:

1
e (e/(el))
(e,1) ((e,1),1)

withdraw 1
withdraw 2

(e,t)
(((e,1),1),(e,1))

* (e,e-e) > ((e,(e,t)), (e,t)) becomes analogous again,
if we rewrite it as (e,e-e) = ((e-e,t),(e,1)).

Thus, the derivational analysis shows a common pattern in all three examples,
being a form of Transitivity:

(x,) = (»2),(x,2)).

In general, again, admissible type changes in natural language correspond
to valid derivations in a constructive implicational logic, given by the usual nat-
ural deduction rules of modus ponens and conditionalization. Also frequent, in
addition to the above inference of Transitivity (often called ‘Geach’s Rule’ in this
context), are the so-called rules of Raising (also called ‘Montague’s Rule’):

x=((x,),y).

For instance, the latter pattern is exhibited by proper names (type e) which start
to behave like complex noun phrases, or semantically as ‘bundles of properties’:

e= ((e,1),1).

Moreover, these derivations are not purely syntactic. For they correspond
one-to-one with terms from the typed lambda calculus, explaining how deno-
tations in the original type are changed into denotations in the new type. Here
is an illustration for Boolean negation:
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Example
proof tree lambda terms
2 X,
e (&) \p Ye, 2en
y(x) NOT(,,
t (t,1) MP el
p NOT (y(x))
C ---------------------
e M NOTOY () .
((e7t)’(e9l)) >\y(e‘,t)')\Xe‘'I\IOT\(.})(X))

Note how application encodes modus ponens, and lambda abstraction encodes
conditionalization.

Thus, we see how logical constants can move from one category to another,
provided that the corresponding change of meaning can be expressed using some
‘wrappings’ of the typed lambda calculus. Indeed, any object can undergo such
type changes, as was observed above. And in the process it may become ‘embel-
lished’, acquiring some logical traits it did not have before. (For instance, plain
individuals in type e become Boolean homomorphisms in type ((e,t),t); cf.
[17]).

The type changing perspective raises many new questions in connection
with the analysis of logicality presented in Sections 1 and 2. Suppose that some
logical item in a category has the properties discussed earlier. Will it retain them
after its change of type/meaning? In more technical logical terms, which of the
earlier semantic properties are preserved (or acquired) under type change?

To begin with, we have seen already that permutation invariance is indeed
preserved. It follows directly from the earlier results that, if fis invariant, any
term 7(f) will also define a permutation-invariant item. (We shall not inquire
here into a possible converse of this, or of later results.)

Matters are more complex with mornotonicity. Some type changes preserve
it; the earlier Geach Rule is an example. Others do not; the Montague Rule is
an example. What is required in general for such preservation is that the param-
eter x, for the item being changed occur only positively in the defining term (for
a fuller discussion, see [9]).

And finally, little is known yet concerning preservation or creation of such
properties as continuity or being a Boolean homomorphism.

What this analysis stresses, in any case, is a perhaps unexpected aspect of
logicality: it can be gained or lost to some extent in the process of type change.
Thus, our world is much more dynamic than may have been apparent at the
outset.

Remark The preceding account does not exhaust the story of polymorphism
in natural language. On the one hand, the constructive logic system may be too
rich, in that admissible type changes (mostly) fall within weaker calculi, and
associated fragments of the typed lambda calculus. For instance, there is an
important subsystem, due to Lambek, which may be closer to the mark, and
which also possesses a logical theory with some nicer features than the full
lambda calculus. (See Chapter 7 of [7], [9], and [10] on the topic of preserving
monotonicity in this setting.) On the other hand, the type changes studied up
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until now may be too poor, in that certain important phenomena are not rep-
resented. For instance, the system as it stands does not account for the similarity
of, say, the existential quantifiers in

XY (e,1) (X) (type ((e,1),1)))
X (e, Ve, 1), 1) (X) (type (((e,),1),1)).

A proper treatment here may require genuine variable polymorphism, assign-
ing the following type to quantifiers:

(x,0),1).

Compare the discussion of generalized permutation invariance in Section 2 for
a possible semantic background for this move.

5 Extensions The treatment so far may have given the impression that the
type-theoretic analysis of logicality is restricted to handling extensional items in
an {e,t}-based framework. This is far from being the truth, however. There is
no problem whatsoever in adding further primitive types; in particular, a type
s for possible worlds or situations. In this final section, we will survey some illus-
trations of how the earlier themes re-emerge in infensional settings.

5.1 Intensional logic The logical constants of traditional intensional logic
exhibit a natural type structure, when viewed in the proper light. Thus, with
propositions identified as usual with functions from possible worlds to truth val-
ues (i.e., in type (s,t)), modal operators have type ((s,t),(s,t)), while condi-
tionals have the binary type ((s,2),((s,1),(s,1))).

It is quite feasible to subject such types to denotational analysis, much as
we did in previous sections. In fact, there are strong formal analogies between
the cases of {e,?} and {s, 7}, as might be expected. There are also differences,
however, between intensional operators and the earlier logical constants. For
instance, the permutation-invariant items in the above types will be just the
Boolean operations, as was established in Section 2. And due to the results of
Section 4 we know that these are not ‘genuine’ inhabitants of ((s, ?), (s, ?)), etc.,
but rather transmuted versions of items in the simpler, s-less types (¢,¢) and
(t,(t,1)). So, genuine intensional operators cannot be permutation-invariant. In
the terms of Section 2, they have to be sensitive to some further structure on the
D,-domain (being invariant only with respect to automorphisms of that struc-
ture). But this is reasonable, of course, reflecting precisely the usual approaches
in intensional logic, which assume some structure like “accessibility” between
possible worlds or “extension” among situations. Of course, the systematic ques-
tion then becomes how to motivate (a2 minimum of) such additional structure
independently.

More detailed studies of the above genesis of intensional operators may be
found in [2] and [4]. Here it may suffice to remark that all earlier concerns of
monotonicity, Boolean structure, or type change still make sense in this setting.
For instance, we can also classify possible modal operators or conditionals by
their patterns of inference. A particularly concrete example of all this occurs with
temporal operators, where D, represents points in time carrying an obvious
ordering of temporal precedence (cf. [8]). Tenses and temporal adverbs may be
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viewed as operators on propositions that are invariant for automorphisms of the
temporal order. For instance, the basic Priorean tenses on the real numbers
(viewed as a time axis) are exactly those <-automorphism-invariant ones that
are continuous in the sense of Section 3. Relaxing this restriction to mere
monotonicity will then bring in the other tenses studied in the literature.

Of course, the presence of additional structure will give many of the ear-
lier topics a new flavor. For instance, what is invariant for temporal automor-
phisms may vary considerably from one picture of time to another, since
different orderings may have quite different sets of automorphisms. Changing
from the reals to the infegers, therefore, already affects the class of tenses in the
above-mentioned result, because the latter structure is so much poorer in auto-
morphisms. (As a consequence, many more operators qualify as ‘tenses’ on the
integers, including such items as “yesterday” and “tomorrow”.) Another inter-
esting new aspect is the possible action of semantic automata on time lines (cf.

[18)).

5.2 Dynamic logic A similar extension to currently popular ‘dynamic’ logics
is possible. These logics were originally developed in the semantics of program-
ming languages, but now also serve as models for the more dynamic, sequen-
tial aspects of interpreting natural language.

The basic domain D, will now represent states of some computer, or
knowledge states of a person. Propositions may then be viewed as state changers,
(in the simplest case) adding information to obtain a new state from the current
one. This will give them the type (s,s) when viewed as functions, or (s,(s,t))
when viewed merely as relations (‘many-valued functions’). Logical constants will
now be the basic operations combining such functions or relations into complex
ones. Obvious examples are the analogues of the earlier Boolean operations, but
also typical ‘dynamic’ operators, such as sequential composition, will qualify.

One obvious question here is what would be a reasonable choice of basic
logical items, given the broader options now available. What one finds in prac-
tice is often some variant of the operations in the usual Relational Calculus on
binary relations. Is there some more basic justification for this? In any case, our
earlier notions can be brought to bear. As is easily checked, all operations in the
Relational Calculus are permutation-invariant (with respect to permutations of
Dq, that is) precisely in the earlier sense, and also continuous. And the set of all
possibilities within this class can be enumerated just as in Section 3.1, using a
suitable ‘lambda schema’. We forego spelling out all technical details here —but
the general outcome is that the basic items are indeed those found in the usual
literature, as may be seen in the following illustration.

Example Here are a few outcomes of simple denotational analysis in this set-
ting, with programs considered as transition relations between states, that is, in

type (s,(s,1)).
(1) Logical continuous binary operations on programs must have the form

AR NS.Axy.3zu.Rzu A 3vw.Svw A
{some Boolean condition on identities in x, y,z,u, v, w).

Typical cases are as follows:
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Union: (x =zAy=u)v(X=vAy=w)
Intersection: x =z =vAy=u=w
Composition: x =z AU =VA W= ).

(2) Some operators take ordinary propositions, in type (s,?), to more
program-like counterparts, in type (s, (s,?)). One example of such a
dynamic propositional mode is the ordinary test operator ?. Its defini-
tion again satisfies the relevant schema for logical continuity:

NP5 . Axy.3u.(Puny = x = u).

Stronger requirements on the preservation of propositional structure will
lead to a collapse in options here. For instance, logical homomorphisms
in type ((s,?), (s,(s,?))) must correspond with logical functions in the
type (s.s,s), by the analysis given in Section 3.1. But, of the latter, there
are only two, namely left- and right-projection, generating only the fol-
lowing marginal cases:

AP-Axy.Px and AP.Axy.Py.

(3) Eventually, as in Section 5.1, this setting also requires contemplation
of additional primitive structure between states —such as ‘growth of
informational content’. Then a more refined analysis of the preceding
operations becomes possible, in particular one allowing for more inter-
esting dynamic modes (see [13]).

Another topic of some interest here is the matter of inverse logic. How far
are particular logical operations in the above extension characterized by their
algebraic inference patterns? (For unary operators, such as converse, one has
to think now of properties such as the following:

FF(R)=R or FF(R)=F(R).

For binary operators, one has the usual commutativity and associativity, as well
as several ‘interaction principles’, as exemplified by

(R;S)"=(STR7).)
Is there a unique ‘solution’ in this case, or are there some interesting dualities
still to be discovered?

It should be added that the full picture may be richer yet. Some proposi-
tions in natural language may be used to change a state, others serve rather to
test a state for some given property. And such testing of course is also essen-
tial in programming languages (compare the control instruction IF . . . THEN
... ELSE .. ). In such a case, our type structure will also involve propositions
in type (s, ¢) after all. For some type-theoretic exploration of this richer struc-
ture, see [10] and [13].

6 Epilogue The professed purpose of this paper has been to analyze vari-
ous strands in the intuitive notion of logicality, and then to show these at work
in the widest possible setting.

Perhaps it is only fair to add explicitly that this is an expression of a view
opposed to the traditional idea of regarding logic as being primarily concerned
with the study of ‘logical constants’ (whatever these may be). Logic, in our view,
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is concerned with the study of logical phenomena: and these occur all across lan-
guage, not just with any distinguished group of actors.

This view is more in line with that of Bernard Bolzano, who saw the task
of logic as providing a liberal study of various mechanisms of consequence (cf.
[S]). With some adaptations to the twentieth century, this is still an appropri-
ate banner to follow.

Appendix to Section 3.1 In general, questions about the fit between linguistic
expressions and semantic properties need not be decidable. This may be illus-
trated for the simple case of standard predicate logic.

Our first example is the important notion of monotonicity. As was pointed
out by Yuri Gurevich, this semantic property is not decidable in predicate logic.
Here is a simple argument to this effect:

Proposition The question whether the truth value of a given first-order for-
mula ¢; (P) depends monotonically on its predicate argument P is RE but not
decidable.

Proof: That this property is recursively enumerable follows from the Lyndon
characterization of the monotone ¢; (P) as those formulas which are provably
equivalent to some formula in which P occurs only positively.

The negative statement results from the following reduction of predicate-
logical validity:

Let @ be any L-sentence, g some proposition letter not occurring in L. Then
o is universally valid if and only if the formula o« v —¢ is monotone in g.

Only if: a v =g will be equivalent to true.

If: Suppose that a v =g is monotone in ¢g. Consider any L-model M.
Expand it to an L + g-model M* by making ¢ false. Thus, M* E o v —g.
Now change M to a model M* by making g true. By monotonicity, we still
have that M* F o v =q. But then M* F o, and hence M F «, since « refers only
to L: on which vocabulary M* and M agree. So, « is universally valid.

As a second example, consider the notion of permutation or, more gener-
ally, automorphism invariance. In general, a first-order formula ¢(A, B) may
express a condition on its component predicates, considered as its semantic argu-
ments, so to speak. But there will only be genuine dependence on such a predi-
cate if the truth value of the formula is sensitive to changes in the behavior of
that predicate. Otherwise, there will be independence —and one way of defin-
ing the latter notion is as follows:

Definition ¢ (A, B) is independent from B if, for all bijections = between
models M, = (D,,A,,B,) and M, = (D,, A,,B,) which are A-isomorphisms,
M, E ¢ if and only if M, F ¢.

Note that this is still connected with the earlier uses of permutation invariance.
We can also say that ¢(A4, B) is independent from B if its induced generalized
quantifier predicate NA.¢ (A, B) in any model is invariant for permutations of
individuals, even if these do not respect B.
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Proposition Independence from component predicates is a RE but not decid-
able notion for first-order formulas.

Proof: Consider an arbitrary L-formula «, and let g be a new proposition let-
ter outside of L. This time, the relevant effective reduction is that:

« is universally valid if and only if the formula « v q is independent from g.

Only if: a v g will be true in M, and M, no matter what g does.

If: Suppose that « is not universally valid: e.g., it fails in M = (D, L). Then
the two expanded models (M, ‘g true’) and (M, ‘q false’) are L-isomorphic via
the identity map, and yet they disagree on o v ¢ —whence « v ¢ is not indepen-
dent from gq.

As to an upper bound, the RE-ness of independence follows from the next
claim:

¢(L, B) is independent from B if and only if ¢ is provably equivalent to
some L-formula not containing B.

The nontrivial ‘only if” direction is shown as follows. Let CONS; (#) be the set
of all B-free L-consequences of ¢. As usual, it suffices to prove that

CONS, (¢) F ¢

since an L-equivalent can then be obtained from CONS, (¢) by compactness.
Now, let M F CONS, (¢). By a standard model-theoretic argument,
Th, (M) U {¢} must be satisfiable, say in some model N. Thus, we have that

M=; N and NEé¢.

Next, take L-isomorphic elementary extensions M+, Nt of M, N respectively.
(These exist, via Keisler’s Theorem.) Then N k¢, Nt E ¢ (by elementary exten-
sion), M F ¢ (by independence) and hence M F ¢ (by elementary descent).

Remark An alternative proof would proceed by first observing that indepen-
dence is in fact equivalent to the following invariance condition:

(D,A,B) E¢ if and only if (D,A,B’) E ¢.
This again translates into the validity of the semantic consequence
#(A,B) F¢(A,B’)

which, in its turn, is equivalent to ¢’s being purely A-definable, by the Interpo-
lation Theorem for first-order logic.

Appendix to Section 4.2 As we have seen, one major source of transmission,
or even creation, of logical behavior is the type-theoretical structure which relates
objects in different categories. We will consider some examples here, in order
to show how this structure can be investigated systematically.

For instance, which items in the noun-phrase type ((e,?),?) are lambda-
definable using parameters in the individual domain D,? Such a question re-
duces to surveying terms 7 in the typed lambda calculus of type ((e,),?) in
which only free variables of type e occur. Here, we may always restrict atten-
tion to terms in lambda normal form, containing no more ‘redexes’ of the shape
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(Ax.a)(B). Also, in normal forms the types of all variables must be subtypes
of the resulting type or of the types of the parameters. With these restrictions,
we see that the only candidates which qualify are the earlier Montague liftings:

NX(e,ry-X(Ve)-

This can be stated in terms of the earlier terminology of ‘type change’: The de-
rivable transition e = ((e, ), t) is unambiguous, having essentially just one deri-
vation.

The situation can be more complex, however. For instance, [11] has a dis-
cussion of the polyadic quantifiers in type ((e, (e, )),?), as mentioned in Sec-
tion 1. As was observed before, one case of such quantification arises by merely
iterating two unary quantifiers in combination with a transitive verb:

Q'TVQ?2.
Again, there is a derivable implicational transition involved here, namely
((e,2),1) (e,(e,2) ((e,1),7) = ¢

But this time there are at least four different derivations, giving rise to differ-
ent scope readings with direct and passive readings of the verb. One example is
the wide scope reading

>\X(e,(e,t)) . Q(l(e,t),t) (>\ye~ Q(z(e,t),t) (X(y)))

But, what are all polyadic quantifiers definable from two unary ones? As it turns
out, there are only a finite number of candidates in each model: the remaining
polyadics must fend for themselves.

The preceding examples were about various kinds of generalized quanti-
fiers. Let us now take a look at the underlying type of deferminers ((e,t),
((e,t),t)). One reduction occurred here when we saw how at least homomorphic
determiners could be derived from choice functions in type ((e,?),e). And in fact
there is a Geach transition of the form ((e,?),e) = ((e,t),((e,t),t)). Thus, there
must be a general rule for creating determiners out of choice functions with a
lambda recipe matching its derivation. Upon computation, this turns out to be

AX(e,1)- NV (e,1) - X (U((e,1y,e) (P)),

a formula reminiscent of the use of Hilbert’s e-symbol, which turns out to be
the same recipe as that found in the analysis of Boolean homomorphisms in Sec-
tion 3.1, being

AX(e,1)- NV (e,1)-3Z¢ € X.U((e,1),e) (V) = 2.

But there are also other possibilities; for instance, interchanging the variables
x and y in the matrix.

Now, let us consider a more general question concerning this important log-
ical category (cf. [15]):

When is a semantic determiner lambda-definable from items in lower types;
ie., e t, (e1), ((e,1),1)?

(Incidentally, on an alternative analysis, we should have a determiner type ((e, ).
(e,1),t), without the ‘higher-order’ subtype ((e,?),?).) The argument here will
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illustrate a useful general method. We can describe all possible forms for deter-
miners with parameters from the types indicated by means of a kind of context-
free grammar, having symbols (at most)

Xos Xa5 Coy Vy

for each of the relevant types a. Here, ¥V, stands for a variable of type a, C, for
a constant (parameter), X, for any term of type a, X for such a term that does
not start with a lambda. The point of this division will become clear from the
rewrite rules for terms in normal form to be presented now. First we have, for
all types a,

X, = X}
X;=C,
X; =V,

Next, rules for application or lambda abstraction depend on the actual types
being present (recall the above observations about the shape of terms in lambda
normal form):

Xen, ety = Miey-Xeny,n
(et),1) = NVie,n- X

X, = sze,t)(Xe)
X, = X?(e,t),t)(X(e,t))
X(e,t) = )\I/Q.X,.

The description of possible constructions is much facilitated here because we can
make this grammar regular. This may be visualized in the following finite state
machine (Figure 3), where ‘D,’ stands for C, or V,, where applicable. This
scheme produces determiner denotations of forms such as the following:

L. AX(e,1)-Cie, ), 1)
2. NX(e,0y- NV (e,0) - C((e,1),1) (X)
3. XX (e, NV (e, -Cie, 1), 1) (NZe-Clie, 1), 1) (NUe. X (Z))).

Here, the latter kind is ‘iterative’, producing infinitely many forms by repeat-
ing the ¢, ), (Ni,.) subroutine. Thus, globally, there are infinitely many dis-

l Cv((e’/t)’t)' *
NS c

INZETS °

W‘

Cen.n ¢ {‘
*
o

v \
A ¢ D(e,t) *

Figure 3.
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tinct possibilities for constructing determiners. (Finitely many constructions will
occur if the above grammar is acyclic, i.e., containing no iterative loops.)

Nevertheless, this global infinity is still ‘locally finite’, a phenomenon
already mentioned in connection with polyadic quantifiers; for all the above
forms are equivalent, in any model, to only a firite number of cases.

The reason is as follows. Any scheme of definition will start with an ini-
tial Ax . ), and then some further term 7 of type ((e,?),¢). Now, if the latter
contains no free occurrences of the variable x, ), then it defines some fixed
object, which also has one parameter ¢, ) , denoting it. Hence, we are in the
above case 1. Next, if the variable x, ,, does occur in 7, then, analyzing the lat-
ter term one step further, we can rewrite the whole scheme of definition as

AX(e,ry NV (e,ty- [(NZ(e,ry-TL2/X]) (X)],

where the subterm Az, ;) .7[z/x] does not contain any free occurrence of the
variable y(., ;. (To see this, check the ‘exit routes’ in the above machine dia-
gram.) Now, this subterm again denotes some fixed object in the ((e,?),?) type
domain, and hence we arrive at the above form 2.

Therefore, the general result becomes this: Terms of the first two kinds
listed above represent the only ways of constructing determiners from objects
in lower types.

This outcome tells us that determiners admit of no nontrivial reductions to lower
types: they are a genuinely new semantic category in the type hierarchy.

Evidently, this is just one of a number of questions about reducibility in
type domains that may be investigated. For instance, can we prove general ‘hier-
archy results’ on definability?
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