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Models for Inconsistent and Incomplete

Differential Calculus

CHRIS MORTENSEN

Abstract In Section 2, a nilpotent ring is defined. In Section 3, nonclassi-
cal model theory is sketched and an incomplete model is defined. In Section
4, it is shown that the elements of equational differential calculus hold in this
model, and a comparison with synthetic differential geometry is made. In
Section 5, an inconsistent theory is defined with many, though not all, of the
same properties.

/ Introduction This paper extends the nonclassical model theory for incon-
sistent first-order equational theories developed in [4], [6], and [7], to the case
of inconsistent equational theories strong enough for a reasonable notion of dif-
ferentiation. The aim is to show that inconsistency does not cripple such an
equational differential calculus. There have been a number of calls recently for
inconsistent calculus, some appealing to the history of the calculus in which
inconsistent claims abound (see, e.g., [9]). However, inconsistent calculus has
resisted development, for at least two reasons. First, the functional structure of
fields interacts with inconsistency to produce triviality in even the purely equa-
tional part of first-order theories with terms of finite length (as pointed out in
[6], [7], and [9]), in a way which standard contradiction-containment devices,
such as weakening ex contradictione quodlibet, do not prevent. Stronger the-
ories, those including set membership, terms of infinite length, order, limits, and
integration are then infected with the same triviality. Second, the functional
structure of inconsistent set theory remains difficult to control, and seems to
require sacrifice of logical principles in addition to, and more natural than, ex
contradictione quodlibet (see, e.g., [2], [5], or [8], pp. 178-180). But unless there
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are distinctive inconsistent theories of the order of strength of classical analysis,
the claim that the history of the calculus supports paraconsistency is seriously
undermined; and furthermore, claims that inconsistent mathematics can generate
substantial new insights are correspondingly weakened.

This paper addresses the former of these two points, by adapting the meth-
ods of [6] and [7], in presenting an inconsistent but nontrivial equational the-
ory of polynomial differentiation. So far, inconsistent methods seem to be useful
mostly in a fairly restricted application, namely treating congruences as literal
identities (inconsistently), in accordance with informal mathematical termino-
logical practice. In Section 2, a congruence on a subset of the classical hyper-
reals gives the functional structure of the domain of the models and is
independently interesting in connection with the classical theory of nilpotent
rings. Section 3 sketches nonclassical model theory. It turns out that the structure
developed in Section 2 is usefully studied in the first instance by modifying
inconsistent model theory using a finite-valued intuitionist logic, since the re-
sulting first-order "intuitionist" equational differential calculus has some similar-
ities with a corresponding fragment of synthetic differential geometry (see [1]
or [3]), particularly in respect of incompleteness, nilpotence, Taylor formulas,
differentiation, and continuity. This is done in Section 4, and the advantages
(in particular, that of simplicity) and limitations of the comparison are outlined.
In Section 5, the same results are then obtained for inconsistent polynomial the-
ory. The limitations of the present approach and some further developments are
outlined in the final section. It is argued on the basis of these results that the
fact that the same functional structure underlies all of the incomplete, incon-
sistent, and classical consistent theories suggests that the functional aspects of
mathematics are more important than squabbles at the sentential level over ex
contradictione guodlibet, inconsistency, incompleteness, etc.

2 A nilpotent ring We begin with the usual arithmetic of the field of hyper-
real numbers R*, with operations +, - , x, /. The sub field of real numbers
is denoted by R. For each nonzero x in R*, the binary relation ~ is defined
by: X\ ~ x2 =def (x\/x) is at most infinitesimally different from (x2/x), (i.e.,
Xγ/x « x2/x, i.e., (Xι - x2)/x is infinitesimal, i.e., (xx - x2)/x ~ 0; see the rela-
tion « δ in [10]). For fixed x this is an equivalence relation on R*, as is easy to
verify. It is not however a congruence. For example, if X\ ~ x2, then if (xι —
x2)/x is infinite with respect to x3, then (xx/x3) ~ {x2/x^) does not in general
hold. However, if x is set equal to an arbitrarily chosen infinitesimal δ, then a
congruence with respect to +, —, x, and an associated ring of equivalence
classes is obtained. Let S be the set of noninfinite hyperreals, i.e., of the form
x + d where x is any real number and d is any infinitesimal, with the additional
property that for some positive integer k, dk ~ 0. Then

Proposition 1 The relation j on S is a congruence with respect to the oper-
ations + , —, x .

Proof: If (xx + dx) j (x2 + d2), i.e. ((*i - x2) + (dx - d2))/b « 0, then
(((*i + *3) ~ (*2 + *3» + ((tfi + di) - (d2 + d3)))/δ « 0, i.e. ((χx + dx) +
(JC3 + d3)) j ((x2 + d2) 4- (*3 + d3)). Also, let dfVδ « 0 and dξVδ « 0. Now
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(dx + d3)
k'+kVδ = I Σ ' [ l + ^Jdt^-idη/δ. But each term * 0, so

the whole sum is. Hence (xx + dx) + (x3 + d3) is in 5, and so (x2 + rf2) +
(x3 4- d3) also obviously is. The subtraction case is the same. For multiplication,
if ((#! - x2) + (rf! - ί/2))/δ « 0, then if x3 is real, then (((JCI - x2) +
(dι - d2)) x (x3 + </3))/δ « 0 also. Hence (*i + dx) x (ΛΓ3 + d3) j (x2 +
^2) x (*3 + ̂ 3)- Now also, (Xγ + dx) x (JC3 + d3) = (xx x x3) + (*i xrf 3) +
(x3 X ί/i) + (d{ X rf3). Clearly, however, 0 ~ (x{ X d3)

kVδ « (x3 X dO^/δ «
(c?! x rf3)

min(/:i^3)/δ. Hence xx x rf3, x 3 x r f b r f i X </3, and Xi x x3 are all in 5,
so their sum is also in 5, as in the proof of the addition case. That is, {xx +
dλ) x (JC3 + d3) is in S; and also obviously (x2 + d2) x (x3 + rf3) is.

Note that the proof of congruence breaks down for the case of division
because (((xι - x2) + (dx - d2))/(x3 + d3))/δ might not be infinitesimal, e.g.,
if x3 = 0 and d3 is infinitesimal with respect to ({xx — x2) + (dx — d2))/δ. It fol-
lows from Proposition 1 that the set of equivalence classes of members of S is
a ring (call it R) with respect to the induced operations +, —, x. Denote the
equivalence class of any element x + dby \x + d\. R has the following prop-
erties:

Proposition 2
(1) For any real numbersxx,x2, \x\\ = \x2\ iff X\ = x2

(2) For any infinitesimals dud2i if\dl\ = \di\ = | 0 | , then \dx\ x \d2\ = 0
(3) For any nonnegative integer k, there is some infinitesimal d with \ dk+ι \ =
|0| while \dk\ Φ | 0 | .

Proof: (1) If xx,x2 are real, then not (xx — x2)/δ « 0 unless xx = x2. (2) Let
d{ = df/δ and d{ = d%/δ. By hypothesis, d{ « 0 « d{. But ^ ^ / δ = (rfi2c/2V
δ 2 ) 1 / 2 = (d{)ι/2(dί)ι/2

9 which is infinitesimal if rff and d^ are. (3) Consider
δ 2 , δ , δ 1 / 2 , δ 1 / 3 , . . . , e t c .

The following lemma is useful for Propositions 3, 4, and 6.

Lemma For any infinitesimal δ and any positive integer k, there is an infin-
itesimal d such that dk+ι/δ is infinitesimal while dk/δ is infinite.

Proo/: Let tf = δ ( * + 1 ) / * ( * + 2 ^ Now tf^^

δ(k2+2k)/(k2+2k) = $l/(k2+2k) _ Q β u t dk/§ = ftk(k+l)/k(k+2)/δ = £{k+l)/(k+2)/

δik+2)/(k+2) = δ-i/(A:+2) = 1/fii/(*+2)> w h i c h i s infinite.

Define Do to be 101, and for all positive integers k, let Dk = {\ d\ : | dk+ι \ =
|0 | while |</*| ^ 0}. Let D be (J Z)^. Then

Vλ:>0

Proposition 3 For «// positive integers k
(1) 77*m? is a\d\ in Dk such that for all \dx \ in D, \dx \ x \dk\ = |0 |
(2) There is a \d\ in Dk and a \dx\ in Dk+2 such that \dx\ x \dk\ Φ | 0 | .

PAΌO/: (1) Let d be δ1/A:. Now dk/δ = 1, not « 0. But rf*+1/δ = l.δ1 / A : « 0.
Hence |rf| is in ZV Moreover, for any infinitesimal dx, dxd

k/δ = dx « 0, so
1^1 x 1^1 = |0 | . (2) Let d be ($

(*+1>/*(*+2> a s in the lemma, and let dx be
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b/dk. Now by the argument of the lemma, \d\ is in Dk. Furthermore, dγ =
b/dk = δ/δ{k+l)/ik+2) = δl/{k+2). SO dϊ+2/b = δ<*+2>/<*+2>/5<*+2)/(*+2) = 1 ?

not - 0; and rff+3/δ = g(A:+3)/(*+2)/0(A:+2)/(*+2) = δi/(*+2) « 0 ; h e n c e dχ i s i n

A t + 2 . Finally, (d{d
k)/δ = 1, not « 0, so |tfi | x |rf*| * | 0 | .

Proposition 2(1) shows that R has a subfield isomorphic to the real num-
bers R; this field of equivalence classes will also be referred to as R where no
confusion results. Now as usual we can write \x\k for \xk\ and drop the | | and
multiplication signs in R where no confusion results. An element d of an
algebra is strictly nilpotent of degree k if dk+ι = 0 while dk Φ 0, and an algebra
is strictly nilpotent of degree k if it has strictly nilpotent elements of degree k.
Proposition 2(3) shows that R is strictly nilpotent of all positive integral degrees.
Proposition 2(2) is relevant to the comparison with synthetic differential geom-
etry in Sections 4 and 5. While all elements of Dk go to zero on being raised to
the k + 1st power and not for any lesser integral power, Proposition 3 shows
that these elements fall into two nonnull classes: those whose A:th power when
multiplied by any nilpotent element goes to zero, and those whose kth power
has a nonzero product with some nilpotent element. This is also relevant to the
results of Section 4.

3 Summary of nonclassical model theory and the construction of an incomplete
model This section sketches basic nonclassical model theory as developed in
[4], [6], and [7], and applies it to the construction of an incomplete theory using
a three-valued intuitionist logic.

A logic will be said to be a complete lattice L together with a filter V C
L, called the designated elements of L. The language <£ considered here consists
of a set of simple terms (names) in 1-1 correspondence with the noninfinite
hyperreal numbers (think of them as naming themselves). Complex terms are
produced by closure with respect to the operations +, - , x . A term is either
a simple term or a complex term. The metalinguistic variables t, tθ9 tx,... range
over terms. If txj2 are terms, then an atomic sentence is of the form t\ = t2-
The language has two sorts of object language variables, each with several sorts
of associated quantifiers: variables x9xθ9xι,... with the four associated quan-
tifiers (V GR),(3 E^),(V Gi?),(3 GR); and variables d,do,du... with the
associated quantifiers (VED),(3ED), and, for each positive integer k, (V E
Dk) and (3 E Dk). The metalinguistic variables v, v0, vu... range over vari-
ables of any sort.

The language also has the sentential operators ->, &, v, -*, and A D B is
defined as -vl v B and A = B as (A D B) & {BDA). (E!X E R) (FX) is defined
as (3x E R)(Fx & (VJC0 E R)(FX0 -• x = x0)). Wffs and sentences are defined
in the usual way.

In this section the logic L is the three element chain (Hasse Diagram):

* <? T True

j N Neither

A F False
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with set of designated elements V = {T}. (Designated elements are starred on
the Hasse Diagram.) An assignment is a function /: (closed sentences of <£) -•
(T,N,F) satisfying:

(1) For any atomic sentence tx = t2, I(tx = t2) E {T,N,F}
(2)I(A & B) = glb(I(A)J(B))9 I(A v B) = lub(I(A)J(B))9 while

I (A -• B) and /(~^A) are given by the table:

-* T N F -.

* T T F F F

N T T F F

F T T T T

(note that L is intuitionist since its (&,v,-ι)-structure is exactly that of
the well-known three-element interior algebra)

(3) For every quantified sentence of the form (WGX)FVJ((VVEX)FV) =
gib [y: for some term t, I(t) is in Xand I(F(t/υ))=y); and for every
sentence of the form (3t> E X)Fυ9 /((3υ E X)Fυ) — lub {y: for some
term t, etc.), where v is any variable and Xis R,R,D or Dk (subject to
proper matching of types).

A sentence A holds in an assignment /, written \-/A9 iff I (A) E V. A set
of sentences holding in an assignment is a theory. If A E Th where Th is a the-
ory, we write \-τh A, dropping the subscript when Th is clear. / and Th are
consistent if for no A is it the case that both K4 and I—\A, and complete if for
all A either \-A or I—\A. I is an assignment with functionality iff for all terms
t\>t2, if tx = t2 holds, then for all atomic sentences Ftx containing tu Ft\ holds
iff Ft2 holds, where Ft2 is like Ftx except that t2 replaces tγ in one or more
places, /is an assignment with identity iff for all terms tx,t2, if tx = t2 holds,
then for all closed sentences Ft{ containing tx, Ftγ holds iff Ft2 holds.

A model is a pair <£),/> where 2) is a domain and / an assignment having
the additional properties that: (1) / assigns to every simple term a member of
3D (2) / assigns to every n-ary functional expression an ft-ary partial function
on 3D; (3) The assignment to complex terms is given by / ( / ( * i , . . . 9tn)) =
I(f)(I(tι), ...,/(*„)), provided that this is defined; (4) /is required to be onto
2), so that every element of the domain is assigned to some term; (5) / satisfies:
tι = t2 holds iff I(tχ) = I(t2). If <£>,/> is a model and / an assignment with
functionality (identity), then <£),/> is a model with functionality (identity).

In this section, we construct a theory by specifying further features of the
assignment function /. The domain 3) is taken to be the nilpotent ring R of
equivalence classes of the previous section. The specifications are as follows: (1)
For every name t, I(t) = \t\; (2) /( + ),/( — ),/(x) are the ring operations on
R induced by the congruence | | this determines the interpretation of all com-
plex terms; (3) Set I(tι = t2)=Ύ iff I(tx) = I(t2), set I(tx = t2) = N if I(tx) Φ

I(t2) but the hyperreal number (tx - t2)/δ is noninfinite, and set I(tx = t2) -
F otherwise. The values of all nonatomic sentences are then determined as above.

We observe that the model just described is a model with identity. (This fol-
lows from the facts: (1) That tx = t2 holds iff I(tx) = I(t2), and hence (2) That
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if tx = t2 holds, then I(F(tx)) = I(F(t2)) for any atomic F, if these are defined.
The latter is then the basis clause of an obvious induction on the lengths of sen-
tences.) Being a model with identity suffices for being a model with function-
ality, and the latter permits calculations by substitution of identicals, whether
or not the background logic is classical. In Section 5, substitutivity of identity
is weakened, but in a controlled way. The model and its associated theory are
intuitionist in another sense, namely that they are incomplete: Since /(δ = 0) =
N, /(-iδ = 0) = F, so that neither hδ = 0 nor I—«δ = 0, although I—ι-ιδ = 0,
hδ2 = 0, and h-πδ1/2 = 0.

Note finally that a wholly classical (two-valued) theory of ]R can be
obtained by a different /: by setting I(tx = t2) = T iff I(tx) = I(t2), and F
otherwise. This also shows that classical two-valued model theory can be recov-
ered as a special case.

4 Incomplete differential calculus, and comparison with synthetic differential
geometry In this section it is shown that Taylor's formula and the poly-
nomial differentiation laws hold in the model. A definition of limits can be
given, and it is proved that every function is continuous. It is shown that the
theory has significant similarities with a corresponding part of synthetic differ-
ential geometry, and the dissimilarities are outlined.

A functional expression (abbreviated to function) is the result of replac-
ing any term or terms in an atomic wff by variables. A function with no remain-
ing terms denoting infinitesimals is called a real function. If / is a function with
a single free variable v of any sort, then we indicate this byf(v). The result of
replacing v throughout by a term t is denoted by f(t). If vx and v2 are variables
of any sort, t h e n / ^ + v2) is the result of replacing v by vx + v2 throughout.
Similarly for - and X. (Elxu... 9xk G R) is defined as (E\xx G R)... (E)xk G
R). Then we have:

Proposition 4 Iff(x) is any real function, then for every positive integer k,

h(vx G R)(E\xu. ..9xke R)(vd G Dk)(f(x + d) =f(x) +Xιd + ... + xkd
k).

Proof: lff(x) is any real function, then by the polynomial laws of R*, for any
term t, I(f(t)) is identical with I(t0 + txt + . . . + tnt

n), where the t( are simple
terms denoting real numbers, since identities are not destroyed in passing from
R* to R. So we may restrict attention to functions of the form t0 + txx 4-... +
tnx

n, where the tt denote real numbers, i.e., where the /(/,-) are in R. We
n

abbreviate these functions by 2 ttx
l. Then for any such/(x) and any term /

from R and any term d with I(d) in some Dk, f(t + d) is t0 + tx (t + d) + . . . +
/„(/ + d)\ So /(/(/ + d)) = I(t0) + d(tx) x (/(/) + I{d))) + . . . etc., where
+ and x are the induced operations on JR. These operations obey the /?* poly-
nomial laws, so we can compute this sum using the binomial expansion. If n <
k, the nilpotence of the element d does not affect this expansion, and (a) be-
low follows by normal arithmetic. If k < n, those terms in the binomial expan-
sion of I(f(t 4- d)) which contain \dk+ι \ as a factor are identical with | 0 | . So
I(f(t + d)) computes to
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Kt0 + txt + t2t
2+.... + tnt") + / ( ( Σ ( I ) ' ' ' ' " 1 ) * )

+ / ((!(ί)" '")4 (α)

Hence, by the assignment conditions for quantifiers

h(Vx E R)(3xl9... ,xk E Λ)(Vrf E Z\) f/(* + rf) =f(x) + Σ jfyrfM .

The next part of the argument (proving uniqueness) uses the postulate
that the /(*,-) are real. We need to conjoin to (a) the following: ( v ^ + 1 , . . . ,

xik e R)((Vrf E Dk)lf(t + d) =f(t) + Σ **+/<*'') - «*i = **+i)

(^ = *2A:))) > where the ί, are a relabelling of the coefficients of (α). Elim-

inating quantifiers to appropriately assigned terms, we need to prove that:

h(Vrf E Dk) lf(t + d) =f(t) + Σ tk+id') ^ &f=i(ί/ = ^+/). (18)

If the consequent takes the value T, then (β) holds by the tables for -•. If the
consequent does not take the value T, then there are two cases: either (i) tk -
hk d ° e s n o t hold or (ii) some other // = tk+i does not hold. If tk = t2k does not
hold, then I(tk) Φ I(t2k). Now, since tk and t2k are real, (tk — tlk)^ is infinite,
so I(tk = t2k) is F. But by the lemma of Section 2, there is some infinitesimal
hyperreal number d such that dk/b is infinite, hence (tk — t2k)dk/b is infinite.
If every other ί, = ίk+i holds, then |ί/| = \tk+i\ and tj = tk+x in /?*. So in /?*,

At + d) - If(t) + Σ'*+/</'") =/(0 + Σ^'" " (/(0 + Σ^+/^) =
\ ι=l / /=1 \ /=1 /

(tk - hk)dk. But the latter is infinite with respect to δ. So in R, I(f(t + d)) Φ

l(f(t) + Σ tk+id1) But also in R*, (f(t + d) - (f(t) + Σ tk+id*\\ b is

infinite. Hence the antecedent of (β) is F, and (β) holds by the table for ->.

Otherwise, if some other tt = tk+\ does not hold, let / be the least integer
for which ί, = tk+i does not hold. Then choosing the same d, in R* f(t + d) -
ί k \
\f(t) + Σ tk+id1] = (ti - tk+i)dι + higher powers of d. But the first term is
\ /= l /

infinite with respect to δ if dk is. So, as for (i), in R I(f(t + d)) Φ l(f(t) +
k \ / / k \ \ /

Σ tk+id1 . But in R* (f(t + d) - lf(t) + I Σ tk+id' I ) /δ is infinite. Hence
ι=l / \ \ι=l / / /

again the antecedent of (β) is F and so (β) holds.
Consider the case where k = 1. Then for any \d\ in Dx and any real ί,

Vf(t + d) =f(t) + txd for some term ^ with 7(^0 in R. A functional expres-
sion g(x) is called # derivative off(x), if for any d in Dx and any f with I(t)
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in R, Vf(t + d)=f(t) + g{t)d. We know independently from real number cal-
culus that there is always at least one derivative for any real function/(x).
If g(x) is a derivative of/(x), we can also denote it by/' (x). Thus for any de-
rivative / ' ( * ) , we have the Taylor formula V f(t + d) = f(t) + d-f'(t), or
h(Vx E R)(vd E Dx)(f(x + rf) = / ( * ) + d f'(x)). Define an Λ-/A degree

polynomial in the indeterminate x to be any functional expression of the form
n

t0 + tγX + . . . + tnx
n, where the f,- are simple terms, that is Σ f/X1.

Proposition 5 (Polynomial Differentiation) If f is any polynomial of the
n

form Σ tjX1 with real coefficients th andf (x) is a derivative off then h( VΛ: E
ι=0

Proof: From the Taylor formula, h (V* e Λ) (/(* + rf) =/(*) + d-f (x)), where
/(rf) is in A Whence /(/(f + d)) = /(/(/)) + (/(d) x Hf'(t))) for any term ί

/ Λ \

with/(OinΛ.But/(/(ί + tf))=/( Σ ί/(ί + rf)Ί As in Proposition4, this com-

*«•""{%'•')+('(I ( ί ) ή Ή + ( ' ( t (;)'.'«) -^»)+
. . . higher powers of d. Since I(d2) = /(J 3 ) = . . . = 0, all products of rf2,rf3,
. . . may be dropped. Thus we have I(f(t + d)) = I(f(t)) + (I(d)I(f'(t)))

and also = /(/(/)) + /(£/)/( Σ I ) ί/*'"1) So, since minus is a congruence,
\ / = 1 \ I / /

I(d)I(ff(t)) = I(d)l( Σ ί J l^ ̂ " 1) B u t s i n c e 7 ( r f ) i s ί n A , and I(t),I(ti)

I n I i\ • \
are in R9 this can happen only if I(ff(t)) = /( Σ I )titl~λ B u t t w a s a r "

\/=i \ 1 / /

bitrarily chosen. Hence H(VJC E /?) \f'{x) = I Σ iUxι~ι I )» a s required.

A definition of two-sided limits can be given. Define Ίim/(jc) = tγ to

mean < ( v d G ΰ ) ( / ( ί + rf) = /1v ( 3 ^ E D)(/(/ + rf) - ^ = c^))'. One-sided
limits can also be defined by introducing the notions of positivity and negativ-
ity for members of D, but that is not done here because of the following prop-
osition. It is also noted that in the above definition of limit the case where not
\-f(t) = t\ does not arise, as the following proposition shows. For any real func-
tion/(x), define in the usual way'/ is continuous at f to mean Ίim f(x) =f(t)\

x-+t

and'/ is continuous' to mean * ( VJC E R) (/ is continuous at x) \ Then

Proposition 6 For every real function f(x)> hf is continuous.

Proof: It has to be proved, for every real term t, that h(W/ E D)(f(t + d) =
f(t) v ( 3 ^ E D)(f(t + d)-f(t) = dγ)). But it follows from Proposition 4 that
h(Vtf E Dk)(f(t + d) =f(t) + tid +...+ tkd

k). If not all the real tt = 0,
then \-f(t + d) -f(t) = txd + . . . + tkd

k. It is obvious that raising the right-
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hand side to power k is not (considered as a hyperreal number) infinitesimal with
respect to δ (since its first term is not), while raising it to power k + 1 is infini-
tesimal with respect to δ (since each term is), so that the right-hand side is in
Dk. Thus h(3rfi e D)(f(t + d) -f(t)=dx). The result follows by disjoining
the alternatives and universal generalization.

Synthetic differential geometry (SDG), as expounded in [3] (see also [1]),
is likewise an incomplete theory (with neither δ = 0 nor -ι<5 = 0 holding). The
theory of [3] has elements which are strictly nilpotent of all degrees, while that
of [1] restricts consideration to D{. Neither proceeds from a construction on the
classical hyperreals, however, nor utilizes a three-valued model theory. In these
theories, also, every function is continuous. The method of obtaining deriva-
tives from the Taylor formula as in Proposition 5 is similar to that of [3], and
is a variant of the usual classical treatment. Like SDG, Propositions 4 and 5 uti-
lize the calculatory advantages of nilpotent elements, since these ensure that
higher-order differentials can ultimately be ignored.

The case where x — 0, k = 1 of Proposition 4 is Axiom' 1 of [3], with the
proviso that R in Proposition 4 be replaced by the whole domain there; the case
where x = 0 is Axiom Γ of [3] with the same proviso. If, however, R were
replaced by R here, then Proposition 4 would fail, as follows. Choose any d\
in Dx and let/ be the function f(x) =df dxx. Then certainly h(3x G R)(Vd G
D\)(f(d) = /(0 + xd))9 the x in question being dx. However, this x is not
unique: for any other d2 in D we have h(W/ G Dx)(dd2 = dd\ = 0) while not
h/i = d2, so that the antecedent of (\/d G Dx)(f(d) =/(0) + d2d) -+dx=d2

holds while the consequent does not hold. Indeed, / could even have a nonin-
finitesimal coefficient, f(x) = (5 + δ)x, say; for then the coefficient fails to be
unique, since h(Vc/ G AH(5 + δ)d = 0 = (5 + 2δ)d) while not h5 + δ = 5 +
2δ. Thus the present theory is a theory of functions with real slopes as in non-
standard analysis, and so is less general than SDG.

The essential difference with the nilpotent elements in SDG is that the Dλ

part of the domain is postulated in SDG to contain elements dx, d2 such that
not Ydxd2 — 0, while in the present model this is not so (Proposition 2(2)).
Correspondingly the SDG cancellation principle, (Vrf G Dγ){dtx = dt2) ->t\ =
t2, fails: for example, when I(tx) = \δ\ and I(t2) = |2δ| the antecedent is T and
the consequent N. However, the cancellation principle holds for cases where the
difference between I(tχ) and I(t2) is infinite with respect to δ if they are differ-
ent at all, as for example V(VX\X2 G R)((vd G Dx)(dxx = dx2) -> xx = x2).

The failure of the law of excluded middle (LEM) is of interest. The account
of [3] links it to the holding of the cancellation principle and the continuity of
every function. However we can see that the failure of LEM in the present paper
is rather independent of the functional part of the construction, since the lat-
ter can also produce a wholly classical model (end of Section 3). The same point
pertains to the inconsistent theory of the next section. This does not show that
the 'correct' description is that of classical two-valued logic, however; to the con-
trary it suggests that functionality is mathematically prior to sentential logic.

SDG in [3] employs the mathematical machinery of Cartesian closed cat-
egories, which is much stronger than that of the present paper, which aims rather
at studying equational theories. On the other hand, there is here some simplicity
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in the presentation of the ideas of incompleteness, nilpotence, differentiability,
limits, continuity, etc., within the model-theoretic framework, albeit a nonclas-
sical one. Furthermore, the present approach permits the investigation of sim-
ilar theories with different background logics (see Sections 5 and 6). Another
point is that while [3] maintains that SDG is an essentially geometric treatment
of analysis, one might argue that it is interesting how much one can get of SDG
with resources merely from model theory and algebraic number theory.

5 Inconsistent differential calculus The background logic is now altered to
the well-known logic RM3.

-• T B F -.

* <? True *T T F F F

* j Both *B T B F B

A False F T T T T

The set of designated elements V = {T,B}. There are a number of op-
tions for the assignment function for the values of atomic sentences. The one
used here illustrates the possibility of controlling substitutivity of identity even
though a full model with identity is absent (another option is mentioned in the
final section): (1) Set I(tx = t2) = T if t\ = t2\ that is, if tut2 are considered
hyperreal numbers; (2) I(tx = t2) = B if tx Φ t2 but I(tx) = I(t2) in R; and (3)
I(tx = t2) = F if I(tx)Φl(t2).

Note that in consequence of (1) and (2), /(δ 2 = 0) Φ T, but rather /(δ 2 =
0) = B and so /(-iδ2 = 0) = B. The theory is thus inconsistent. Again, h(5 +
δ2 = 5) & -1 (5 + δ2 = 5). In consequence of (3), I(δ = 0) = F and /(-iδ = 0) =
T, unlike SDG. Indeed, all theories which are constructed by assigning to the
set of atomic equations values from the above logic in the above fashion are
complete.

The present model is a model with functionality but not with identity.
(Proof of functionality: By inspection tx = t2 holds iff I(tx) = I(t2). But /is a
congruence; so for any term t(tx) containing tx, I(t(tx)) = I(t(t2)). Hence if

M Ί ) = M Ί ) holds, then J ( M Ί ) ) = / ( M Ί ) ) ; so J(M*2» = /(Mfe)), hence
t3(t2) = t4(t2) holds. Proof of nonidentity: hδ2 = 0, but while \—<δ2 = 0, not
h-ιθ = 0 nor I—ιδ2 = δ2.) This means that, on the one hand, calculations may
be carried out utilizing the advantages of hδ2 = 0, as in earlier sections; while
on the other hand, one does not have to submit to I—\t = t for any term t, an
improvement on [4], [6], and [7].

It can be asked how much is lost from a theory if full substitutivity of iden-
tity in all contents is relaxed. This leads to a comparison first with the full + ,
—, x-theory of the nonirifinite hyperreals, and then with the theory of the pre-
vious section. It is shown (i) that every sentence holding in the + , —, x, &, v,
-i, V, 3-theory of the noninfinite hyperreals holds in the present model, and (ii)
that Propositions 4 to 6 may also be reproved utilizing the same calculatory
advantages of nilpotent elements.

(i) is an immediate consequence of the extendability lemma (Proposition
1 of [7]), since the sets of sentences of the forms tx — t2 and ~^tx = t2 holding
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for the noninfinite hyperreals are respectively subsets of those holding in the
present model.

As for (ii) we have:

Proposition 7 Iff(x) is any real function, then for every positive integer k,

h(vx G R){β\xu... ,**)(vd G Dk)(f(x + d) =f(x) +Xιd + ... + xkd
k).

Proof: The proof that I(f(t + d)) computes to (a) as in Proposition 4 is iden-
tical. To prove uniqueness, we need to prove (β). If the consequent of (β) is T,
then (β) holds. And, for real coefficients tj,tk+h one never has I(tj = tk+i) = B.
Hence consider the case where /(ίf = tk+i) = F. Then /(/,-) Φ I(tk+i). But also
(ί/ — tk+i)/δ is an infinite hyperreal number since the numerator is real and
nonzero. Hence, as in Proposition 4, for some d with \d\ in Dk, dι(ti — tk+i)/b
is noninfinitesimal, so I(dιti) Φ I(dιtk+i) and the antecedent is F as required.

n

Proposition 8 Iff is any polynomial of the form 2 ttx
ι with real coeffi-

/=o
/ n \

dents th then h(vx E R)\f'(x) = Σ ty*1"1 .
\ /=i /

Proof: Similar to the proof of Proposition 5.

Proposition 9 For every real function f, Vf is continuous.

Proof: Similar to the proof of Proposition 6.
The ->-free part of this theory is a common inconsistent extension of the

classical theories of (i) the ring of noninfinite infinitesimals of R*9 and (ii) the
nilpotent ring R, which cannot be achieved classically. To repeat an earlier
point, inconsistent calculus is not being recommended as superior or truer,
though its nilpotent elements have some of the calculatory advantages of syn-
thetic differential geometry. The aim is only to demonstrate its existence, and
to lend support to the claim that inconsistent theories are of mathematical in-
terest.

6 Conclusion An inconsistent model with identity can be constructed with
RM3: Set I(tx = t2) = B iff I(tx) = I(t2), and F otherwise, as with the models
of [4], [6], and [7]. This produces hδ2 = 0 & -ιό2 = 0 & -iδ = 0 but not hδ =
0, all as in Section 5; but it also yields Vt = / & -•/ = / for every term t. There
seems to be no reason not to adopt the more sensitive model of Section 5 which
is functional but not with identity.

In following papers, it is proposed to report results on the following related
topics: (1) corresponding inconsistent theories using Brazilian-style paraconsistent
negation, and topological and Routley-* dualizations of these and the theories
of the present paper; (2) order and set membership; (3) integration; (4) incon-
sistent superreals; (5) inconsistent polynomial rings in one or more indeter-
minates.

The congruence ~ and particularly the associated inconsistent theories can
be regarded as yet another approach to the idea of an "infinitesimal microscope"
(see [10] or [11]). A microscope with "resolving power" δ can be said to be a the-
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ory which inconsistently identifies with zero and one another all sizes infinites-
imal with respect to δ. One is unable to distinguish the behavior of quantities
below this "order of infinitesimality" or "order of relative identity". These quan-
tities have all of one another's properties if the theory has substitutivity of iden-
tity, or atomic properties if the theory/model has functionality.

Finally, inconsistent claims about infinitesimals have been around for as
long as calculus. One must always try to see whether these stem from confusion,
or from dim but genuine paraconsistent insights. The only possibility for giv-
ing the second kind of answer lies in the rigorous construction of inconsistent
mathematical theories. Perhaps the present theories satisfy some of the intuitions
of classical analysts; but even if they do not, inconsistent and incomplete math-
ematics needs investigation.
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