A Strengthening of Scott's ZF[≠] Result

STEPHEN POLLARD

Abstract Scott's proof that ZF is not interpretable in ZF-minusextensionality can be transformed into a proof that a theory much weaker than ZF is not interpretable in ZF-minus-extensionality.

In [6], Scott established that ZF is not interpretable in ZF^{\neq} (ZF-minus-Extensionality).¹ In particular, he showed:

Theorem (Scott) $ZF \vdash \exists M(M \models ZF^{\neq}).$

Scott's model is of the form $\langle Q_{\omega+\omega}, \eta_{\omega+\omega} \rangle$, where both $Q_{\omega+\omega}$ and $\eta_{\omega+\omega}$ are subsets of $R(\omega + \omega)(R(\alpha))$ being, as usual, the result of iterating the power set operation up to α). The full strength of the replacement scheme is scarcely tapped here, Replacement being called upon merely to warrant recursive constructions up to $\omega + \omega$. So if we let RPL(α) be the scheme

$$\forall x, y \forall \beta \in \alpha ((\varphi(\beta, x) \land \varphi(\beta, y)) \rightarrow x = y) \rightarrow \exists z \forall x (x \in z \leftrightarrow \exists \beta \in \alpha \varphi(\beta, x))$$

it is easy to establish:

Theorem $Z + RPL(\omega) \vdash \exists M(M \models ZF^{\neq}).$

It follows that $Z + RPL(\omega)$ is not interpretable in ZF^{\neq} . This result is of some interest because $Z + RPL(\omega)$ is considerably weaker than ZF – as the following elementary theorem indicates.

Theorem $ZFC \models \exists M(M \models Z + AC + RPL(\omega)).$

Proof: Let $\epsilon(\alpha) = \{\langle x, y \rangle \in R(\alpha) : x \in y\}$, and $M = \langle R(\omega_1), \epsilon(\omega_1) \rangle$. We need only verify that $M \models RPL(\omega)$. Suppose that

$$\forall x, y \in R(\omega_1) \forall n \in \omega((\varphi^M(n, x) \land \varphi^M(n, y)) \to x = y).$$

Let $f(n) = \alpha$ if and only if $\exists x \in R(\omega_1)(\varphi^M(n,x) \wedge \operatorname{rank}(x) = \alpha)$. f cannot map ω cofinally into ω_1 . So we may pick a $\beta \in \omega_1$ such that $\forall \alpha \in \operatorname{Range}(f), \alpha < \beta$. Then $\{x \in R(\omega_1) : \exists n \in \omega \ \varphi^M(n,x)\} \subset R(\beta) \in R(\omega_1)$.

Received July 24, 1989

STEPHEN POLLARD

It follows that ZFC is not interpretable in $Z + AC + RPL(\omega)$. But then neither is ZF (since ZFC is interpretable in ZF). And, a fortiori, ZF is not interpretable in $Z + RPL(\omega)$. So there is a theory considerably weaker than ZF which is not interpretable in ZF^{\neq} . (Contrast this with the interpretability of Z in Z^{\neq} and with the many interpretability results of this sort given in [3].)

NOTE

1. There have been too few investigations into the role of extensionality in Zermelian set theories (Z, ZF, VNB/GB, Quine-Morse, Montague-Scott, etc.). [1] and [5] are pathbreaking works. Recent studies are [2], [3], and [4]. The current surge of interest in property theories (cf. the references in [7]) could make a deepened understanding of extensionality essential.

REFERENCES

- [1] Gandy, R.O., "On the Axiom of Extensionality, part II," *The Journal of Symbolic Logic*, vol. 24 (1959), pp. 287-300.
- [2] Hinnion, R., "Extensional quotients of structures and applications to the study of the Axiom of Extensionality," *Bulletin de la Société Mathématique de Belgique*, Série B, vol. 33 (1981), pp. 173-206.
- [3] Hinnion, R., "Extensionality in Zermelo-Fraenkel set theory," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 32 (1986), pp. 51-60.
- [4] Pollard, S., "Transfinite recursion in a theory of properties," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 32 (1986), pp. 307-314.
- [5] Robinson, A., "On the independence of the axioms of definiteness," *The Journal* of Symbolic Logic, vol. 4 (1939), pp. 69–72.
- [6] Scott, D., "More on the Axiom of Extensionality," pp. 115-131 in Essays on the Foundations of Mathematics, edited by Y. Bar-Hillel, et al., Hebrew University, Jerusalem, 1966.
- [7] Turner, R., "A theory of properties," *The Journal of Symbolic Logic*, vol. 52 (1987), pp. 455–472.

Division of Social Science Northeast Missouri State University Kirksville, Missouri 63501