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A Strengthening of Scott's ZF* Result

STEPHEN POLLARD

Abstract Scott's proof that ZF is not interpretable in ZF-minus-
extensionality can be transformed into a proof that a theory much weaker
than ZF is not interpretable in ZF-minus-extensionality.

In [6], Scott established that ZF is not interpretable in ZF* (ZF-minus-
Extensionality).1 In particular, he showed:

Theorem (Scott) ZF h 3M(M N ZF*).

Scott's model is of the form (Qω+ω,ηω+ω), where both Qω+ω and ηω+ω are
subsets of R(ω + ω)(R(a) being, as usual, the result of iterating the power set
operation up to α). The full strength of the replacement scheme is scarcely
tapped here, Replacement being called upon merely to warrant recursive con-
structions up to ω + ω. So if we let RPL(α) be the scheme

Vx,yVβ G a((φ(β,x) Λ φ(β9y)) -* x = y) -* 3zVx(x G z <* 3/3 G aφ(β9x))

it is easy to establish:

Theorem Z 4- RPL(ω) h 3M(M (= ZF*).

It follows that Z + RPL(ω) is not interpretable in ZF*. This result is of
some interest because Z -f RPL(ω) is considerably weaker than ZF—as the fol-
lowing elementary theorem indicates.

Theorem ZFC h 3M(M 1= Z + AC + RPL(ω)).

Proof: Lete(α:) = {(x,y) G R(a):x G y}9 and M= <Λ(ωi),e(ωi)>. We need
only verify that M (= RPL(ω). Suppose that

vx,7 G R(ωx)^n G ω((φM(n,x) Λ φM(n,y)) -+x = y).

Let f(n) = a if and only if 3x E R(ωι)(φM(n,x) Λrank(x) = α)./cannot map
ω cofinally into ω!. So we may pick a β G ωi such that Vα G Range(/), a < β.
Then [x G R(o)i) :3n e ω φM(n,x)} C R(β) GRiω^.
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It follows that ZFC is not interpretable in Z + AC + RPL(ω). But then nei-
ther is ZF (since ZFC is interpretable in ZF). And, a fortiori, ZF is not interpret-
able in Z + RPL(ω). So there is a theory considerably weaker than ZF which is
not interpretable in Z F * . (Contrast this with the interpretability of Z in Z * and
with the many interpretability results of this sort given in [3].)

NOTE

1. There have been too few investigations into the role of extensionality in Zermelian
set theories (Z, ZF, VNB/GB, Quine-Morse, Montague-Scott, etc.). [1] and [5] are
pathbreaking works. Recent studies are [2], [3], and [4]. The current surge of inter-
est in property theories (cf. the references in [7]) could make a deepened understand-
ing of extensionality essential.
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