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An Equivalent of the Axiom of Choice in

Finite Models of the Powerset Axiom

ALEXANDER ABIAN and WAEL A. AMIN

Abstract It is shown that in a finite model for the set-theoretical Powerset
axiom every set s has a Choice set iff every set s has a Meet set Πs. Moreover,
the Choice set of s is unique and is equal to Πs, where Πs is a singleton
and Πs E s.

Let (F, E) be a finite model for the set-theoretical Powerset axiom, i.e., in
(F, E) every set has a powerset.

For instance, let us consider the finite model (M, E) whose domain consists
of the three sets a,b,c and where the E-relation is defined by:

(1) a={b], b = {a], c={a,b,c}.

It can be readily verified that (M, E) is a model for the Powerset axiom. In-
deed, we have:

(2)(?(a) = b, (?(b) = a, (?(c) = c

where (P(x) stands for the Powerset of x, i.e., the set of all subsets (needless to
say, which exist in (M,E)) of x.

We verify (2), say, for c. From (1) it follows that each one of the three sets
a,b9c is a subset of c. Moreover, since a9b,c are collected by c, it follows that
c is the set of all the subsets of c in (M, E). Hence (P(c) = c in (M, E).

In [1] it is shown that in a finite model for the Powerset axiom the set-
theoretical Extensionality axiom also holds. Thus, the notions of "uniqueness"
and "equality" used in the above, and the notations introduced in (1) and (2),
are justified.

Also, in [1] it is shown that in a finite model (F, E) of the Powerset axiom,
for every set x and y

(3) x c y iff (? (x) c (p (y)9 and
(4) Every set of (F, E) is a powerset of some set of (F9 E) and thus there is no

empty set in (F9G).
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Let us recall that a set is called disjointed iff no pairwise distinct elements
of it have an element in common. Also, a set c is called a Choice set of a set s,
iff c has one and only one element in common with every element ofs and every
element of c is an element of some element ofs.

Let us consider the following two statements, of which the first is the usual
Axiom of Choice ([2], p. 55).

(ACi) Every disjointed set none of whose elements is the empty set has a
Choice set.

(AC2) Every set none of whose elements is the empty set has a Choice set.

Clearly, (AC2) need not be valid in every model of ZF + A Q , as shown
below.

In a finite model for the Powerset axiom the situation is as follows. As shown
in [1], in any finite model for the Powerset axiom, AQ is automatically valid;
but AC2 need not be valid. Indeed, the finite model (M,G) defined by (1) and
(2) is a model for the Powerset axiom, nevertheless c has no Choice set in the
model (M, e ) . This is because none of the sets {a}, {b}, {a, b, c} can possibly be
a Choice set of the set c = [a,b,c] = {{α},{b},{α,6,c}}. On the other hand, The-
orem 2 below shows that in a finite model for the Powerset axiom if every set
s has a Meet set Πs (i.e., the set of all the common elements of the elements
ofs) then AC2 is valid in that model. Clearly, again this does not hold in every
model of ZF + AQ, even though in the latter every set has a Meet set (we take
Π 0 = 0 ) .

We observe that in a finite model for the Powerset axiom it is not necessarily
the case that every set has a Meet set. For instance, c in the above model (M, G)
has no Meet set.

Lemma 1 Let (F, G) be a finite model for the Powerset axiom. Ifs in (F9 G)
has a Choice set c then c G s. Moreover, c is a singleton and c = Πs.

Proof: As mentioned in (4), since (F, G) has no empty set and since every set in
(F, G) is the powerset of some set, we let

(5) s={su...,sn}=(?(sι).

Now, let c be a Choice set of s. From (5) it follows that every element of s
is a subset of SΊ and therefore, by the definition of a Choice set, c c sλ, which
again by (5) implies that cEs. Again, from (5) it follows that c cannot have more
than one element, since c G s and c is a Choice set of s. Therefore, c is a single-
ton, since (F, G) has no empty set. But then obviously c = Πs.

Corollary In a finite model for the Powerset axiom a set has at most one
Choice set.

Proof: The above Lemma implies that in a finite model for the Powerset axiom
if a Choice set of s exists then it is uniquely determined by x as Πs.

Next, we prove the following rather unexpected inverse of Lemma 1.

Lemma 2 Let (F, G) be a finite model for the Powerset axiom. Ifs in (F, G)
has a Meet set Πs then Πs G s. Moreover, Πs is a singleton and Πs is a Choice
set ofs.
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Proof: As in the proof of Lemma 1, let

(6) s=[su...,sn} = (?(sι).

Now, let the Meet set Πs of s exist in (F, G). Clearly Πs c Sι so that by (6)
we have Πs G (P(SΊ) and therefore Πs G 5*. From this and (6) it follows that

(7) Πs = Sj, for some Sj G s.

But then, just as in the case of s in (6), for st we have

(8) Si=[tl9...9tm] = ( P ( / , ) c s 1 .

We prove that Πs is a singleton by showing that an arbitrary element tj of
Si is equal to tx. Indeed, let tj G s, . But then, by (8), we have

(9) tj^h.

Consequently, by (3), (9), and (8) we have (?(/,-) c ( p ^ ) c s{ which by (6) im-
plies (P(tj) G 5. Thus, Πs QΦ(tj) which, by (7) and (8), implies (P(^) c (?(/,-).
But then by (3) we have ^ c ^ which, in view of (9), implies tj = t\. Thus,
Πs = [tι], i.e., Πs is a singleton, and since Πs G s1 we see that Πs is (by the
above Corollary) the Choice set of s.

From Lemmas 1 and 2, we immediately derive:

Theorem 1 In a finite model for the Powerset axiom, every set has a Choice
set iff every set has a Meet set. Moreover, the Meet set Πs of a set s is such
that Πs G s and Πs is a singleton and is the unique Choice set of s.

Let "The Meetset axiom" stand for the statement "every set has a Meet set".
Then, in view of Theorem 1, we have:

Theorem 2 In a finite model for the Powerset axiom it is the case that the
Axiom of Choice AC2 is valid iff the Meetset axiom is valid.

From the above we see that in finite models for the Powerset axiom the Meet-
set axiom is equivalent to the stronger (than AQ) version AC2 of the Axiom of
Choice.

Below we give two more results concerning finite models for the Powerset
axiom.

Lemma 3 Let (F, G) be a finite model for the Powerset axiom. Let she a set
of (F,E:) with n>2 elements. Then in (F, G) there exists a set with at most
n — 1 > 1 elements.

Proof: As in (5), let s = [sx,..., sn} = (P(s\). Since s has > 2 elements, let sk be
an element of s distinct from S\. Thus, 5*̂  is a proper subset of sx and by (3) we
see that (P (sk) is a proper subset of (P (SΊ ) = s. Clearly, (9 (sk) is an element of
(F,G), and since (S>(sk) is a proper subset of s we see that (P(sk) has at most
n — 1 > 1 elements since there is no empty set in (F, G).

Based on Lemmas 2 and 3, we prove:

Theorem 3 Let (F9G) be a finite model for the Powerset axiom. Then (F, G)
always has a singleton. Moreover, every element of a singleton of (F,E) is it-
self a singleton.
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Proof: Let s be a set of (F, E) with n > 2 elements. By (4) there is no empty set
in (F, G). Therefore, by applying Lemma 3 to s at most n — 1 times, it can be
readily shown that (F, G) has a singleton.

Next, let q = {Λ} be a singleton in (F,E). Obviously, Γ\q = h and therefore,
by Lemma 2, we see that h is a singleton. Thus, every element of a singleton of
(F, G) is itself a singleton, as desired.

REFERENCES

[1] Abian, A. and S. LaMacchia, "Some consequences of the Axiom of Powerset," The
Journal of Symbolic Logic, vol. 30 (1965), pp. 293-294.

[2] Fraenkel, A. A. et al., Foundations of Set Theory, North Holland, Amsterdam,
1984.

Department of Mathematics Department of Mathematics
Iowa State University University of Jordan
Ames, Iowa 50011 Amman, Jordan




