A Generalization of the Adequacy Theorem for the Quasi-Senses

CINZIA BONOTTO

Abstract

In the present paper, based on Bressan's sense language $S L_{\alpha}^{\nu}$, a version of the adequacy theorem for quasi-senses is proved that is applicable in every case, even when $S L_{\alpha}^{\nu}$ collapses into an extensional language. Thus this version affords a new result also for Bressan's modal language $M L^{\nu}$, which is substantially identical to $S L_{1}^{\nu}$. Furthermore, some conditions of the adequacy theorem are weakened: the basic well-formed expressions (wfes) can contain primitive constants. Then we consider a theory T based on $S L_{\alpha}^{v}$, a definition system D, and strong (weak) extensions of T in connection with a semantics for which the senses of the wfes are (are not) preserved by the principles of λ-conversion. The designation rules for quasi-senses are given in a complete form, also for strong theories. In fact, by means of the notion of a T-correspondent of a wfe, every defined constant has a quasisense. Synonymy relations are extended to strong and weak extensions of T. Finally, the previous version of the adequacy theorem is further generalized by making the wfes contain primitive and defined constants, and making the valuations be noninjective on their free variables. By means of this result it is possible to construct quasi-senses for any choice of a synonymy notion.

1 Introduction Many papers have been devoted to sense logic, starting with Church [15] and Carnap [13] and [14]. In [13] Carnap deals with some special modal languages and, at the end, he makes some substantial hints about synonymy and a sense language capable of treating simple (noniterated) belief sentences. Various attempts to construct a rather general and systematic theory of belief sentences were proposed later, e.g. by means of λ-categorial or quotational languages. Among the published papers on this subject we should mention Lewis [19], Cresswell [17] and [18], and Bigelow [2]. In particular, in the aforementioned papers of Cresswell, where the literature and the actual situation connected with the problem are described, several deficiences and limitations of past approaches are clearly presented.

Recently, the results of Church's paper [15] have been generalized (see, e.g.,

Parsons [20]). Furthermore, a first-order theory capable of dealing with belief sentences of any finite order and universal and existential quantifiers is presented in Bealer [1].

The approach to sense in the present paper (see Bonotto-Bressan [9] and Bressan [11]) is based on a very different point of view in which uniformity and generality features are taken into account, and it is, so to speak, purely modal, which does not invalidate the extensionality thesis. Furthermore, we approach sense with a view to dealing explicitly with Church's λ operator, the 1 operator for descriptions, general operators forms, synonymy, and, e.g., belief sentences of transfinite orders.

Senses are tightly connected with the notion of synonymy. This notion has been studied in itself, independently of its relation to senses, in Bonotto-Bressan [6]-[8] and in Bonotto [3] and [4], in connection with an extensional language and a modal one, respectively. The thesis that several natural notions of synonymy can be considered is emphasized in connection with an interpreted theory endowed with a definition system D (see Bonotto [3]). The one studied there substantially affords a positive answer to the question raised in Cresswell (cf. [17], p. 37, fn. 16). Roughly speaking, the principles of λ-conversion preserve the meaning (or the sense) relevant to a synonymy notion presented in Bonotto [3]. However, other answers are also possible here, as was shown in [9].

Bonotto and Bressan in [9] refer to a general interpreted modal calculus, $\mathcal{M C}^{\nu}$, and any interpreted theory (\mathcal{G}, D, I) based on it and endowed with a definition system D. The interpretation I is supposed to be admissible, i.e. a model for D. In connection with such a theory, four particular synonymy notions \simeq_{0}, Ξ_{1}, \coprod_{2}, and Ξ_{3} are introduced first. They are regarded as binary relations among well-formed expressions (wfes) of ($\mathfrak{(}, D$). Let us stress that they are characterized only by means of conditions on the forms of the wfes among which they hold. Among them \nearrow_{0} and \nearrow_{1} are defined, first, only for empty D, because the principles of λ-conversion are not meaning-preserving in connection with them. Therefore they may appear too weak (not extended enough) or too rich in content. On the one hand, \asymp_{0} also has a basic role in treating quasi-senses connected with any other synonymy notion. On the other hand, the definitions of \approx_{0} and \approx_{1} can be extended to a certain theory $\boldsymbol{\sigma}^{*}$ endowed with the definition system D of $\boldsymbol{\mathcal { Z }}$, provided D is of a suitable kind. In order to obtain a unified theory for the various (interesting) synonymy notions, a general rigorous definition of synonymy is introduced in [9]. For any synonymy notion \simeq we have $\simeq_{0} \subset=$; if $=_{2} \subset=$, then $=$ is said to be weak.

In [9] we introduced suitable quasi-senses to represent the senses connected with any choice of $=$, and assigned them to the wfes of (\mathcal{G}, D, I). These quasisenses, to be denoted by ${ }^{=} Q S s$, are constructed (for $\simeq=\simeq_{0}$) as suitable equivalence classes of ${ }^{=}$QSs. The ${ }^{=}$QSs (and the corresponding senses) are (fail to be) preserved by the principles of λ-conversion when the defining conditions of \simeq_{2} hold (when \simeq is \simeq_{0} or \coprod_{1}).

For every choice of \simeq the quasi-senses have to fulfill certain natural adequacy requirements. Among them are the following:

Theorem 1.1. If Δ and Φ are constant free wfes, while V and W are ostensive v-valuations that are injective on the variables free in Δ and Φ, respectively,
then Δ has (with respect to V) the same quasi-sense as Φ (with respect to W) iff $\Phi(\Delta)$ can (briefly) be obtained from $\Delta(\Phi)$ by replacing the variables free in $\Delta(\Phi)$ with those free in $\Phi(\Delta)$ suitably rearranged.

In [9], Theorem 1.1 is proved only for an effectively modal language. In fact, in its proof, the following assumption was used:
(a) The class Γ of the elementary possible cases is infinite.

On the basis of [9], MC^{ν} has been extended into the interpreted sense calculus $\mathcal{S C}_{\alpha}^{\nu}$ (where α is a possibly transfinite ordinal) capable of dealing with belief sentences whose iteration orders may be transfinite.

The logical symbols of the language $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$, on which $\mathcal{S} \mathcal{C}_{\alpha}^{\nu}$ is based, include \sim, $\supset, \square, \forall,=$,$\urcorner (for descriptions), and Church's primitive lambda \lambda^{p}$; the other symbols are the variables $v_{t n}^{\beta}$ and constants $c_{t \mu}^{\beta}$, where the (sense) order β can take any value $<\alpha$ (where α is a possibly uncountable ordinal, $t \in \tau^{\nu}$ and the index μ may be transfinite, unlike n).

Any semantics to be considered for $S \mathscr{L}_{\alpha}^{\nu}$ on the basis of [9] must involve senses, hence it must be based on a synonymy relation $ニ$. The corresponding interpreted language can be denoted by $=\delta \mathscr{L}_{\alpha}^{\nu}$. In [15], only $=_{0}$ is discussed; therefore, the index $=_{0}$ was dropped, and we shall also drop it here. After presenting the formation rules for $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ in Section 2 and some useful definitions and conventions in Section 3, we present the main features of the semantical structure for $S \mathscr{L}_{\alpha}^{\nu}$ in Section 4.

Every wfe Δ of order β has a hyper-quasi-intension (hyper-quasi-extension) of order $\leq \beta$ which represents its hyper-intension (hyper-extension). In addition, Δ has a quasi-sense of order $\leq \beta$, which represents its sense.

Intuitively, every hyper-quasi-intension is a function from Γ into a set of hyper-quasi-extensions. Hyper-quasi-extensions are constructed in the usual type-theoretical fashion except that, in case a hyper-quasi-extension is a function, its domain is formed with hyper-quasi-intensions and quasi-senses. A relevant feature of this construction is that the quasi-senses must have an order lower than that of the function involved.

The entities assignable to variables and constants of order β are quasiintensions of order β or quasi-senses of order $<\beta$.

Since expressions may contain both constants and variables, quasi-senses are relative to a valuation of the constants and variables. Roughly speaking, the senses of variables and constants are their valuations, whereas the quasi-sense of a compound expression Δ is a sequence $\left\langle\chi, x_{1}, \ldots, x_{n}\right\rangle$ where χ is a marker depending on the form of Δ and x_{1}, \ldots, x_{n} are senses (of the components of Δ) or functions (depending on the senses of the components of Δ).

The quasi-senses - to be defined by conditions (s_{1-10}) in Section $4-$ have to fulfill certain natural adequacy requirements. In particular, an analogue of Theorem 1.1 must hold.

In the present paper, a version of Theorem 1.1 for $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ is presented which is applicable in every case, and hence also when $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ collapses into an extensional language, since assumption (a) is not used. Thus it affords a new result also in connection with $\mathcal{M} \mathfrak{L}^{\nu}$, which is substantially identical to $\delta \mathscr{L}_{1}^{\nu}$.

Furthermore, some conditions of the theorem are weakened. In fact, The-
orem 1.1 is extended to cases in which the wfes Δ and Φ contain primitive constants, which involves some obvious changes in the proof (see Section 5).

Then in the present paper we consider a theory \mathfrak{Z} based on $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ and a definition system D (see Section 6). It is useful to consider strong (weak) extensions of \mathfrak{Z} in connection with a semantics for which the senses of wfes are [are not] preserved by the principles of λ-conversion.

In Section 7 the designation rules for quasi-senses, given in [11] for weak theories, are given in a complete form for strong theories. In fact, by means of the notion of T-correspondent of a well-formed expression (see Section 7) every defined constant also has a quasi-sense.

Furthermore, the relations from \asymp_{0} to \nearrow_{3}, introduced in [9] for theories based on $\mathcal{M C}^{\nu}$, are rigorously extended to strong and weak extensions of $\mathfrak{\mathcal { G }}$ in Section 6.

Then by means of some notions introduced in Section 7, Theorem 1.1 can be further generalized. In Section 8, Theorem 1.1 is shown to hold even when Δ and Φ contain some primitive and some defined constants, and in case V and W can be noninjective on their free variables.

Now the adequacy requirement is proved and it is possible to construct quasisenses in connection with any choice of synonymy notion. They are introduced as suitable equivalence classes of quasi-senses ${ }^{=0} Q S$. This treatment and further results are left for future papers.

2 The sense language $\boldsymbol{S}_{\boldsymbol{\alpha}}^{\nu}$ of order α : Formation rules \quad Let α be any ordinal number, possibly uncountable. The sense language $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ of (sense) order α is based on the type system τ^{ν}, which is the smallest set τ^{ν} such that
(i) $\{0,1, \ldots, \nu\} \subset \tau^{\nu}$ and
(ii) if $n \in N_{*}\left(=_{D} N-\{0\}\right)$ and $t_{0}, \ldots, t_{n} \in \tau^{\nu}$, then the $n+1$ tuple $\left\langle t_{1}\right.$, $\left.\ldots, t_{n}, t_{0}\right\rangle \in \tau^{\nu}$.

We say that 0 is the sentence type (because of the use made of it), 1 to ν are individual types, and $\left\langle t_{1}, \ldots, t_{n}, t_{0}\right\rangle$, with $t_{0}, \ldots, t_{n} \in \tau^{\nu}$ and $t_{0}=0\left[t_{0} \neq 0\right]$, is a relation (function) type. We also set

$$
\left\{\begin{array}{l}
\left(t_{1}, \ldots, t_{n}\right)={ }_{D}\left\langle t_{1}, \ldots, t_{n}, 0\right\rangle, \tag{2.1}\\
\left(t_{1}, \ldots, t_{n}: t_{0}\right)={ }_{D}\left\langle t_{1}, \ldots, t_{n}, t_{0}\right\rangle \text { if } t_{0}, \ldots, t_{n} \in \tau^{\nu} \text { and } t_{0} \neq 0 .
\end{array}\right.
$$

For $t_{0}, \ldots, t_{n}, \theta, \varphi \in \tau^{\nu}$ and $n \in N_{*}$, we define the operator type

$$
\begin{equation*}
\left(t_{1}, \ldots, t_{n} ; \theta, \varphi\right)={ }_{D}\left\langle\left\langle t_{1}, \ldots, t_{n}, \theta\right\rangle, \varphi\right\rangle . \tag{2.2}
\end{equation*}
$$

The symbols of $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ are the following logical symbols: comma, left and right parentheses, the connectives \sim and $\supset, \square, \forall,=$ (for contingent identity), \imath (for descriptions), and λ^{P} (primitive Church's lambda); plus the variables $v_{t n}^{\beta}$ and constants $c_{t \mu}^{\beta}$, of order β, type t, and index n or $\mu\left(\beta<\alpha, t \in \tau^{\nu}, n \in N_{*}\right.$, and $0<\mu<\alpha+\omega_{0}$ where ω_{0} is the first infinite ordinal).

If A is an expression of $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$, i.e. a finite sequence of symbols of $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$, then the largest among the orders of the constants and variables occurring in A will be called its (sense) order and will be briefly denoted by $A^{o r d}$.

The class E_{t} of the wfes of $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ of type $t\left(\in \tau^{\nu}\right)$ is defined recursively by conditions (f_{1}) to (f_{10}) below, regarded as holding for $n \in N_{*}$ and t, $t_{0}, \ldots, t_{n,}, \varphi \in \tau^{\nu}$:
$\left(\mathrm{f}_{1}\right) \quad c_{t \mu}^{\beta}, v_{t n}^{\beta} \in E_{t}$ for $\beta<\alpha$ and $0<\mu<\alpha+\omega_{0}$.
(f f_{2} If $\Delta_{i} \in E_{t_{i}}(i=1, \ldots, n)$ and $\Delta \in E_{\left\langle t_{1}, \ldots, t_{n}, t\right\rangle}$, then $\Delta\left(\Delta_{1}, \ldots, \Delta_{n}\right) \in E_{t}$.
(f f_{3} If $\Omega \in E_{t}$ with $t=\left(t_{1}, \ldots, t_{n} ; \theta, \varphi\right), x_{1}$ to x_{n} are n (distinct) variables, $x_{i} \in E_{t_{i}}(i=1, \ldots, n)$, and $\Delta \in E_{\theta}$, then $\left(\Omega x_{1}, \ldots, x_{n}\right) \Delta \in E_{\varphi}$.
(f_{4-8}) If $p, q \in E_{0}$, then $\sim p, p \supset q, \square p,\left(\forall v_{t n}^{\beta}\right) p \in E_{0}$ and $\left(v_{t n}^{\beta}\right) p \in E_{t}$.
(f9) If $\Delta_{1}, \Delta_{2} \in E_{t}$, then $\Delta_{1}=\Delta_{2} \in E_{0}$.
$\left(\mathrm{f}_{10}\right)$ If $\Delta \in E_{t}$ and x_{1} to x_{n} are n variables with $x_{i} \in E_{t_{i}}(i=1, \ldots, n)$, then $\left(\lambda^{p} x_{1}, \ldots, x_{n}\right) \Delta \in E_{\left\langle t_{1}, \ldots, t_{n}, t\right\rangle}$.

$$
\begin{equation*}
\text { If } A^{<\beta}={ }_{D} \bigcup_{\delta<\beta} A^{\delta}, A^{\leq \beta}={ }_{D} \bigcup_{\delta \leq \beta} A^{\delta}, A^{\nless \beta}={ }_{D} A^{\beta}-A^{<\beta}\left(A^{<0}=\varnothing\right) \tag{2.3}
\end{equation*}
$$

For $t \in \tau^{\nu}$ we also set

$$
\begin{equation*}
E_{t}^{\beta}={ }_{D}\left\{\Delta \in E_{t} \mid \Delta^{o r d} \leq \beta\right\} ; \quad \mathrm{wfe}^{\beta}={ }_{D} \bigcup_{t \in \tau^{\nu}} E_{t}^{\beta \nless}, \tag{2.4}
\end{equation*}
$$

so that the $\mathrm{wfe}^{\beta} \mathrm{s}$ are the wfes of order β.
By identifying the variables $v_{t n}$ and the constants $c_{t n}$ of the modal language $\mathrm{M} \mathcal{L}^{\nu}$ considered in [9] with $v_{t n}^{0}$ and $c_{t n}^{0}$, respectively, $(n \in N)$ the wfes of $\mathcal{M} \mathcal{L}^{\nu}$ turn out to be those of $S \mathscr{L}_{\alpha}^{\nu}$ in which only symbols of $\mathcal{M} \mathfrak{L}^{\nu}$ occur.
$\wedge, \vee, \equiv,(\exists x)$, and \diamond would be introduced in the usual (metalinguistic) ways.

3 Some conventions and metalinguistic definitions

Convention 3.1 By $x, y, z, x_{1}, \ldots, p, q, r, p_{1}, \ldots$, and $\Delta, \Delta_{1}, \ldots$, will be denoted arbitrary variables, wffs, and wfes (of $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$), respectively. By x^{β}, \ldots, $\Delta^{\beta}, \Delta_{1}^{\beta}, \ldots$ we will denote wfe^{β} s of the respective kinds above.

Definition 3.1 We say that Δ is an equivalent of Φ if Δ and Φ are wfes and Δ can be obtained from Φ by a series of steps which consist of alphabetic changes of bound variables.

Convention 3.2 If (i) Δ is a wfe, (ii) u_{1} to u_{a} are constants or variables, and $u_{i}, \Delta_{i} \in E_{t_{i}}$ with $t_{i} \in \tau^{\nu}(i=1, \ldots, b)$, then $\Delta\left(u_{i} / \Delta_{i}\right)_{b}$, as well as $\Delta\left[u_{1}, \ldots\right.$, $u_{b} / \Delta_{1}, \ldots, \Delta_{b}$], denotes the result of substituting Δ_{1} to Δ_{b} simultaneously for u_{1} to u_{b} respectively (at the free occurrences) in a certain equivalent Δ^{\prime} of Δ such that Δ_{i} is free for u_{i} in Δ^{\prime} for $i=1, \ldots, b$ (the precise description of this equivalent would be of no interest for what follows).

Convention 3.3 If x_{1} to x_{b} are b variables and a wfe Δ is denoted by $\Phi\left(x_{1}\right.$, $\left.\ldots, x_{b}\right)$, then $\Phi\left(\Delta_{1}, \ldots, \Delta_{b}\right)$ denotes $\Delta\left(x_{i} / \Delta_{i}\right)_{b}$.

The synonymy relation $=$ and the nonexisting object of type t can be defined within $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ itself metalinguistically:

$$
\begin{equation*}
\Delta_{1}=\Delta_{2} \equiv_{D}(F) F\left(\Delta_{1}\right)=F\left(\Delta_{2}\right), \text { with } F^{\text {ord }}=1+\max \left\{\Delta_{1}^{\text {ord }}, \Delta_{2}^{\text {ord }}\right\} \tag{3.1}
\end{equation*}
$$

where $\Delta_{1}, \Delta_{2} \in E_{t}^{\beta}$ and F is the first variable of type (t) that satisfies (3.1) and is nonfree in Δ_{1} and Δ_{2}.

$$
\begin{equation*}
a^{*}={ }_{D} a_{t}^{*}={ }_{D}\left(v_{t 1}\right) v_{t 1} \neq v_{t 1} \tag{3.2}
\end{equation*}
$$

By rule (f_{9}) in Section 2, = can be applied also to wffs, as a substitute for equivalence (and a_{0}^{*} will turn out to be equivalent to $\left.(x) x \neq x\right)$. Hence definition (3.1) applies also to wffs; and definitions of the relational and functional Church's (nonprimitive) λ-operators become the following:

$$
\begin{align*}
& \left(\lambda x_{1}, \ldots, x_{n}\right) \Delta \equiv_{D}(\vartheta f) \cdot\left(\forall x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) \tag{3.3}\\
& \quad=\Delta \wedge\left(\forall y_{1}, \ldots, y_{n}\right) \\
& \sim\left(\exists x_{1}, \ldots, x_{n}\right) \bigwedge_{i=1}^{n} x_{i}=y_{i} \supset f\left(y_{1}, \ldots, y_{n}\right)=a^{*}
\end{align*}
$$

where (i) $\Delta \in E_{t}^{\beta}$, (ii) x_{1} to x_{n} are n variables of the respective types t_{1} to t_{n} and arbitrary orders, (iii) f is the first variable of type $\left\langle t_{1}, \ldots, t_{n}, t_{0}\right\rangle$ and nonfree in Δ, such that

$$
\begin{equation*}
f^{o r d}=\max \left\{\Delta^{o r d}, x_{1}^{o r d}, \ldots, x_{n}^{o r d}\right\} \tag{3.4}
\end{equation*}
$$

and (iv) y_{1} to y_{n} are the first n variables different from x_{1} to x_{n}, of the same order as f, and of the respective types t_{1} to t_{n}.

4 The semantical structure for $\boldsymbol{S}_{\alpha}^{\nu} \quad$ The structure for the semantics for $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ is based on $\nu+2$ sets $D_{0}, D_{1}, \ldots, D_{\nu}, \Gamma$. For them we require that $D_{0}=$ $\{\mathrm{T}, \mathrm{F}\}$ and D_{1} to D_{ν} contain at least two elements, one of which is F .

Intuitively, every hyper-quasi-intension is a function from Γ into a set of hyper quasi-extensions. Hyper-quasi-extensions are constructed in the usual type-theoretical way except that, in case a hyper-quasi-extension is a function, its domain is formed with hyper-quasi-intensions and quasi-senses. A relevant feature of the construction is that the quasi-senses must have orders lower than that of the function.

For every $t \in \tau^{\nu}$ and $\beta<\alpha$, in the semantical structure we have a set $H Q E_{t}^{\beta}$ of hyper-quasi-extensions, a set $H Q I_{t}^{\beta}$ of hyper-quasi-intensions and a set A_{t}^{β} of entities assignable to variables $v_{t n}^{\beta}$ and constants $c_{t \mu}^{\beta}$.

These sets are defined by induction on the order β and, for any given β, by induction on the complexity of t.

The general construction rules are R_{1} to R_{4} below, where, for any pair of sets X and $Y, X \rightarrow Y$ denotes the set of all functions from X into Y and $X \leftrightarrow Y$ denotes the set of all functions from a subset of X into Y.
$\left(\mathrm{R}_{1}\right) H Q E_{r}^{\beta}=D_{r}$ for $r \in\{0,1, \ldots, \nu\}$
$\left(\mathrm{R}_{2}\right) H Q I_{t}^{\beta}=\left(\Gamma \rightarrow H Q E_{t}^{\beta}\right)$, for $t \in \tau^{\nu}$
$\left(\mathrm{R}_{3}\right) A_{t}^{\beta}=H Q I_{t}^{\beta} \cup Q S_{t}^{<\beta} Q \varepsilon_{t}^{\beta}=H Q E_{t}^{\beta}-\{F\}$ for $t \in \tau^{\nu}$
$\left(\mathrm{R}_{4}\right) H Q E_{\left\langle t_{1}, \ldots, t_{0}, t_{n}\right\rangle}^{\beta}=\left(A_{t_{1}}^{\beta} \times \cdots \times A_{t_{n}}^{\beta} \xi Q \mathcal{E}_{t_{0}}^{\beta}\right) \cup\{F\}$ for $t_{0}, t_{1}, \ldots, t_{n} \in$ τ^{ν}.

Of course, as they stand, these rules provide only the initial step of the construction; they also require the definition of $Q S_{t}^{\beta}$, given A_{t}^{β} for $t \in \tau^{\nu}$.

Note that $A_{t}^{0}=H Q I_{t}^{0}$, which can be substantially identified with $Q I_{t}$ as defined in [9].

The set $Q S_{t}^{\beta}$ is defined as the set of the quasi-senses of expressions of type t and order $\leq \beta$. Since expressions may contain free variables and constants, quasi-senses are relative to a valuation of the variables and constants. Let V^{β} be the set of the v-valuations of order β, that is, $V \in V^{\beta}$ iff V is a function defined on all variables of order $\delta \leq \beta$ and

$$
\begin{equation*}
V\left(v_{t n}^{\delta}\right) \in A_{t}^{\delta} \quad\left(\text { where } t \in \tau^{\nu}, n \in N_{*}\right) \tag{4.1}
\end{equation*}
$$

Similarly, the set of the c-valuations of order β will be denoted by I^{β}. The elements of I^{β} are defined in the obvious way; in particular, for every $I \in I^{\beta}$ and every $\delta \leq \beta$,

$$
\begin{equation*}
I\left(c_{t \mu}^{\delta}\right) \in A_{t}^{\delta} \quad\left(\text { where } t \in \tau^{\nu}, 0<\mu<\alpha+\omega_{0}\right) \tag{4.2}
\end{equation*}
$$

Roughly speaking, the quasi-senses of variables and constants are their valuations, whereas the quasi-sense of a compound expression Δ is a sequence $\left\langle\chi, x_{1}, \ldots, x_{n}\right\rangle$ where χ is a marker depending on the form of Δ and x_{1}, \ldots, x_{n} are senses (of the components of Δ) or functions (depending on the senses of the components of Δ).

The quasi-sense of the expression Δ, under the v-valuation V and c-valuation I, will be denoted by $\operatorname{sens}_{I V} \Delta$. It is defined by (s_{1-10}) below, where the following convention will be used.

Convention 4.1 For $X=\left\{v_{t_{1}}^{\delta}, \ldots, v_{t_{n}}^{\delta}\right\}$ we shall denote by $g(\Delta, X, V, I)$ the function $\left\{\left\langle\xi_{1}, \ldots, \xi_{n}, \sigma\right\rangle: \xi_{i} \in A_{t_{i}}^{\delta_{i}}, \sigma \neq I_{F}\right.$ and $\sigma=\operatorname{sens}_{I V^{\prime}} \Delta$, where $V^{\prime}=$ $\left.V\binom{v_{t_{1}}^{\delta}, \ldots, v_{t_{n}}^{\delta}}{\xi_{1}, \ldots, \xi_{n}}\right\}$.

Rule	If Δ is	then $\breve{\Delta}=\operatorname{sens}_{I V} \Delta$ is
(s_{1})	$v_{t n}^{\delta}$ or $c_{t \mu}^{\delta}$	$V\left(v_{t n}^{\delta}\right)$ or $I\left(c_{t \mu}^{\delta}\right)$, respectively.
$\left(s_{2}\right)$	$\Delta_{0}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$	$\left\langle\Delta_{0}^{\text {ord }}, \breve{\Delta}_{0}, \breve{\Delta}_{1}, \ldots, \bar{\Delta}_{n}\right\rangle$.
$\left(s_{3}\right)$	$\left(\Omega x_{1}, \ldots, x_{n}\right) \Delta^{\prime}$	$\left\langle\Omega^{\text {ord }}, \widetilde{\Omega}, g\left(\Delta,\left\{x_{1}, \ldots, x_{n}\right\}, V, I\right)\right\rangle$.
$\left(\mathrm{s}_{4-6}\right)$	$\begin{aligned} & \sim \Delta_{1}, \Delta_{1} \supset \Delta_{2}, \square \Delta_{1} \\ & \quad\left(t_{1}=t_{2}=0\right) \end{aligned}$	$\langle\sim, \check{\Delta}\rangle,\left\langle\supset, \check{\Delta}_{1}, \breve{\Delta}_{2}\right\rangle,\left\langle\square, \check{\Delta}_{1}\right\rangle$.
(s_{7-8})	$(\forall x) \Delta^{\prime},(1 x) \Delta^{\prime}\left(t^{\prime}=0\right)$	$\left\langle\forall, g\left(\Delta^{\prime},\{x\}, V, I\right)\right\rangle,\left\langle 1, g\left(\Delta^{\prime},\{x\}, V, I\right)\right\rangle$.
(S_{9})	$\Delta_{1}=\Delta_{2}\left(t_{1}=t_{2}\right)$	$\left\langle=, \Delta_{1}, \Delta_{2}\right\rangle$.
(s_{10})	$\left(\lambda^{p} x_{1}, \ldots, x_{n}\right) \Delta^{\prime}$	$\left\langle\lambda^{p}, g\left(\Delta^{\prime},\left\{x_{1}, \ldots, x_{n}\right\}, V, I\right)\right\rangle$.

Now let us define the class $Q S_{t}^{\beta}$ for $t \in \tau^{\nu}$ and $\beta<\alpha$ by

$$
\begin{equation*}
Q S_{t}^{\beta}={ }_{D}\left\{\operatorname{sens}_{I V} \Delta \mid V \in V^{\beta}, \Delta \in E_{t}^{\beta}\right\} \tag{4.3}
\end{equation*}
$$

The function $V(\mathrm{I})$ defined on the variables (constants) of $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ will be said to be a v-valuation (c-valuation) relative to Γ and D_{1} to D_{ν} if it satisfies the first (second) of the relations

$$
\begin{equation*}
V\left(v_{t n}^{\beta}\right) \in A_{t}^{\beta}, \quad I\left(c_{t \mu}^{\beta}\right) \in A_{t}^{\beta} \tag{4.4}
\end{equation*}
$$

(where $t \in \tau^{\nu}, n \in N_{*}, 0<\mu<\alpha+\omega_{0}$ and $\beta<\alpha$).

The v-valuations (c-valuations) assigning a hyper-quasi-intension to every variable (constant) will be called ostensive v-valuations (c-valuations).

The designation rules, which assign hyper-quasi-intensions to wfes of $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$, are not relevant to this paper. A detailed presentation of these rules can be found in [11].

5 An adequacy theorem A theory \mathcal{G} is said to be based on $\mathcal{S} \mathcal{L}_{\alpha}^{\nu}$ if its symbols are those of $\mathfrak{S} \mathscr{L}_{\alpha}^{\nu}$, except for some (perhaps all) constants. The constants of \mathcal{Z} are regarded as primitive. Furthermore, if Δ is a wfe of \mathcal{Z}, the primitive constants and free variables occurring in Δ will be referred to as elementary expressions of Δ.

Now we can prove the following:
Theorem 5.1 Assume that: (i) Δ and Φ are wfes of \mathfrak{Z} defined constants free and of type t; (ii) I is an ostensive c-valuation, V and W are ostensive c valuations, and the set-theoretical unions $I \cup V$ and $I \cup W$ are injective functions ${ }^{1}$ on the elementary expressions of Δ and Φ respectively; (iii) $\operatorname{sens}_{I V} \Delta=$ sens $_{I W} \Phi$; and (iv) u_{1} to u_{a} is a bijective list formed with the elementary expressions of $\Delta(a \geq 0)$. Then (a) Δ and Φ have the same length, and (b) we can arrange the elementary expressions of Φ in the list w_{1}, \ldots, w_{a} and choose equivalents (see Convention 3.1) Δ^{\prime}, Φ^{\prime} of Δ and Φ, respectively, for which (see Convention 3.2)

$$
\begin{align*}
\Delta^{\prime}=\Phi\left(w_{i} / u_{i}\right)_{a}\left(\text { or } \Phi^{\prime}=\right. & \left.\Delta\left(u_{i} / w_{i}\right)_{a}\right),(I \cup V)\left(u_{i}\right)=(I \cup W)\left(w_{i}\right) \tag{5.1}\\
& (i=1, \ldots, a)
\end{align*}
$$

Proof: Note that the existence of Φ^{\prime} satisfying the second part of (5.1) is a straightforward consequence of the existence of Δ^{\prime} satisfying the first part of (5.1).

By conditions (s_{1-10}) in Section 4 and assumption (iii), Δ and Φ have the same length, say ℓ.

We use induction on ℓ : Assume $\ell=1$; then Δ and Φ are elementary expressions. By (s_{1}) in Section 4 and assumption (iii), $I \cup V(\Delta)=I \cup W(\Phi)$. By (iv), $u_{1}=\Delta$, and hence (5.1) holds for $w_{1}=\Phi$ and $\Delta^{\prime}=\Delta\left(\Phi^{\prime}=\Phi\right)$. This concludes the initial step.

Now assume $\ell>1$ and let the thesis hold for $\bar{\ell}<\ell$. We consider only the cases $\Delta=\Delta_{0}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ and $\Delta=\left(\Omega_{\Delta} x_{1}, \ldots, x_{n}\right) \Delta_{0}$. The other cases can be proved in a similar way.

Let

$$
\begin{equation*}
\Delta=\Delta_{0}\left(\Delta_{1}, \ldots, \Delta_{n}\right) \tag{5.2}
\end{equation*}
$$

A trivial consequence of (iii) is that

$$
\begin{equation*}
\Phi=\Phi_{0}\left(\Phi_{1}, \ldots, \Phi_{n}\right) \tag{5.3}
\end{equation*}
$$

and by (s_{2}) in Section 4

$$
\begin{equation*}
\left\langle\Delta_{0}^{\text {ord }}, \text { sens }_{I V} \Delta_{0}, \ldots, \text { sens }_{I V} \Delta_{n}\right\rangle=\left\langle\Phi_{0}^{\text {ord }}, \text { sens }_{I W} \Phi_{0}, \ldots, \text { sens }_{I W} \Phi_{n}\right\rangle \tag{5.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta_{0}^{\text {ord }}=\Phi_{0}^{\text {ord }} \quad \text { and } \quad \operatorname{sens}_{I V} \Delta_{\kappa}=\operatorname{sens}_{I W} \Phi_{\kappa} \quad(\text { where } \kappa=0, \ldots, n) . \tag{5.5}
\end{equation*}
$$

For $\kappa=0, \ldots, n$, the lengths of Δ_{κ} and Φ_{κ} are less than ℓ and conditions (i) to (iv) hold for Δ_{κ} and Φ_{κ} (since, in this case, the elementary expressions of Δ_{κ} are also elementary expressions of Δ, and similarly for Φ_{κ} and Φ).

Hence by the inductive hypothesis we can choose an equivalent Δ_{κ}^{\prime} of Δ_{κ} and arrange the elementary expressions in Φ_{κ} into the list w_{1}^{κ} to $w_{m_{\kappa}}^{\kappa}$ in such a way that

$$
\begin{gather*}
\Delta_{\kappa}^{\prime}=\Phi_{\kappa}\left(w_{i}^{\kappa} / u_{i}^{\kappa}\right)_{m_{\kappa}}, \quad I \cup V\left(u_{i}^{\kappa}\right)=I \cup W\left(w_{i}^{\kappa}\right) \tag{5.6}\\
\left(\text { where } i=1, \ldots, m_{k}\right)
\end{gather*}
$$

where u_{1}^{κ} to $u_{m_{\kappa}}^{\kappa}$ are the elementary expressions of Δ_{κ}.
The conclusion above holds for $\kappa=0, \ldots, n$. Furthermore, the elementary expressions u_{i}^{k} and w_{i}^{k} (where $i=1, \ldots, m_{k}, \kappa=0, \ldots, n$) are the elementary expressions in Δ_{κ} and Φ_{κ}, respectively. Hence, by (iv), the former are u_{1} to u_{a}. Furthermore, by the injectivity property of $I \cup W$, for $i=1, \ldots, a$ there is exactly one elementary expression w_{j}^{k} that satisfies the second part of condition (5.6) for $u_{j}^{\kappa}=u_{i}$. We identify w_{i} with this w_{j}^{κ}. The correspondence $u_{i} \rightarrow w_{i}(i=1, \ldots, a)$ thus obtained between the elementary expressions of Δ and those of Φ is one-toone and surjective. Hence, $(5.6)_{2}$ implies $(5.1)_{3}$.

Now we set $\Delta^{\prime}=\Delta_{0}^{\prime}\left(\Delta_{1}, \ldots, \Delta_{n}^{\prime}\right)$. By (5.2), Δ^{\prime} is an equivalent of Δ. Hence (5.6) ${ }_{1}$, true for $\kappa=0, \ldots, n$, implies (5.1) $)_{1}$. We can conclude that the thesis holds in this case.

Now let

$$
\begin{equation*}
\Delta=\left(\Omega_{\Delta} x_{1}, \ldots, x_{n}\right) \Delta_{0} \tag{5.7}
\end{equation*}
$$

By (iii),

$$
\begin{equation*}
\Phi=\left(\Omega_{\Phi} y_{1}, \ldots, y_{n}\right) \Phi_{0} \tag{5.8}
\end{equation*}
$$

and the lengths of Δ_{0} and Φ_{0} are less than ℓ.
By (s_{3}) in Section 4,

$$
\begin{align*}
\left\langle\Omega_{\Delta}^{\text {ord }}, \operatorname{sens}_{I V} \Omega_{\Delta},\right. & \left.g\left(\Delta_{0},\left\{x_{1}, \ldots, x_{n}\right\}, V, I\right)\right\rangle= \tag{5.9}\\
& \left\langle\Omega_{\Phi}^{\text {ord }}, \operatorname{sens}_{I W} \Omega_{\Phi}, g\left(\Phi_{0},\left\{y_{1}, \ldots, y_{n}\right\}, W, I\right)\right\rangle
\end{align*}
$$

(see Convention 4.1). Then we have

$$
\begin{equation*}
g\left(\Delta_{0},\left\{x_{1}, \ldots, x_{n}\right\}, V, I\right)=g\left(\Phi_{0},\left\{y_{1}, \ldots, y_{n}\right\}, W, I\right) .^{2} \tag{5.10}
\end{equation*}
$$

By Convention 4.1 and rules $\left(\mathrm{s}_{1-10}\right)$ we have for $\xi_{i} \in A_{t_{i}}^{\delta_{i}}$ (where $i=$ $1, \ldots, n$),

$$
\begin{equation*}
\operatorname{sens}_{I V^{\prime}} \Delta_{0}=\operatorname{sens}_{I W^{\prime}} \Phi_{0} \tag{5.11}
\end{equation*}
$$

where

$$
V^{\prime}=V\binom{x_{1} \ldots x_{n}}{\xi_{1} \ldots \xi_{n}} \quad \text { and } \quad W^{\prime}=W\binom{y_{1} \ldots y_{n}}{\xi_{1} \ldots \xi_{n}} .
$$

Conditions (i), (iii), and (iv) hold for Δ_{0} and Φ_{0}. With a view to dealing with (ii) we choose the n-tuple ξ_{1}, \ldots, ξ_{1} in such a way that, if s_{1} to s_{p} are the elementary expressions of Φ_{0}, different from y_{1} to y_{n}, then

$$
\begin{equation*}
\xi_{1}=(I \cup W)\left(s_{1}\right) \tag{5.12}
\end{equation*}
$$

By (5.11) we have

$$
\begin{equation*}
\operatorname{sens}_{I V^{\prime}} \Delta_{0}=\operatorname{sens}_{I W^{\prime}} \Phi_{0} \tag{5.13}
\end{equation*}
$$

where

$$
V^{\prime}=V\binom{x_{1} \ldots x_{n}}{\xi_{1} \ldots \xi_{1}} \quad \text { and } \quad W^{\prime}=W\binom{y_{1} \ldots y_{n}}{\xi_{1} \ldots \xi_{1}}
$$

We note that V^{\prime} and W^{\prime} are ostensive c-valuations. Furthermore, we prove easily from (5.11) that the variables among x_{1} to x_{n}, which are free in Δ_{0}, are as many as those, among y_{1} to y_{n}, which are free in Φ_{0}. By (5.13) there exists one d_{k} among d_{1}, \ldots, d_{q} (which are the elementary expressions of Δ_{0} different from x_{1} to x_{n}) such that $\xi_{1}=\operatorname{IUV}\left(d_{k}\right)$. This can be proved by induction on the length of Δ_{0} (by using reductio ad absurdum also). We consider now the list $d_{1}, \ldots, d_{q}, d_{q+1}, \ldots, d_{q+m}\left(s_{1}, \ldots, s_{p}, s_{p+1}, \ldots, s_{p+m}\right)$ where the m variables $d_{q+1}, \ldots, d_{q+m}\left(s_{p+1}, \ldots, s_{p+m}\right)$ are those, among x_{1} to $x_{n}\left(y_{1}\right.$ to $\left.y_{n}\right)$, which are free in $\Delta_{0}\left(\Phi_{0}\right)$. We set

$$
\begin{align*}
& \bar{\Delta}_{0}=\Delta_{0}\left(d_{q+1}, \ldots, d_{q+m} / d_{k}, \ldots, d_{k}\right), \tag{5.14}\\
& \bar{\Phi}_{0}=\Phi_{0}\left(s_{p+1}, \ldots, s_{p+m} / s_{1}, \ldots, s_{1}\right)
\end{align*}
$$

We can easily prove the following:
Lemma 5.1 Assume that u_{1} to $u_{a}\left(t_{1}\right.$ to t_{a}) is a bijective (possibly nonbijective) list of the elementary expressions occurring in the wfe Ψ and that V and W are c-valuations; then

$$
\begin{gather*}
\Psi^{\prime}=\Psi\left(u_{i} / t_{i}\right)_{a}, \quad(I \cup V)\left(u_{i}\right)=(I \cup W)\left(t_{i}\right) \tag{5.15}\\
(\text { where } i=1, \ldots, a) \Rightarrow \operatorname{sens}_{I V}(\Psi)=\operatorname{sens}_{I W}\left(\Psi^{\prime}\right)
\end{gather*}
$$

By Lemma 5.1 we have

$$
\begin{equation*}
\operatorname{sens}_{I V^{\prime}}, \bar{\Delta}_{0}=\operatorname{sens}_{I V^{\prime}} \Delta_{0}, \quad \operatorname{sens}_{I W^{\prime}}, \bar{\Phi}_{0}=\operatorname{sens}_{I W^{\prime}} \Phi_{0} \tag{5.16}
\end{equation*}
$$

hence by (5.13) and (5.16) we have

$$
\begin{equation*}
\operatorname{sens}_{I V}, \bar{\Delta}_{0}=\operatorname{sens}_{I W^{\prime}}, \bar{\Phi}_{0} \tag{5.17}
\end{equation*}
$$

We conclude that conditions (i) to (iv) hold for $\bar{\Delta}_{0}, \bar{\Phi}_{0}, V^{\prime}$, and W^{\prime}. Then by the inductive hypothesis (the length to $\bar{\Delta}_{0}$ is obviously less than ℓ) the thesis also holds for these entities.

Hence we can arrange the elementary expressions of $\bar{\Phi}_{0}$ into a list φ_{1} to φ_{q} and can choose an equivalent $\bar{\Delta}_{0}^{\prime}$ of $\bar{\Delta}_{0}$ for which

$$
\begin{equation*}
\bar{\Delta}_{0}^{\prime}=\bar{\Phi}_{0}\left(\varphi_{i} / d_{i}\right), \quad I \cup V\left(d_{i}\right)=I \cup W\left(\varphi_{i}\right) \quad(\text { where } i=1, \ldots, q) \tag{5.18}
\end{equation*}
$$

Then, for $i=1, \ldots, q, d_{i}$ and φ_{i} are the elementary expressions of Δ_{0} and Φ_{0}, respectively, different from x_{i} and y_{i} (where $i=1, \ldots, n$).

By (5.9), we also have

$$
\begin{equation*}
\operatorname{sens}_{I V} \Omega_{\Delta}=\operatorname{sens}_{I W} \Omega_{\Phi} \tag{5.19}
\end{equation*}
$$

The lengths of Ω_{Δ} and Ω_{Φ} are less than ℓ and conditions (i) to (iv) hold for Ω_{Δ} and Ω_{Φ} (since, in this case, the elementary expressions of Ω_{Δ} are also elementary expressions of Δ, and similarly for Ω_{Φ} and Φ).

Hence we can arrange the elementary expressions of Ω_{Φ} into a list ω_{1} to ω_{r} and can choose an equivalent Ω_{Δ}^{\prime} of Ω_{Δ} for which

$$
\begin{equation*}
\Omega_{\Delta}^{\prime}=\Omega_{\Phi}\left(\omega_{i} / \delta_{i}\right), \quad I \cup V\left(\delta_{i}\right)=I \cup W\left(\omega_{i}\right) \quad(\text { where } i=1, \ldots, r) \tag{5.20}
\end{equation*}
$$

where δ_{1} to δ_{r} are the elementary expressions of Ω_{Δ}.
Hence the elementary expressions δ_{1} to δ_{r} and d_{1} to d_{q} are those of Δ. Hence, by (iv), they are u_{1} to u_{a}. Furthermore, by the injectivity properties of $I \cup W$, for $i=1, \ldots, a$, there is exactly one elementary expression of Φ that satisfies condition (5.18) $)_{2}$ or $(5.20)_{2}$ for u_{i} in δ_{1} to δ_{r} or in d_{1} to d_{q}. We denote this elementary expression by w_{i}. The correspondence $u_{i} \rightarrow w_{i}$ (where $i=1, \ldots, a$) thus obtained between the elementary expressions in Δ and those in Φ is a bijection. Hence $(5.18)_{2}$ and $(5.20)_{2}$ imply (5.1) $)_{3}$.

Now it is clear that by (5.7), (5.8), $(5.18)_{1},(5.20)_{1}$, and the metalinguistic definition

$$
\begin{equation*}
\Delta^{\prime}=\left(\left[\Omega_{\Phi} y_{1} \ldots y_{n}\right] \Phi_{0}\right)\left(w_{i} / u_{i}\right)_{a} \tag{5.21}
\end{equation*}
$$

Δ^{\prime} is an equivalent of Δ.
We conclude that the theorem holds also in this case.

6 Admissible definitions; strong and weak extensions of a theory; the syn-

 onymies from \simeq_{0} to \simeq_{3} We define recursively the class $A D_{t}^{n}$ of admissible definienda of type t and degree $n\left(t \in \tau^{\nu}, n \in N_{*}\right)$ by conditions (a) to (c) below (see [3]).(a) $c_{t \mu} \in A D_{t}^{0}$.
(b) If $\Delta \in A D_{\left\langle t_{1}, \ldots, t_{m}, t\right\rangle}^{n}$ and x_{1} to x_{m} are m variables (of suitable types) distinct from those occurring in Δ, then $\Delta\left(x_{1}, \ldots, x_{m}\right) \in A D_{t}^{n+1}$.
(c) If $\Omega \in A D_{\left(t_{1}, \ldots, t_{m} ; \theta, \varphi\right)}^{n}$ and x_{0} to x_{m} are $m+1$ variables (of suitable types) not occurring in Ω, then $\left(\Omega x_{1}, \ldots, x_{m}\right) x_{0}\left(x_{1}, \ldots, x_{m}\right) \in A D_{\varphi}^{n+1}$.

By induction one can easily prove the assertions
(d) If $\Delta \in A D_{t}^{n}$, then only one constant occurs in Δ and only once, and
(e) If $\Delta \in A D_{t}^{n} \cap A D_{t}^{m}$, then $n=m$.

Then n can be called the degree of the admissible definiendum Δ. The class of admissible definienda of type t is defined by

$$
\begin{equation*}
A D_{t}=\bigcup_{n \in N} A D_{t}^{n} \quad\left(\text { where } t \in \tau^{\nu}\right) \tag{6.1}
\end{equation*}
$$

Now c._sume that: (i) $\Delta \in A D_{t}^{n}$ for some $t \in \tau^{\nu}$ and $n \in N$; (ii) K is a class of constants different from the one, c_{r}, occurring in Δ; (iii) $\Delta^{\prime} \in E_{t}$; (iv) the con-
stants occurring in Δ^{\prime} are in K; and (v) the free variables in Δ^{\prime} are free also in Δ. Then we say that (α) the wff

$$
\begin{equation*}
\Delta=\Delta^{\prime} \quad \text { (equivalent to } \Delta \equiv \Delta^{\prime} \text { for } t=0 \text {) } \tag{6.2}
\end{equation*}
$$

is an admissible definition of c_{r} in terms of the constants in $K,(\beta)$ its degree is $n,(\gamma) \Delta$ is its definiendum, and (δ) Δ^{\prime} is its definiens.

By use of Church's lambda operator, the degree of many admissible definienda can be lowered in the following sense. If the relations

$$
\begin{equation*}
\Delta \in A D_{\left\langle t_{1}, \ldots, t_{m}, t\right\rangle}^{n}, \Omega \in A D_{\left(t_{1}, \ldots, t_{m} ; \theta, \varphi\right)}^{n} \tag{6.3}
\end{equation*}
$$

hold, then by means of a suitable choice of Δ and x_{0} to x_{m}, the wffs

$$
\begin{equation*}
\Delta\left(x_{1}, \ldots, x_{m}\right)=\Delta^{\prime},\left(\Omega x_{1}, \ldots, x_{m}\right) x_{0}\left(x_{1}, \ldots, x_{m}\right)=\Delta^{\prime}, \tag{6.4}
\end{equation*}
$$

are admissible definitions of degree $n+1$. As a consequence, the equalities

$$
\begin{equation*}
\Delta=\left(x_{1}, \ldots, x_{m}\right) \Delta^{\prime}, \Omega=\left(\lambda x_{0}\right) \Delta^{\prime}, \tag{6.5}
\end{equation*}
$$

are admissible definitions of degree n, to be called directly associated with (6.4) ${ }_{1}$ and $(6.4)_{2}$ respectively. This relation generates an equivalence relation R. If two definitions are related by R, we say that they are associated.

Following [3], we give the following definition:
Definition 6.1 The wfes $\Delta\left(x_{1}, \ldots, x_{n}\right)$ and $\Phi\left(y_{1}, \ldots, y_{n}\right)$, briefly Δ and Φ, will be said to be $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$-similar if for $i=1$ to n, x_{i} and y_{i} are n variables of the same order and $\Delta\left(v_{1}, \ldots, v_{n}\right)$ is equivalent to $\Phi\left(v_{1}, \ldots, v_{n}\right)$ whenever v_{1}, \ldots, v_{n} are variables which do not occur in Δ or Φ.

Let \mathfrak{G} be any theory based on $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$. In connection with $\mathfrak{\zeta}$ the synonymy \simeq_{0} [\simeq_{1}] can be defined recursively as the smallest equivalence relation among wfes of \mathfrak{Z} that satisfies conditions $\left(\mathrm{C}_{1-2}\right)\left(\left(\mathrm{C}_{1-4}\right)\right)$ below in the (binary) relation \approx.
$\left(\mathrm{C}_{1}\right)$ If $\Delta=\Delta^{\prime}$ and $\Delta_{i}=\Delta_{i}^{\prime}($ where $i=1, \ldots, n)$,
then $\Delta\left(\Delta_{1}, \ldots, \Delta_{n}\right)=\Delta^{\prime}\left(\Delta_{1}^{\prime}, \ldots, \Delta_{n}^{\prime}\right)$ where $\Delta, \Delta^{\prime} \in E_{\left\langle t_{1}, \ldots, t_{n}, t\right\rangle}$ and Δ_{i}, $\Delta_{i}^{\prime} \in E_{t_{i}}$ (where $i=1, \ldots, n$).
$\left(\mathrm{C}_{2}\right)$ If $\Delta=\Delta^{\prime}, \Omega=\Omega^{\prime}$ and Δ^{\prime} and $\Delta^{\prime \prime}$ are $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$-similar (see Definition 6.1), then $\left(\Omega x_{1}, \ldots, x_{n}\right) \Delta=\left(\Omega y_{1}, \ldots, y_{n}\right) \Delta^{\prime \prime}$, where $\Delta, \Delta^{\prime}, \Delta^{\prime \prime} \in E_{\theta}$ and $\left.\Omega, \Omega^{\prime} \in E_{\left(t_{1}, \ldots, t_{n} ; \theta, \varphi\right.}\right) .{ }^{3}$
$\left(\mathrm{C}_{3}\right)\left(\Omega x_{1}, \ldots, x_{n}\right) \Delta=\Omega\left[\left(\lambda x_{1}, \ldots, x_{n}\right) \Delta\right]$, where $\Delta \in E_{\theta}$ and $\Omega \in E_{\left(t_{1}, \ldots, t_{n} ; \theta, \varphi\right)}$. (C4) $\left(\lambda x_{1}, \ldots, x_{n}\right) \Delta=\left(\lambda^{p} x_{1}, \ldots, x_{n}\right) \Delta$, where $\Delta \in E_{\theta}$.

Now let χ be a countable (possible tranfinite) ordinal and let $\left\{c_{\varphi}\right\}_{\varphi<\chi}$ be an injective sequence of constants that do not belong to $\mathfrak{\sigma}$. For every $\varphi<\chi$, let D_{φ} be an admissible definition of c_{φ} in terms of the constants c_{ψ} with $\psi<\varphi$ and the constants belonging to $\mathfrak{\zeta}-\mathrm{i} . \mathrm{e}$., the primitive constants of $\mathfrak{\zeta}$.

The weak and strong extensions of

$$
\begin{equation*}
\mathfrak{Z}^{w}=(\mathfrak{G}, D)_{w}, \mathfrak{\sigma}^{s}=(\mathfrak{G}, D)_{s} \quad\left(\text { where } D=\left\{D_{\varphi}\right\}_{\varphi<\chi}, D_{\varphi} \equiv_{D} \Delta_{\varphi}=\Delta_{\varphi}^{\prime}\right) \tag{6.6}
\end{equation*}
$$

have the symbols of \mathcal{Z} added (only) with the constants $c_{\varphi}(\varphi<\chi)$. The wfes of $\boldsymbol{\mathcal { G }}^{s}$ are those of $\boldsymbol{\mathcal { Z }}$ formed with symbols of $\boldsymbol{\mathcal { Z }}^{s}$, while the wfes of $\boldsymbol{\mathcal { G }}^{w}$ are obtained (roughly speaking) from those of \mathcal{Z} and the definienda $\Delta_{\varphi}(\varphi<\chi)$ by substitu-
tion of some among these wfes, or some among already constructed wfes, for some variables free in a wfe of the same kind. ${ }^{4}$

Considering $\boldsymbol{\mathcal { G }}^{\boldsymbol{s}}\left(\mathfrak{G}^{w}\right)$ is useful in connection with a semantics for which the senses of wfes are (are not) preserved by the principles of λ-conversion. Note that theory $\boldsymbol{\mathcal { G }}^{w}$, unlike $\boldsymbol{\mathcal { Z }}^{s}$, generally fails to be based on $\mathcal{S} \mathcal{L}_{\alpha}^{\nu}$, but it is a proper part of such a theory.

Now in connection with $\boldsymbol{\sigma}^{s}$ we define the synonymy relation $\coprod_{2}\left(\coprod_{3}\right)$ as the smallest equivalence relation between wfes of $\boldsymbol{\mathcal { G }}^{s}$ that satisfies both conditions $\left(\mathrm{C}_{1-4}\right)$ above and $\left(\mathrm{C}_{5-7}\right)\left(\left(\mathrm{C}_{5-8}\right)\right)$ below in the relation $=$.
$\left(\mathrm{C}_{5}\right) \Delta_{\varphi}=\Delta_{\varphi}^{\prime}(\varphi<\chi)$.
(C6) $\Delta=\left(\lambda^{p} x_{1}, \ldots, x_{n}\right)\left(\Delta\left[x_{1}, \ldots, x_{n}\right]\right)$, where $\Delta \in E_{\left\langle t_{1}, \ldots, t_{n}, t\right\rangle}$.
$\left(\mathrm{C}_{7}\right)\left(\left[\lambda^{p} x_{1}, \ldots, x_{n}\right] \Phi\right)\left(\Delta_{1}, \ldots, \Delta_{n}\right)=\Phi\left(x_{i} / \Delta_{i}\right)_{n}$ where $\Phi \in E_{t}$.
$\left(\mathrm{C}_{8}\right) p \wedge q=q \wedge p$ for all wffs p and q.
In connection with $\boldsymbol{\sigma}^{w}$ the synonymy relation $\nearrow_{0}\left(\nearrow_{1}\right)$ can be defined by means of conditions (C_{1-2}) ($\left(\mathrm{C}_{1-4}\right)$) above and the following:
$\left(\mathrm{C}_{5^{\prime}}\right)$ If $\Delta_{i}=\Delta_{i}^{\prime}($ where $i=1, \ldots, n)$, then $\Delta_{\varphi}\left(x_{i} / \Delta_{i}\right)_{n}=\Delta_{\varphi}^{\prime}\left(x_{i} / \Delta_{i}\right)_{n}$.

7 Semiotic and semantic preliminaries One could say that the ($\nu+2$)-tuple $\mathbf{I}=\left\langle D_{1}, \ldots, D_{\nu}, \Gamma, I\right\rangle$ where I is a c-valuation relative to Γ and D_{1} to D_{ν} (see (4.4)) is an interpretation for $\delta \mathscr{L}_{\alpha}^{\nu}$, and the v-valuations relative to Γ and D_{1} to D_{ν} are I-valuations.

We consider v-valuated wfes of $\boldsymbol{\mathcal { Z }}^{s}$ (or, more precisely, I-valuated wfes) defined as couples $\langle\Delta, V\rangle$ where Δ is a wfe of $\boldsymbol{\mathcal { G }}^{s}$ and V is an I-valuation.

We now introduce some notations that will be useful in what follows.
Definition $7.1 \quad$ (a) Let $\zeta=\langle\Delta, V\rangle$ be an I-valuated wfe of $\boldsymbol{\mathcal { G }}^{s}$, whose elementary expressions can be arranged in the (bijective) list u_{1} to u_{a}. Furthermore, let v_{i} be u_{i} if, for no variable $v_{t n}$ free in Δ, we have

$$
\begin{equation*}
V\left(v_{t n}\right)=(V \cup I)\left(u_{i}\right) \tag{7.1}
\end{equation*}
$$

(so that u_{i} is a constant); otherwise, let v_{i} be the $v_{t n}$ that satisfies (7.1), with the least n. Then we denote v_{i} by $u_{i}(\Delta, V)$ and we say that the (possibly nonbijective) sequence $\left\langle v_{1}, \ldots, v_{a}\right\rangle$ is the Δ - V-reduction of $\left\langle u_{1}, \ldots, u_{a}\right\rangle$. Furthermore, let $\zeta^{V}=\left\langle\Delta^{V}, V\right\rangle$, where

$$
\begin{equation*}
\Delta^{V}=\Delta\left(u_{i} / v_{i}\right)_{a}=\Delta\left[u_{1}, \ldots, u_{a} / v_{1}, \ldots, v_{a}\right] \tag{7.2}
\end{equation*}
$$

Then we say that (b) Δ^{V} is the V-reduction of Δ, and (c) ζ^{V} is the V-reduction of ζ.

Now: for any wfe $\boldsymbol{\sigma}^{s}$ of Δ and I-valuation V, (i) the function $I \cup V$ is injective on the elementary expressions of Δ^{V}, (ii) $\left(\Delta^{V}\right)^{V}=\Delta^{V}$, (iii) V is injective on the variables free in Δ iff $\Delta=\Delta^{V}$, in case no primitive constants occur in Δ.

For every definition D_{φ} in D of $\boldsymbol{\mathcal { G }}^{s}$, let $c_{\varphi}=\bar{\Delta}_{\varphi}$ be the associate definition of degree zero (see Section 6). By transfinite induction we now define $\bar{\Delta}_{\varphi}^{T}$ for $\varphi<\chi$.

$$
\begin{equation*}
\bar{\Delta}_{0}^{T}=\bar{\Delta}_{0}, \bar{\Delta}_{\varphi}^{T}=\bar{\Delta}_{\varphi}\left(c_{\psi_{i}} / \bar{\Delta}_{\psi_{i}}^{T}\right)_{\mu} \tag{7.3}
\end{equation*}
$$

where ψ_{1} to ψ_{μ} are the μ values of $\psi(<\chi)$ with which c_{ψ} occurs in Δ_{φ}, and hence in $\bar{\Delta}_{\varphi}$.

Furthermore, if Δ is a wfe of $\boldsymbol{\mathcal { G }}^{s}$, we set

$$
\begin{equation*}
\Delta^{T}=\Delta\left(c_{\varphi_{i}} / \bar{\Delta}_{\varphi_{i}}^{T}\right)_{\mu} \tag{7.4}
\end{equation*}
$$

φ_{1} to φ_{μ} being the μ values of $\varphi(<\chi)$ with which c_{φ} occurs in Δ, and we say that Δ is the T-correspondent of Δ.

In connection with any admissible interpretation I for $\boldsymbol{\mathcal { G }}^{s}$, i.e. an interpretation for $\mathcal{S} \mathscr{L}_{\alpha}^{\nu}$ that satisfies the definition $D_{\varphi}(\varphi<\chi)$ of \mathcal{Z}^{s}, and any I-valuation V, the quasi-sense of any wfe Δ of theory $\boldsymbol{\mho}^{s}$ (briefly: sens $s_{I V} \Delta$) is defined by simultaneous recursion on the type t of Δ, by means of rules (s_{2-10}) and rules (s_{1}) and s_{1}^{\prime}) below:
$\left(\mathrm{s}_{1}\right)$ if Δ has the form $v_{t n}$ or $c_{t \mu}$, where $c_{t \mu}$ is a primitive constant, then $\operatorname{sens}_{I V}(\Delta)$ is $V\left(v_{t n}\right)$ or $I\left(c_{t \mu}\right)$, respectively,
(s_{1}^{\prime}) if Δ is a defined constant, then $\operatorname{sens}_{I V}(\Delta)$ is $\operatorname{sens}_{\mathrm{IV}}\left(\Delta^{T}\right)$.

8 A strong version of the adequacy theorem Theorem 8.1 below is an adequacy theorem stronger than Theorem 5.1, since it does not involve the assumptions that $I \cup V$ and $I \cup W$ are injective and that no defined constant occurs in Δ and Φ.

Theorem 8.1 Assume that (i) Δ and Φ are wfes of \mathcal{Z}^{s} of type t, (ii) $\mathbf{I}=$ $\left\langle D_{1}, \ldots, D_{\nu}, \Gamma, I\right\rangle$ is an admissible interpretation for \mathcal{G}^{s}, where \mathbf{I} is an ostensive c-valuation, and V and W are ostensive I-valuations, (iii) sens $s_{I V} \Delta=\operatorname{sens}_{I W} \Phi$, (iv) u_{1} to u_{a} is a bijective list formed with the elementary expressions of $\Delta^{T V}(a \geq 0)$. Then (a) $\Delta^{T V}$ and $\Phi^{T W}$ have the same length, and (b) we can arrange the elementary expressions of $\Phi^{T W}$ in the list w_{1} to w_{a} and can choose equivalents $\Delta^{\prime}, \Phi^{\prime}$ of $\Delta^{T V}$ and $\Phi^{T W}$ for which (see Convention 3.2)

$$
\begin{gather*}
\Delta^{\prime}=\Phi^{T V}\left(w_{i} / u_{i}\right) \quad\left(\text { or } \Phi^{\prime}=\Delta^{T W}\left(u_{i} / w_{i}\right)_{a}\right) \quad I \cup V\left(u_{i}\right)=I \cup V\left(w_{i}\right) \tag{8.1}\\
(\text { where } i=1, \ldots, a)
\end{gather*}
$$

Proof: By induction on the length of Δ, we can prove that

$$
\begin{equation*}
\operatorname{sens}_{I V} \Delta=\operatorname{sens}_{I V} \Delta^{T} \quad \text { and } \quad \operatorname{sens}_{I W} \Phi=\operatorname{sens}_{I W} \Phi^{T} \tag{8.2}
\end{equation*}
$$

and by Lemma 5.1 in Section 5, we have

$$
\begin{equation*}
\operatorname{sens}_{I V} \Delta^{T}=\operatorname{sens}_{I V} \Delta^{T V} \text { and } \operatorname{sens}_{I W} \Phi^{T}=\operatorname{sens}_{I W} \Phi^{T W} \tag{8.3}
\end{equation*}
$$

Then by (8.2), (8.3), and assumption (iii), we have

$$
\begin{equation*}
\operatorname{sens}_{I V} \Delta^{T V}=\operatorname{sens}_{I W} \Phi^{T W} \tag{8.4}
\end{equation*}
$$

Furthermore, all hypotheses of Theorem 5.1 hold for $\Delta^{T V}$ and $\Phi^{T W}$; hence, so does the thesis.

NOTES

1. By $I \cup V$ we denote the function obtained as a set-theoretical union of the function I and V which have disjoint domains.
2. Obviously, for $i=1, \ldots, n, x_{i}$ has the same order and type as y_{i}.
3. In particular, y_{i} and x_{i} (where $i=1, \ldots, n$) can coincide as well as Δ^{\prime} and $\Delta^{\prime \prime}$.
4. For a more precise description, see [9], Section 20.

REFERENCES

[1] Bealer, G., Quality and Concept, Clarendon Press, Oxford, 1982.
[2] Bigelow, J. C. "Semantics of thinking, speaking and translation," in Meaning and Translation: Philosophical and Linguistic Approaches, M. Guenthner-Reutter and M. Guenthner, eds., Duckworth, London, 1978.
[3] Bonotto, C., "Synonymy for Bressan's modal calculus MC". Part I: A synonymy relation for MC"," Atti Ist. Veneto di Scienze Lettere ed Arti, Tomo CXL, 1982, pp. 11-24.
[4] Bonotto, C., "Synonymy for Bressan's modal calculus MC". Part II: A sufficient criterium for non-synonymy. Senses and a necessary and sufficient condition for synonymy," Atti Ist. Veneto di Scienze Lettere ed Arti, Tomo CXL, 1982, pp. 85-99.
[5] Bonotto, C., "An adequateness theorem for the quasi-senses used in certain theories which are extensional, modal, or strongly intensional," Atti Ist. Veneto di Scienze Lettere ed Arti, Tomo CXLVII, 1989, pp. 31-39.
[6] Bonotto, C. and Bressan, A., "On a synonymy relation for extensional $1^{\text {st }}$ order theories. Part I: A notion of synonymy," Rendiconti del Seminario Matematico Università di Padova, 69, 1983, pp. 63-76.
[7] Bonotto, C. and Bressan, A., "On a synonymy relation for extensional $1^{\text {st }}$ order theories. Part II: A sufficient criterion for non synonymy. Applications," Rendiconti del Seminario Matematico Università di Padova, 70, 1983, pp. 13-19.
[8] Bonotto, C. and Bressan, A., "On a synonymy relation for extensional $1^{\text {st }}$ order theories. Part III: A necessary and sufficient condition for synonymy," Rendiconti del Seminario Matematico Università di Padova, 71, 1984, pp. 1-13.
[9] Bonotto, C. and Bressan, A., "On generalized synonymy notions and corresponding quasi-senses," Memoria Atti Accademia Nazionale dei Lincei (VIII), 17, 1984, Section I, pp. 163-209.
[10] Bressan, A., A General Interpreted Modal Calculus, Yale University Press, 1972.
[11] Bressan, A., "On the interpreted sense calculus $\mathrm{S}_{\alpha}^{\nu}$," in Foundations of Logic and Linguistics: Problems and their Solutions, Plenum Publishing Co., New York, 1985, pp. 427-463.
[12] Bressan, A., "On an axiom system for the interpreted sense calculus $\mathcal{S}_{\alpha}^{\nu}$ ", Atti Ist. Veneto di Scienze Lettere ed Arti, Tomo CXLVII, 1989, pp. 19-30.
[13] Carnap, R., Meaning and Necessity, Chicago University Press, Chicago, 1947.
[14] Carnap, R., "Meaning and synonymy in natural languages," Philosophical Studies 6, 1955.
[15] Church, A., "A formulation of the logic of sense and denotation" in Structure, Method, and Meaning: Essays in Honor of H. Sheffer, Liberal Arts Press, New York, 1951.
[16] Church, A., "Intensional isomorphism and identity of belief," Philosophical Studies 5, 1954, pp. 65-73.
[17] Cresswell, M. J., "Hyperintensional logic," Studia Logica 34, 1975, pp. 25-38.
[18] Cresswell, M. J., "Quotational theories of propositional attitudes," The Journal of Philosophical Logic 9, 1980, pp. 17-40.
[19] Lewis, D. K., "General semantics," Syntheses 22, 1975, pp. 18-67.
[20] Parsons, T., "Intensional logic in extensional language," The Journal of Symbolic Logic 47, 1982, pp. 289-328.

Dipartimento di Matematica Pura ed Applicata
Università di Padova
Via Belzoni n.7, Padova, Italy

