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A Generalization of the Adequacy Theorem

for the Quasi-Senses

CINZIA BONOTTO

Abstract In the present paper, based on Bressan's sense language SLp

a, a
version of the adequacy theorem for quasi-senses is proved that is applica-
ble in every case, even when SLv

a collapses into an extensional language.
Thus this version affords a new result also for Bressan's modal language
ML", which is substantially identical to SL\. Furthermore, some conditions
of the adequacy theorem are weakened: the basic well-formed expressions
(wfes) can contain primitive constants. Then we consider a theory T based
on SLa, a definition system Z>, and strong (weak) extensions of Γin connec-
tion with a semantics for which the senses of the wfes are (are not) preserved
by the principles of λ-conversion. The designation rules for quasi-senses are
given in a complete form, also for strong theories. In fact, by means of the
notion of a /"-correspondent of a wfe, every defined constant has a quasi-
sense. Synonymy relations are extended to strong and weak extensions of T.
Finally, the previous version of the adequacy theorem is further generalized
by making the wfes contain primitive and defined constants, and making the
valuations be noninjective on their free variables. By means of this result it
is possible to construct quasi-senses for any choice of a synonymy notion.

/ Introduction Many papers have been devoted to sense logic, starting with
Church [15] and Carnap [13] and [14]. In [13] Carnap deals with some special
modal languages and, at the end, he makes some substantial hints about syn-
onymy and a sense language capable of treating simple (noniterated) belief sen-
tences. Various attempts to construct a rather general and systematic theory of
belief sentences were proposed later, e.g. by means of λ-categorial or quotational
languages. Among the published papers on this subject we should mention Lewis
[19], Cresswell [17] and [18], and Bigelow [2]. In particular, in the aforemen-
tioned papers of Cresswell, where the literature and the actual situation connected
with the problem are described, several deficiences and limitations of past ap-
proaches are clearly presented.

Recently, the results of Church's paper [15] have been generalized (see, e.g.,
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Parsons [20]). Furthermore, a first-order theory capable of dealing with belief
sentences of any finite order and universal and existential quantifiers is presented
in Bealer [1].

The approach to sense in the present paper (see Bonotto-Bressan [9] and
Bressan [11]) is based on a very different point of view in which uniformity and
generality features are taken into account, and it is, so to speak, purely modal,
which does not invalidate the extensionality thesis. Furthermore, we approach
sense with a view to dealing explicitly with Church's λ operator, the ? operator
for descriptions, general operators forms, synonymy, and, e.g., belief sentences
of transfinite orders.

Senses are tightly connected with the notion of synonymy. This notion has
been studied in itself, independently of its relation to senses, in Bonotto-Bressan
[6]-[8] and in Bonotto [3] and [4], in connection with an extensional language
and a modal one, respectively. The thesis that several natural notions of syn-
onymy can be considered is emphasized in connection with an interpreted the-
ory endowed with a definition system D (see Bonotto [3]). The one studied there
substantially affords a positive answer to the question raised in Cresswell (cf.
[17], p. 37, fn. 16). Roughly speaking, the principles of λ-conversion preserve
the meaning (or the sense) relevant to a synonymy notion presented in Bonotto
[3]. However, other answers are also possible here, as was shown in [9].

Bonotto and Bressan in [9] refer to a general interpreted modal calculus,
cMC, and any interpreted theory (ϋ,D9I) based on it and endowed with a def-
inition system D. The interpretation /is supposed to be admissible, i.e. a model
for D. In connection with such a theory, four particular synonymy notions χo>
x l 9 ~2> and ~ 3 are introduced first. They are regarded as binary relations
among well-formed expressions (wfes) of (δ,£>). Let us stress that they are char-
acterized only by means of conditions on the forms of the wfes among which they
hold. Among them ~ 0 and ~γ are defined, first, only for empty D, because the
principles of λ-conversion are not meaning-preserving in connection with them.
Therefore they may appear too weak (not extended enough) or too rich in con-
tent. On the one hand, ~ 0 also has a basic role in treating quasi-senses con-
nected with any other synonymy notion. On the other hand, the definitions of
~ 0 and xj can be extended to a certain theory 3* endowed with the definition
system D of 5, provided D is of a suitable kind. In order to obtain a unified the-
ory for the various (interesting) synonymy notions, a general rigorous definition
of synonymy is introduced in [9]. For any synonymy notion ~ we have ~ 0 C ~;
if 1̂ 2 C ~, then ~ is said to be weak.

In [9] we introduced suitable quasi-senses to represent the senses connected
with any choice of ^ , and assigned them to the wfes of (&,D,I). These quasi-
senses, to be denoted by ~QSs, are constructed (for :χ = χ 0 ) as suitable equiva-
lence classes of ~°QSs. The ~QSs (and the corresponding senses) are (fail to be)
preserved by the principles of λ-conversion when the defining conditions of ~ 2

hold (when :=: is ~o or x ^ .
For every choice of ~ the quasi-senses have to fulfill certain natural adequacy

requirements. Among them are the following:

Theorem 1.1. If A and Φ are constant free wfes, while V and W are osten-
sίυe v-υaluations that are injective on the variables free in Δ and Φ, respectively,
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then Δ has (with respect to V) the same quasi-sense as Φ (with respect to W)
iffφ (Δ) can {briefly) be obtained from Δ (Φ) by replacing the variables free
in Δ (Φ) with those free in Φ (Δ) suitably rearranged.

In [9], Theorem 1.1 is proved only for an effectively modal language. In fact,
in its proof, the following assumption was used:

(a) The class Γ of the elementary possible cases is infinite.

On the basis of [9], cMβ" has been extended into the interpreted sense cal-
culus Sβ£ (where a is a possibly transfinite ordinal) capable of dealing with be-
lief sentences whose iteration orders may be transfinite.

The logical symbols of the language §<££, on which S6£ is based, include ~,
D, D, V, =, ? (for descriptions), and Church's primitive lambda λp; the other
symbols are the variables υfn and constants cfμ9 where the (sense) order β can
take any value <a (where a is a possibly uncountable ordinal, tEτv and the in-
dex μ may be transfinite, unlike n).

Any semantics to be considered for S£v

a on the basis of [9] must involve
senses, hence it must be based on a synonymy relation x . The corresponding in-
terpreted language can be denoted by ~S££. In [15], only :χ0 is discussed; there-
fore, the index ~ 0 was dropped, and we shall also drop it here. After presenting
the formation rules for §£v

a in Section 2 and some useful definitions and con-
ventions in Section 3, we present the main features of the semantical structure
for S££ in Section 4.

Every wfe Δ of order β has a hyper-quasi-intension (hyper-quasi-extension)
of order <β which represents its hyper-intension (hyper-extension). In addition,
Δ has a quasi-sense of order <0, which represents its sense.

Intuitively, every hyper-quasi-intension is a function from Γ into a set of
hyper-quasi-extensions. Hyper-quasi-extensions are constructed in the usual
type-theoretical fashion except that, in case a hyper-quasi-extension is a func-
tion, its domain is formed with hyper-quasi-intensions and quasi-senses. A rel-
evant feature of this construction is that the quasi-senses must have an order
lower than that of the function involved.

The entities assignable to variables and constants of order β are quasi-
intensions of order β or quasi-senses of order <0.

Since expressions may contain both constants and variables, quasi-senses are
relative to a valuation of the constants and variables. Roughly speaking, the
senses of variables and constants are their valuations, whereas the quasi-sense
of a compound expression Δ is a sequence (χ,X\,... 9xn} where x is a marker
depending on the form of Δ and xx,... ,xn are senses (of the components of Δ)
or functions (depending on the senses of the components of Δ).

The quasi-senses—to be defined by conditions (SHO) in Section 4—have to
fulfill certain natural adequacy requirements. In particular, an analogue of The-
orem 1.1 must hold.

In the present paper, a version of Theorem 1.1 for S££ is presented which
is applicable in every case, and hence also when S££ collapses into an exten-
sional language, since assumption (a) is not used. Thus it affords a new result
also in connection with cM<£", which is substantially identical to S£ϊ.

Furthermore, some conditions of the theorem are weakened. In fact, The-
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orem 1.1 is extended to cases in which the wfes Δ and Φ contain primitive con-
stants, which involves some obvious changes in the proof (see Section 5).

Then in the present paper we consider a theory Z> based on S£v

a and a defi-
nition system D (see Section 6). It is useful to consider strong (weak) extensions
of 3 in connection with a semantics for which the senses of wfes are [are not] pre-
served by the principles of λ-conversion.

In Section 7 the designation rules for quasi-senses, given in [11] for weak the-
ories, are given in a complete form for strong theories. In fact, by means of the
notion of Γ-correspondent of a well-formed expression (see Section 7) every de-
fined constant also has a quasi-sense.

Furthermore, the relations from χ 0 to ~3f introduced in [9] for theories
based on cM@", are rigorously extended to strong and weak extensions of 5 in
Section 6.

Then by means of some notions introduced in Section 7, Theorem 1.1 can
be further generalized. In Section 8, Theorem 1.1 is shown to hold even when
Δ and Φ contain some primitive and some defined constants, and in case Fand
W can be noninjective on their free variables.

Now the adequacy requirement is proved and it is possible to construct quasi-
senses in connection with any choice of synonymy notion. They are introduced
as suitable equivalence classes of quasi-senses X°QS. This treatment and further
results are left for future papers.

2 The sense language S £ * of order a: Formation rules Let a be any or-
dinal number, possibly uncountable. The sense language S££ of (sense) order
a is based on the type system τv

9 which is the smallest set τv such that

(i) { 0 , 1 , . . . , H C r " and
(ii) if n G N* (=D N - {0}) and to,...,tne τp, then the n + 1 tuple (tu

. . . , ^ o > G τ " .

We say that 0 is the sentence type (because of the use made of it), 1 to v are
individual types, and (tx,..., tn, to)9 with tθ9...9tnGτp and t0 = 0 [t0 Φ 0 ] , is

a relation {function) type. We also set

( 2 1 ) ί ^ i ' " ^ =z><Ί> Λ , 0 > ,

\(tu...9tn: t0) =D(tu..., tn, t0) iftθ9...,tne τv and t0 Φ 0.

For t0,..., tn, 0, φ G τv and n G TV*, we define the operator type

(2.2) (tu .. .9tn;θ,φ) =D «tu , tn,θ),φ).

The symbols of §>£v

a are the following logical symbols: comma, left and
right parentheses, the connectives - and D, D, V, = (for contingent identity),
? (for descriptions), and λ p (primitive Church's lambda); plus the variables υfn

and constants cfμ9 of order β, type t, and index n or μ {β < a, t G r", n G TV*,
and 0 < μ < a 4- ω0 where ω0 is the first infinite ordinal).

If A is an expression of §<£«, i.e. a finite sequence of symbols of S££, then
the largest among the orders of the constants and variables occurring in A will
be called its (sense) order and will be briefly denoted by Aord.
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The class Et of the wfes of S££ of type t (Ezτv) is defined recursively by
conditions (fi) to (fi0) below, regarded as holding for n G N* and t,
to,...,tnθ,φ<Ξτv:

(fi) cfμ9 υfn E Et for β < a and 0 < μ< a + ω 0 .

(f2) I fΔ l e £ / / ( / = l , . . . , / i ) a n d Δ G £ < ί l > . . . f / | | f O > t h e n Δ ( Δ 1 , . . . > Δ π ) e £ / .
(f3) If Ω E Et with t = (tι,... ,tn; θ,φ), Xγ to xn are n (distinct) variables,

Xi E Et. (i = 1, . . . ,AZ), and Δ E £#, then (Qxu . . . ,Λ:Π)Δ E ^ .

(f4_8) If A q G £ 0 , then -/?, / ? D ^ , D/?, (Vufrt)/? E £ 0 and (wfn)p E £, .
(f9) If Δi, A2GEt9 t h e n Δ ! = Δ 2 G £ Ό .
(fio) If Δ E 2?, and Xγ to xΛ are A* variables with XjG Etj (/ = 1, . . . ,n), then

( λ ^ i ^ Δ G ^ , w ) .

(2.3) Ify4<^=D U ^ δ M ^ = / > U A\ A*β =D Aβ - A<β (A<o = 0).
δ<β δ</3

For ί E τv we also set

(2.4) £ f = D { Δ E ^ | Δ ° ^ < / 3 } ; wfê 3

 = z > U E?*,
tGτv

so that the wfe^s are the wfes of order β.
By identifying the variables υtn and the constants ctn of the modal language

cM<£" considered in [9] with υ% and c?n9 respectively, (nGN) the wfes of cN[£p

turn out to be those of S££ in which only symbols of cM<£" occur.
Λ, v, ΞΞ, (3ΛΓ), and 0 would be introduced in the usual (metalinguistic) ways.

3 Some conventions and metalinguistic definitions

Convention 3.1 By x9γ,z,X\,... ,P,q,r,pι,..., and Δ , Δ i , . . . , will be de-
noted arbitrary variables, wffs, and wfes (of §<££)> respectively. By xβ,...,
Δ ^ , Δ ? , . . . we will denote wfe^s of the respective kinds above.

Definition 3.1 We say that Δ is an equivalent of Φ if Δ and Φ are wfes and
Δ can be obtained from Φ by a series of steps which consist of alphabetic changes
of bound variables.

Convention 3.2 If (i) Δ is a wfe, (ii) u{ to ua are constants or variables, and
wz, Δ/ E Et. with tj E τv (/ = 1, . . . ,b), then Δ(w//Δz)^, as well as A[uχ,...,
ub/A\,... ,Ab], denotes the result of substituting Δ! to Δ^ simultaneously for
ux to ub respectively (at the free occurrences) in a certain equivalent Δ' of Δ such
that Δz is free for ut in Δ' for / = 1 , . . . , b (the precise description of this equiv-
alent would be of no interest for what follows).

Convention 3.3 If xx to xb are b variables and a wfe Δ is denoted by Φ(JCI ,
. . . 9xb)9 then Φ ί Δ j , . ..9Ab) denotes Δίxy/Δ/fo.

The synonymy relation ~ and the nonexisting object of type t can be defined
within S£v

a itself metalinguistically:

(3.1) Δ! ~ A2 =D (F)F(Aι) = F(A2), with Ford = 1 + maxfΔf^Δ^},
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where Δi,Δ2 G E? and Fis the first variable of type (t) that satisfies (3.1) and
is nonfree in Δj and Δ2.

(3.2) a* =o α,* = D (wn)vtι Φ vn.

By rule (f9) in Section 2, = can be applied also to wffs, as a substitute for
equivalence (and a$ will turn out to be equivalent to (x)x Φ x). Hence defini-
tion (3.1) applies also to wffs; and definitions of the relational and functional
Church's (nonprimitive) λ-operators become the following:

(3.3) (\xl9...,xn) A =D O/).(V*i,.. .,*„)/(*!,. . .,*„)

= AΛ(vji,..,Λ).
n

~(ixly...,xn) /\xi~yiDf(yi9...,yn) = a*,

where (i) Δ e E%, (ϋ) X\ to xn are n variables of the respective types tx to tn and
arbitrary orders, (iii) / is the first variable of type < t\,..., tn, t0) and nonfree in
Δ, such that

(3.4) ford = max{Δ° 'Vr f , . . . .jtf1*},

and (iv) yx to yn are the first n variables different from xx to xn, of the same or-

der as/, and of the respective types t{ to tn.

4 The semantical structure for S£« The structure for the semantics for
§>£v

a is based on v + 2 sets D0,Dι,... ,DP,T. For them we require that Do =
(T,F) and D\ to Dv contain at least two elements, one of which is F.

Intuitively, every hyper-quasi-intension is a function from Γ into a set of
hyper quasi-extensions. Hyper-quasi-extensions are constructed in the usual
type-theoretical way except that, in case a hyper-quasi-extension is a function,
its domain is formed with hyper-quasi-intensions and quasi-senses. A relevant
feature of the construction is that the quasi-senses must have orders lower than
that of the function.

For every t Eτv and β < a, in the semantical structure we have a set HQEf
of hyper-quasi-extensions, a set HQlf of hyper-quasi-intensions and a set Af of
entities assignable to variables vfn and constants c£.

These sets are defined by induction on the order β and, for any given β, by
induction on the complexity of t.

The general construction rules are Ri to R4 below, where, for any pair of
sets X and 7, X-+ Y denotes the set of all functions from X into Y and X^> Y
denotes the set of all functions from a subset of X into 7.

(RO HQE?=Drfoτre[OΛ...9v)
(R2) HQlf = (Γ -> HQEf), for / G τv

(R3) Af = HQlf U QSfβ Q,δf = HQEf - {F} for t G τv

(R4) HQE?n_.M = (Afx x - . x AfH*>Qfi?0) U {F} for tθ9tl9...9tn G
T".

Of course, as they stand, these rules provide only the initial step of the con-
struction; they also require the definition of QSf, given Aβ

t for t G r\
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Note that A°t = HQI?, which can be substantially identified with QIt as de-
fined in [9].

The set QSf is defined as the set of the quasi-senses of expressions of type
t and order < β . Since expressions may contain free variables and constants,
quasi-senses are relative to a valuation of the variables and constants. Let Vβ be
the set of the evaluations of order β, that is, V^Vβ iff Fis a function defined
on all variables of order δ < β and

(4.1) V(vfn) G A\ (where tGτ\ne N*).

Similarly, the set of the c-valuations of order β will be denoted by Iβ. The
elements of Iβ are defined in the obvious way; in particular, for every / G Iβ

and every δ < β,

(4.2) I(cfμ) G Λb

t (where / G r\ 0 < μ < a + ω 0).

Roughly speaking, the quasi-senses of variables and constants are their valu-
ations, whereas the quasi-sense of a compound expression Δ is a sequence
<χ,Xi,... ,xn) where x is a marker depending on the form of Δ and X\,...,xn

are senses (of the components of Δ) or functions (depending on the senses of the
components of Δ).

The quasi-sense of the expression Δ, under the evaluation Fand c-valuation
/, will be denoted by sensIVA. It is defined by (s^o) below, where the follow-
ing convention will be used.

Convention 4.1 For X = [ vfx,..., vfn} we shall denote by g(A9X, VJ) the

function 1 < £ i , . . . ,£Λ,σ> : ξ, G Λb

ti9 σ Ψ IF and σ = sensIV<A, where V =

\ξl,...ΛnJ)

Rule If Δ is then Δ = sensIVA is

(si) υfn or c,*, V(vfn) or I{cfμ), respectively.

(s2) Δo(Δu...,Δn) <ASrd,A0,Aι,..-,K>.
(s3) (ΩΛΓ1)...,xn)Δ' <(lord,U,g(AΛxu -,Xn),V,I)>.
(S4.6) - Δ i . Δ j D Δ a . Π Δ ! <~,Δ>, <D,Δ!,Δ2>, <D,Δ,>.

Uι=t2 = O)
(s7_8) (Vx)Δ', (ix)A' (f = 0) <V,g(A',{x}, VJ)\ <i,g(A',{x},V,I)y.

(s9) Δ 1 = Δ 2 ( ί i = /2) <=,Δ,,Δ 2 >.
(s10) (\pxu...,xn)A' ap,g{A',{xu...,xn),V,I)).

Now let us define the class QSf for / e τ v and β < a by

(4.3) QSf =D IsensIVA \ V ε Vp, A E Ef}.

The function F(I) defined on the variables (constants) of S££ will be said
to be a y-valuation (c-valuation) relative to Γ and Dλ to Dv if it satisfies the first
(second) of the relations

(4.4) V(υg,)eAξ, I(c?μ)eAf
(where / 6 τ ' , nE Λζ», 0 < μ < a + ω0 and β < a).
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The evaluations (c-valuations) assigning a hyper-quasi-intension to every
variable (constant) will be called ostensive υ-valuations (c-valuations).

The designation rules, which assign hyper-quasi-intensions to wfes of S<££,
are not relevant to this paper. A detailed presentation of these rules can be found
in [11].

5 An adequacy theorem A theory 5 is said to be based on S££ if its sym-
bols are those of S£v

a, except for some (perhaps all) constants. The constants
of δ are regarded as primitive. Furthermore, if Δ is a wfe of 5, the primitive con-
stants and free variables occurring in Δ will be referred to as elementary expres-
sions of A.

Now we can prove the following:

Theorem 5.1 Assume that: (i) Δ and Φ are wfes ofZ> defined constants free
and of type t; (ii) / is an ostensive c-valuation, V and W are ostensive c-
valuations, and the set-theoretical unions I U V and I U W are injective
functions1 on the elementary expressions of A and Φ respectively; (iii) sensIVA =
sensIWΦ; and (iv) ux to ua is a bijective list formed with the elementary expres-
sions of A (a > 0). Then (a) Δ and Φ have the same length, and (b) we can ar-
range the elementary expressions of Φ in the list wx,..., wa and choose
equivalents (see Convention 3.1) Δ', Φ' of A and Φ, respectively, for which (see
Convention 3.2)

(5.1) Δ' = Φ(Wi/Ui)a (or Φ' = A(Ui/Wi)a)9 (/U V)(Ui) = (/U W)(wi)

Proof: Note that the existence of Φ' satisfying the second part of (5.1) is a
straightforward consequence of the existence of Δ' satisfying the first part of
(5.1).

By conditions (si_i0) in Section 4 and assumption (iii), Δ and Φ have the
same length, say I.

We use induction on I: Assume 1 = 1; then Δ and Φ are elementary expres-
sions. By (si) in Section 4 and assumption (iii), / U K (Δ) = /U W (Φ). By (iv),
ux = Δ, and hence (5.1) holds for wx = Φ and Δ' = Δ (Φr = Φ). This concludes
the initial step.

Now assume t > 1 and let the thesis hold for I < L We consider only the
cases Δ = Δ 0 (Δ! , . . . ,An) and Δ = (Ω Δ *i,. . . ,xn)A0. The other cases can be
proved in a similar way.

Let

(5.2) Δ = Δ O (Δ 1 , . . . ,Δ Π ) .

A trivial consequence of (iii) is that

(5.3) Φ = Φ 0 ( Φ 1 , . . . , Φ J ,

and by (s2) in Section 4

(5.4) (A%rd,sensIVA0,... ,sensIVAn) = (Φ%rd,sensIWΦ0,... ,senslwφn).
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Then

(5.5) Δ o r ί / = Φ l r d a n d s e n s I V A κ = s e n s I W Φ κ ( w h e r e K = 0 , . . . , n ) .

For K = 0 , . . . , n, the lengths of Δκ and Φκ are less than £ and conditions (i)
to (iv) hold for Aκ and Φκ (since, in this case, the elementary expressions of Aκ

are also elementary expressions of Δ, and similarly for Φκ and Φ).
Hence by the inductive hypothesis we can choose an equivalent A'κ of Aκ and

arrange the elementary expressions in Φκ into the list wf to w^κ in such a way
that

(5.6) A'κ = Φκ(w?/unmκ> IUV(un=IUW(wn

(where / = l,...,/w*),

where wf to u^κ are the elementary expressions of Aκ.
The conclusion above holds for K = 0 , . . . ,n. Furthermore, the elementary

expressions uf and wf (where i" = 1,... ,mk, K = 0,.. .,«) are the elementary ex-
pressions in Aκ and Φκ, respectively. Hence, by (iv), the former are ux to ua. Fur-
thermore, by the injectivity property of / U W, for / = 1, . . . , a there is exactly
one elementary expression wj that satisfies the second part of condition (5.6) for
Uj = uh We identify w, with this wf. The correspondence «,--> w, (/ = 1,... ,α)
thus obtained between the elementary expressions of Δ and those of Φ is one-to-
one and surjective. Hence, (5.6)2 implies (5.1)3.

Now we set Δ' = AQ(AU . . . ,A'n). By (5.2), Δ' is an equivalent of Δ. Hence
(5.6)i, true for K = 0, . . . ,n, implies (5.1)χ. We can conclude that the thesis holds
in this case.

Now let

(5.7) A=(QAxu...9xn)A0.

By (in),

(5.8) Φ = ( Ω φ j 1 , . . . , ^ ) Φ 0 ,

and the lengths of Δ o and Φo are less than L
By (s3) in Section 4,

(5.9) <Ω2rd, sensIVQA, g(A0,{xu . ..,xn), K,/)> =

<Ω|^, sensnvQφ, g(*oΛyi>. ,yn),W9I)>

(see Convention 4.1). Then we have

(5.10) g(A0,[xu. ,χn}> vj) = g(Φ0Λyi,. ,ynh wj)}

By Convention 4.1 and rules (s!_10) we have for ξ, E Afi (where / =

(5.11) sensIVΆ0 = sensIW>Φ0,

where

V' = v(*1-'•*") and W' = w ( y i " ' y n \ .
Ml ζn/ Ml •••?«/



QUASI-SENSES 569

Conditions (i), (iii), and (iv) hold for Δ o and Φ o . With a view to dealing with
(ii) we choose the /7-tuple ξx,..., ξ{ in such a way that, if sx to sp are the elemen-
tary expressions of Φ o , different from yγ to yny then

(5.12) ξι = {IUW){sι).

By (5.11) we have

(5.13) sensIVΆ0 = sensIWΦ0,

where

v , = y(χι..-χn\ a n d w> = w(yi ~yA

\K\ >Ϊ\J M l ζ l/

We note that V and W are ostensive evaluations. Furthermore, we prove
easily from (5.11) that the variables among xx to xni which are free in Δ o , are
as many as those, among yλ to yn9 which are free in Φ o . By (5.13) there exists
one dk among dx,..., dq (which are the elementary expressions of Δ o different
from X\ to xn) such that ξx = IUV{dk). This can be proved by induction on the
length of Δ o (by using reductio ad absurdum also). We consider now the list
du...,dq, dq+l9... ,dq+m {sl9 . . . 9sp9sp+l9... ,sp+m) where the m variables
dq+ι,..., dq+m (sp+u . . . ,sp+m) are those, among xγ to xn (yx to yn), which are
free in Δ o (Φo). We set

(5.14) Δ o = Δ o (dq+u... 9dq+m/dk,... 9dk),

?o = Φo (Sp+i>- -^p+m/su.. . ,5Ί).

We can easily prove the following:

Lemma 5.1 Assume that ux to ua (tx to ta) is a bijectiυe {possibly nonbijec-
tiυe) list of the elementary expressions occurring in the wfe Ψ and that V and W
are c-valuations; then

(5.15) Ϋ' = *(«//*/)„ (/U V)(Ui) = (/U W){tt)

{where i = 1, . . . ,a) =» sensIV{Ψ) = sensIW{^ί').

By Lemma 5.1 we have

(5.16) sensjyAo = sensIV>A0, sensIW>Φ0 = sensIW'Φ0;

hence by (5.13) and (5.16) we have

(5.17) sens/yAo = sensIW>$Q.

We conclude that conditions (i) to (iv) hold for Δ o , Φo, V'9 and W. Then
by the inductive hypothesis (the length to Δ o is obviously less than t) the thesis
also holds for these entities.

Hencς we can arrange the elementary expressions of Φo into a list φλ\,o φq

and can choose an equivalent Δό of Δ o for which

(5.18) Δ 6 = Φ o ( ^ /rf/), IUV{di)=IUW{φi) (where i= 1, . . . ,q).

Then, for / = 1, . . . ,#, d, and ψι are the elementary expressions of Δ o and
Φ o , respectively, different from xt and yt (where / = 1,. . . , Λ ) .
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By (5.9), we also have

(5.19) sensIVΩA = sensIWΩφ.

The lengths of ΩΔ and Ωφ are less than £ and conditions (i) to (iv) hold for
ΩΔ and Ωφ (since, in this case, the elementary expressions of ΩΔ are also elemen-
tary expressions of Δ, and similarly for Ωφ and Φ).

Hence we can arrange the elementary expressions of Ωφ into a list ωi to ωr

and can choose an equivalent ΩΔ of ΩΔ for which

(5.20) Ω^ = Ωφ(ω //δ /), / U F(δ,) = / U W(ωt) (where i = 1, . . . , r ) ,

where bx to δr are the elementary expressions of ΩΔ.
Hence the elementary expressions δi to δr and dγ to dq are those of Δ.

Hence, by (iv), they are ux to ua. Furthermore, by the injectivity properties of
/ U W, for / = 1,. . . ,a, there is exactly one elementary expression of Φ that sat-
isfies condition (5.18)2 or (5.20)2 for ut in bx to δ r or in dx to dq. We denote this
elementary expression by w,-. The correspondence W/ -• w, (where / = 1, . . . ,a)
thus obtained between the elementary expressions in Δ and those in Φ is a bijec-
tion. Hence (5.18)2 and (5.20)2 imply (5.1)3.

Now it is clear that by (5.7), (5.8), (5.18)!, (5.20)!, and the metalinguistic
definition

(5.21) Δ' = ( [ Q φ Λ . . .yΛΦoHWi/uAa,

A' is an equivalent of Δ.
We conclude that the theorem holds also in this case.

6 Admissible definitions; strong and weak extensions of a theory; the syn-
onymies from ~ 0 to ^3 We define recursively the class AD? of admissible
definienda of type t and degree n (t E τ"9 n E Λf*) by conditions (a) to (c) below
(see [3]).

(a) ctμ^ADl
(b) If Δ G AD"tu ,ttm,o a n c * *i t o χm a r e m variables (of suitable types) dis-

tjnct from those occurring in Δ, then Δ(ΛT!, . . . ,xm) E AD?+ι.
(c) If Ω E AD"tu%..9tm;θ,φ)

 a n d * o to xm are m + 1 variables (of suitable types)
not occurring in Ω, then (ΩΛTI, . . . ,xm)xo(x\,... 9xm) E AD£+ι.

By induction one can easily prove the assertions

(d) If Δ E AD?, then only one constant occurs in Δ and only once, and

(e) If Δ E AD? Π AD?1, the/2 n = m.

Then n can be called the degree of the admissible definiendum Δ. The class of
admissible definienda of type t is defined by

(6.1) ADt = U AD? (where t<Ξτv).
nGN

Now £._sume that: (i) Δ E AD? for some t Eτp and n EN; (ii) Kis a class
of constants different from the one, c r, occurring in Δ; (iii) Δ' E Et\ (iv) the con-
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stants occurring in Δ' are in K\ and (v) the free variables in A! are free also in
Δ. Then we say that (a) the wff

(6.2) Δ = Δ' (equivalent to A = Δ' for t = 0)

is an admissible definition of cr in terms of the constants in K9 (β) its degree is
n9 (y) Δ is its definiendum, and (δ) Δ' is its definiens.

By use of Church's lambda operator, the degree of many admissible
definienda can be lowered in the following sense. If the relations

( 6 3) AeAD?tltmm.ttmtt>9QeAD?ίUm..9tm;θ9φ)

hold, then by means of a suitable choice of Δ and x0 to xm9 the wffs

(6.4) A(xΪ9...9xm) = Δ', (Ωxl9...9xm)x0(xl9...9xm) = Δ',

are admissible definitions of degree n + 1. As a consequence, the equalities

(6.5) Δ = ( * ! , . . . 9xm)A\ Ω = (λxo)Δ',

are admissible definitions of degree n9 to be called directly associated with (6.4)!
and (6.4)2 respectively. This relation generates an equivalence relation R. If two
definitions are related by R9 we say that they are associated.

Following [3], we give the following definition:

Definition 6.1 The wfes A(xi9... 9xn) and Φ ( y u . . . , y n ) 9 briefly Δ and Φ,
will be said to be (xx,yx,... ,xn,yn)-similar if for i = 1 to n9 xz and yx are n vari-
ables of the same order and Δ(υ\, . . . ,#„) is equivalent to Φ( υx,..., υn) when-
ever v\,..., υn are variables which do not occur in Δ or Φ.

Let δ be any theory based on S££. In connection with δ the synonymy ~ 0

[^i] can be defined recursively as the smallest equivalence relation among wfes
of δ that satisfies conditions (C^2) ((Q-4)) below in the (binary) relation ;=:.

(CO If Δ - Δ' and Δ, ^ Δί (where Ϊ = 1,...,«),
then Δ ( Δ l s . . . , Δ J ^ Δ'(Δί,.. . 9A'n) where Δ,Δ' E E<tUmmmftn9t> and ΔM

Δ; G Eu (where 1 = l,...,/z).
(C2) If Δ 5= Δ; Ω ̂  Ω' and Δ' and A" are U i , ^ , . . . ,xn,yn)-similar (see Defi-

nition 6.1), then ( Ω ^ , . . . 9xn)A ^ ( Ω ^ , . . . 9yn)A"9 where Δ,Δ', Δ" G Eθ

a n d O . O ' E ^ , . . . , , , , ; ^ ) . 3

(C3) (Ω^!,..., x / 7)Δ^Ω[(λλ:1,...,xΛ)Δ], where Δ e f t and OG£ ( / 1 ί n ; M .
(C4) (kxu... 9xn)A = ( λ ^ ! , . . . ,xΛ)Δ, where Δ G E9.

Now let x be a countable (possible tranfinite) ordinal and let [cφ]φ<x be an
injective sequence of constants that do not belong to 5. For every φ < χ, let Dφ

be an admissible definition of cφ in terms of the constants Cψ with ψ < φ and the
constants belonging to δ — i.e., the primitive constants of δ.

The weak and strong extensions of

(6.6) δ w = (5,2»w, δ 5 = (Ό,D)S (where Z> = { ^ U χ , Dφ =D Aφ = Af

φ)

have the symbols of δ added (only) with the constants cφ (φ < x). The wfes of
Z>s are those of δ formed with symbols of δ5, while the wfes of δ w are obtained
(roughly speaking) from those of δ and the definienda Aφ (φ < χ) by substitu-
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tion of some among these wfes, or some among already constructed wfes, for
some variables free in a wfe of the same kind.4

Considering Z>s (5W) is useful in connection with a semantics for which the
senses of wfes are (are not) preserved by the principles of λ-conversion. Note that
theory δ w , unlike δ 5, generally fails to be based on §££, but it is a proper part
of such a theory.

Now in connection with δ 5 we define the synonymy relation ~ 2 (—3) as the
smallest equivalence relation between wfes of δ s that satisfies both conditions
(C!_4) above and (C5_7) ((C5_8)) below in the relation ~ .

(C5) Aφ = A'φ(φ<χ).
(C6) Δ ~ (\pXι9...9xn)(A[xi9...9xn])9 where Δ e £ α i w ) .
(C7) ( [λ** ! , . . . 9xn]Φ) (Ax,... ,ΔΛ) = Φ(Xi/Ai)n where Φ G Et.
(C8) p Λq ~ q Λ p for all wffs p and q.

In connection with δ w the synonymy relation ^0 (~i) c a n be defined by
means of conditions (Ci_2) ((Ci_4» above and the following:

(C 5) If Δ, ~ Aί (where i = 1,... ,/i), then Aφ(Xi/Ai)n = Δ U /Δ,-),*.

7 Semiotic and semantic preliminaries One could say that the {v + 2)-tuple
I = <Z>i,... ,DV,TJ) where / is a c-valuation relative to Γ and Dλ to Dv (see
(4.4)) is an interpretation for S£v

a, and the ^-valuations relative to Γ and Dx to
Dv are l-υaluations.

We consider i -valuated wfes of Z>s (or, more precisely, I-valuated wfes) de-
fined as couples <Δ, V) where Δ is a wfe of Όs and Kis an I-valuation.

We now introduce some notations that will be useful in what follows.

Definition 7.1 (a) Let f = <Δ, V) be an I-valuated wfe of Όs, whose elemen-
tary expressions can be arranged in the (bijective) list ux to ua. Furthermore, let
Vi be Ui if, for no variable υtn free in Δ, we have

(7.1) V(vίn) = (VUI)(ui)

(so that Ui is a constant); otherwise, let Vj be the υtn that satisfies (7.1), with the
least n. Then we denote y, by «, (Δ, V) and we say that the (possibly nonbijec-
tive) sequence {vu..., υa) is the Δ-^reduction of {uu . . . , u a ) . Furthermore,
let f κ = < Δ κ , F > , where

(7.2) A v = A i U i / v X = A [ u Ϊ 9 . . . 9 u a / υ l 9 . . . 9 v a ] .

Then we say that (b) Δ v is the K-reduction of Δ, and (c) f κ is the F-reduction

off.

Now: for any wfe Z>s of Δ and I-valuation V, (i) the function /U Fis injec-
tive on the elementary expressions of Δ F , (ii) ( Δ v ) v = A v, (iii) Kis injective on
the variables free in Δ iff Δ = Av, in case no primitive constants occur in Δ.

For every definition Dφ in D of Όs, let cφ = Aφ be the associate definition of
degree zero (see Section 6). By transfinite induction we now define Aτ

φ for φ < χ.

(7.3) Δ j = Δo, Άτ

φ = Aφ(cΦi/Al)μ,

where I/Ί to ψμ are the μ values of ψ (<χ) with which cψ occurs in Aφ9 and hence
inΔ^.



QUASI-SENSES 573

Furthermore, if Δ is a wfe of δ 5 , we set

(7.4) Δ Γ = Δ(c w /Δ£) μ ,

Ψ\ to φμ being the μ values of φ (<χ) with which cφ occurs in Δ, and we say that
Δ is the T-correspondent of Δ.

In connection with any admissible interpretation I for &*, i.e. an interpreta-
tion for §>£v

a that satisfies the definition Dφ (φ < χ) of 55, and any I-valuation
F, the quasi-sense of any wfe Δ of theory 5 s (briefly: sensIVA) is defined by si-
multaneous recursion on the type t of Δ, by means of rules (s2_io) and rules (si)
and sί) below:

(sO if Δ has the form vtn or ctμ, where ctμ is a primitive constant, then
sensIV(A) is V(vtn) or I(ctμ), respectively,

(si) if Δ is a defined constant, then sensIV(A) is sens I V(ΔΓ).

8 A strong version of the adequacy theorem Theorem 8.1 below is an ade-
quacy theorem stronger than Theorem 5.1, since it does not involve the assump-
tions that /U Fand /U Ware injective and that no defined constant occurs in
Δ and Φ.

Theorem 8.1 Assume that (i) Δ and Φ are wfes of&s of type t9 (ii) I =
<Z>!,... ,DV,T,I) is an admissible interpretation for ϋs, where I is an ostensive
c-valuation, and V and W are ostensive 1-valuations, (iii) sensIVΔ = sensIWΦ,
(iv) \i\ to ua is a bijectiυe list formed with the elementary expressions of
Aτv(a > 0). Then (a) Aτv and Φτw have the same length, and (b) we can ar-
range the elementary expressions of Φτw in the list Wγ to wa and can choose
equivalents Δ', Φ' of Aτv and Φτw for which (see Convention 3.2)

(8.1) Δ' = Φτv(Wi/Ui) (or Φ' = Δ ^ W w U /U V(ut) = /U V(Wi)

(where i = 1,.. .,a).

Proof: By induction on the length of Δ, we can prove that

(8.2) sens/yA = sensIVA
τ and sensIWΦ = sensIWΦτ

and by Lemma 5.1 in Section 5, we have

(8.3) sensivAτ = sensίVA
τv and sensIWΦT — sensIWΦTW.

Then by (8.2), (8.3), and assumption (iii), we have

(8.4) sensIVA
τv = sensIWΦτw.

Furthermore, all hypotheses of Theorem 5.1 hold for Δ r κ a n d Φτw; hence,
so does the thesis.

NOTES

1. By /U V we denote the function obtained as a set-theoretical union of the function
/and Vwhich have disjoint domains.

2. Obviously, for / = 1,... ,Λ, xt has the same order and type as yh
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3. In particular, yt and xt (where / = 1,... ,n) can coincide as well as Δ' and Δ".

4. For a more precise description, see [9], Section 20.
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