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Stability for Pairs of Equivalence Relations

CARLO TOFFALORI

Abstract We consider pairs of equivalence relations EOiEι such that, for
some nonnegative integer Λ, every class of the join of Eo and Eλ contains at
most h classes of either Eo or Eί. We classify these structures under categor-
icity (in some infinite power), nonmultidimensionality and finite cover
property.

1 Let Γbe a countable complete first-order theory with no finite models. As
usual, we assume that all models of Γare elementary substructures of some big
model U (the universe of T). Our aim is to study stability for theories T of two
equivalence relations E0,Eι, with particular attention to the problem of classify-
ing among them the ones that are categorical in Xo or in K^

Notice that in the simple case E0 = Eι, hence when there is a unique equiva-
lence relation, the situation is quite clear. In fact Γis ω-stable and one can eas-
ily prove:

Theorem 1 Let T be the theory of an equivalence relation E. Then the fol-
lowing propositions are equivalent:
1. T is ^-categorical
2. T does not satisfy the finite cover property (f.c.p.)
3. there is kGω such that, for allaEU9E(U,a) has either <kor infinitely many

elements.

Since, for every theory T, Γ's being Xx-categorical implies Γ's being nmd and
ω-stable (where 'nmd' signifies nonmultidimensionality), and this implies Γ's be-
ing ω-stable and without the f.c.p., it follows that, in the case of a unique equiva-
lence relation,

Γis Krcategorical => Γis K0-categorical.
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Then one can easily see:

Theorem 2 Let T be the theory of an equivalence relation E. Then the fol-
lowing propositions are equivalent:
1. T is X ι-categorical
2. T is ^'Categorical, and either there are at most finitely many finite E-classes

and exactly one infinite E-class, or every E-class is finite and there is a unique
h < k such that there are infinitely many E-classes of power h.

More generally, one can prove:

Theorem 2' Let T be as above. Then the following propositions are equiv-
alent:
1. Tisnmd
2. T is ^-categorical, and there are at most finitely many infinite classes.

Finally, one can see that, if Γis Ko-categorical but not nmd, then Dp T = 2.
But, when we proceed to pairs of equivalence relations, the situation gets

much more complicated. In fact, even if usually only refining and crosscutting
equivalence relations are treated, there are many more intricate ways in which
two equivalence relations can interact, and it is worth recalling that the theory
of two equivalence relations is undecidable [8]. (See [6] for the troubles arising
when one studies categoricity in this context.)

We shall prove here that, assuming the more restrictive condition (+) (see Sec-
tion 2; essentially, (+) says that, if E is the equivalence relation generated by Eo

and Eι, then every E-class in U contains at most h classes of either Eo or E\ for
a suitable h G ω), then some results similar to Theorems 1, 2, and 2' above can
be shown for theories of two equivalence relations. This will be obtained first
by reducing the study of arbitrary pairs of equivalence relations (satisfying (+))
to the study of pairs of permuting equivalence relations, and then by giving a
complete answer in this particular case.

We shall give a more general analysis of classification theory for theories of
pairs of equivalence relations in [10]. (Main references are: [2] for basic model
theory, [5] and [9] for stability theory.)

2 Let Tbe a theory of two equivalence relations E0,Eι. For all x,y G U and
e G {0,1}, we define

(x,y) G R\ if and only if t=£e (x,y)

and, for h G ω, h > 0,

(x,y) G R€
h+ι if and only if Nz (E€(x9z) Λ Rι

h~
€(z9y)).

Therefore, for all x,y G U, (x9y) G R%+\ if and only if either h is even and
l=3Zi . .3Zh(Ee(x,Zι) Λ£Ί_e(zi,Z2) Λ. . .ΛEe(Zh,y)) or h is odd and l=3zi...
3Zh(Ee(x>Zi) /\E1_e(zι,z2) Λ. . .*Ei-€(Zh>y))- Furthermore, for every h Gω
andeG{0,l},i?e

Λc#],-.
Set now

(x,y) G Ro if and only if 1= E0(x,y) A Eλ (x,y)
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and, for every h E ω, h > 0,

(x9y) E Rh if and only if 1= V "(x>y) € *£".
ee{0,l)

Notice that, for all h E ω, /?Λ <Ξ Rh+\- Finally, put

(x9y) E £ if and only if V "(*,Jθ e V

Then E is an equivalence relation, and equals the join of Eo and E\. In the fol-
lowing we will call E the connection relation, and any is-class a connected com-
ponent.

In general, E is not 0-definable (see example 2 below). In fact, E is 0-defin-
able if and only if there is h E ω such that E = Rh. However, if Eo and E\ are
permuting (that is, if R% = Rι

2)9 then E = R2 = R% = R2i and hence £ is 0-
definable.

We can now state our assumption:

(+) There is h E ω such that, for all aG U, there exists e E {0,1} such that the
connected component of a in U contains at most h elements pairwise in-
equivalent in Ee.

Notice that, if E€ £ £'1_e for some e E {0,1}, then (+) holds. It is easy to see
that, if (+) holds, then E is 0-definable (in fact, E = R2h). The following exam-
ple shows that the converse is false.

Example 1. Let Tx = Th(Z X Z,Eθ9Eχ) where, for all e E {0,1}, x = (xo,Xι)9

y= (JΌ.JΊ) € Z x Z,

N ê(*,.)>) if and only if x€=ye.

Then £ is 0-definable in 7\ (as £" = Z?2)> but (+) does not hold.

Example 2. Let T2 = Th({xG Z x Z: either x0 = *i or x0 + 1 = xι},EQ,Eϊ)
where £Ό and £Ί are defined as above. Then E is not 0-definable in T2 as, for all
h E ω, there are Λ:,^ satisfying

(x9y)GRh+ι-Rh.

In particular Γ2 does not satisfy (+).

Owing to the results we want to show below, it is worth pointing out that:
(i) T2 is Krcategorical (hence T2 is nmd and does not satisfy the f.c.p.), but T2

is not Ko-categorical; and (ii) Tx is K0-categorical but does not satisfy (+). Thus
it is not true for an arbitrary theory T of two equivalence relations that

Γis Kpcategorical => Tis K0-categorical => T satisfies (+).

For completeness' sake, we notice that a simple Ryll-Nardzewski argument as-
sures us that

T is K0-categorical => E is 0-definable in T

(see [6]).

Theorem 3 Let T be a theory of two equivalence relations satisfying (+).
Then T is super stable.
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Lemma 1 If M is a model of a theory of two equivalence relations, there is
a structure M* in a language L* = [Eo,E\ ,P] (with P a Vary relation symbol)
such that P(M*) = M, Eo and Eγ are permuting equivalence relations in M*,
if Msatisfies (+) then M* satisfies (+), and -iP(M*) intersects each Eo Π EΓ

class in one element.

Proof: Build M* in the following way:
(i) The domain of M* contains Mand, moreover, an element x(X) for any

class X of Eo Π Ex in M, and an element x(X0,Xx) for any pair of classes
Xo,Xι of E0,Eι respectively in M such that Xo Π Xγ = 0 but, if tf0 £ A^ and
<*! EXU then Mh£(#0,0!) .

(ii) P(M*)=M.
(iii) For every e E {0,1}, Ee(M*2) is an equivalence relation extending in the

natural way E€(M
2) (for instance, we put, for every class Xof Eo Π E\ in M,

and for every a EX, M* 1= E0(x(X),a) Λ £Ί (x(^ί), #), and, for every pair of
classes X$,X\ of E0,Eι in Msuch that x(X0,Xι) is defined, and for all a0 EXo
andaιeXuM*\=Eo(x(Xθ9Xι),ao)ΛEι(x(X(hXι),aι)).

Claim 1 E(M*2) Π M2 = E(M2).

3 is trivial.
c : Let x,y EM be such that (x,^) G £ ( M * 2 ) . Then there is k E ω such

that M* N " (x, j ) E Rk". We can assume A: > 1, A: odd. Hence there are z\,...,
Zfc-\ E M* such that, for some e E {0,1},

M* N£ !

e(x,Zi)Λ£Ί_e(z1,z2) Λ. .Λ JS U ^ ! , ^ ) .

Put for simplicity x = Zo and j> = Z/t. If Zi , . . . ,^_i E M, then we are done.
Otherwise let / be the minimal index <k such that z, $. M. Clearly 0 < / < k. If
Xi = x(X) for some class X of E0Γ) Ex in M, then replace JC, with an arbitrary
flGl If X/ = xί^Oί^i) for some pair X^X\ of classes oΐE^E\ in Msuch that
XoΠXι = 0 but, for all a0 E Xo and ^ E ΛΊ, M1= £(#0,^i)> then fix a0 E Xo

and αj E AΊ. Suppose for simplicity M* N ^ ( J C , - - ! , ^ ) , then in Mand conse-
quently in M* it is true that Hi?c(.X/_i,αe) and N^ί^jύTi-e); furthermore M* h
Eι_e(aι-e,xi+ι). Then we can replace x, with a finite sequence of elements of
M. By repeating this procedure, we get M f= E(xfy).

Claim 2 In M*, Eo and E\ permute\ in particular, E is ^-definable in M*.

It suffices to show that E c R%,R\. Let x,.y E M* be such that (x,y) E
^(M* 2 ) . Fix x;^' E Msatisfying

M*h£o(x,x ')Λ£i(Λ/).

Then (x',^') E E(M* 2), and so M (= ^(x,^). It follows that E0(M*,x') Π
£!(M*,y) Φ 0, hence ^0(M*,x) Π E{(M*9y) Φ 0 . Then M* N "(x,j) E
i?^'. Similarly for R\.

Notice that, for all x E A/*, there exists xr E M such that E(M*,x) =
^ ( M * ^ ' ) . Moreover, for all x' E M, ^ ( M * ^ ' ) = (£(M,x'))*.

Claim 3 If M satisfies (+), ίΛert M* satisfies (+).

In fact, for all x E M, / E ω, e E {0,1}, E(M,x) contains i elements pairwise in-
equivalent in Ee if and only if E(M*,x) does.
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Lemma 2 If T is a theory in L* such that the two equivalence relations per-
mute, (+) is satisfied and -<P intersects each Eo Π E{-class uniquely, then T is
superstable.

Proof: Let M t= T; we have to calculate card (SΊ(M)). Then let p be a non-
algebraic type in Sx (M).

Case 1: For all m E M, v Φ m E p, and there i s α G M such that E0(v9α) Λ

£Ί (y, #) G p. Clearly P( v) E p. If x, j satisfy the previous conditions, then there
exists an automorphism of U mapping x and y into each other, and fixing any
further element of U. In particular tp(x/M) = tp(y/M), so that p is uniquely
determined by these conditions. Then there are at most card M1-types over M
satisfying Case 1.

Case 2: For all m E M, -ιEι(v,m) E p, and there is a E M such that
E0(v,a) Ep. Notice that (+) implies that E(M,a) contains only finitely many
£Ό-classes (say / i?o-classes, where t < h). Fix a0 (=a), a{,... ,at^ E Mpair-
wise equivalent in Ex and inequivalent in Eo. For ally < t and x 1=/?, let

aj{p)=CBid(Eo(U9aJ)nEι(U9x));

then α:y (/?) is finite or equals card U. Let x,y in £/ satisfy the incomplete type in
v given by the following formulas:

—uEΊ(v,m) for all m EM,
E0(υ,a0),
P(v) or -ιP(v) provided that P(v) Ep or ->P(f) Ep,
3locj(p)w(E0(w,aj) ΛEI(W,V)) for ally < t with α y(p) finite,
3 > nw(E0(w,aj) ΛE{(w,v))(n E ω) for ally < t with αy(/?) = card U.

Then one can build an automorphism of U interchanging x and j>, and mapping,
more generally, for ally < t, E0(U,aj) ΠEγ(U,x) andE0(U,aj) Π Ex(U,y) into
each other, and fixing any further element of U. Hence tp(x/M) = tp(y/M), and
p is uniquely determined by the previous list of formulas. Then there are at most
2 Ko-card M = card M 1-types over M corresponding to this case.

Case 2': For all m E M, -ιE0(v,m) E p, and there is a E M such that
Eι(v,a) Ep. This case can be handled exactly as Case 2.

Case3: For all m EM, -ιE0(v,m) Ep and —IJEΊ(v,m) Ep. Then permutabil-
ity and (+) yield that -ιE(v,m) Ep for all mEM. Let x,y satisfy the previous
assumptions, and suppose tp(x/0) = tp(y/0) (in particular, \=P(x) if and
only if hP(j>)); then there is an automorphism/ of Umapping x into y (hence
E(U,x) into E(U,y)), and we can assume that/ induces an isomorphism of
E(U,y) onto E(U,x) and fixes any element of M. Then tp(x/M) = tp(y/M).
It follows that at most 2*° 1-types over M satisfy this case.

In general, card(Sj (M)) < 2K° + card M for each M\=T. Hence Γis super-
stable.

Theorem 3 follows immediately from the previous lemmas.

Corollary Let Tbe a theory of two equivalence relations satisfying (+). If
T is ^categorical, then T is ω-stable.
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Proof: This follows from the theorem of Lachlan [4] stating that a superstable

Ko-categorical theory is ω-stable.

Example 3. There exists a theory Γof two equivalence relations E0,Eι satisfy-
ing (+) which is not ω-stable. In fact, consider the theory To such that:

(i) Eo% Eλ (in particular To satisfies (+))
(ii) for all k, n(l), ...,n(k) E ω - {0}, there is a E t/such that, for every

/ = 1,... ,k, Eι(U9a) contains exactly n(i) i?o-classes of power /.

Let Γbe any completion of Γo. Then Γhas at least 2K° 1-types over 0 . Hence
T is not ω-stable.

Example 4. If we drop (+), then we can meet even unstable examples of theories
of pairs of permuting equivalence relations. For instance, let T= Th(M,Eθ9Eι)
where

M'= [(a,b,c) E ω 3 :c = 0 when a > b, c E {0,1} otherwise}

and, for all (a,b9c), (a',b',cf) GM,

E0((a,b,c), (a\b\c')) if and only if a = a\

£Ί((α,6,c), (a\b\c')) if and only if b = b\

Then EOiEχ are permuting (in fact crosscutting) equivalence relations, but (+)
does not hold. Γis unstable, since the subset of M{ά = (#,#,0): a E ω} is lin-
early ordered by

a < 5 if and only if card(E0(M,ά) Π Ex(M,b)) = 2.

3 In this section, T will always denote a theory of two equivalence relations
satisfying (+). Our problem here is to find under which assumptions Γin K0-cat-
egorical. Thus the following proposition arises in a natural way.

(PI) There exists NE ω such that, for all aG U, (E0CiEι)( U,a) has either <N
or infinitely many elements.

In fact, we have

Lemma 3
(1) IfTis Xo-categorical, then Tsatisfies (PI).
(2) If T does not admit thefc.p., then Tsatisfies (PI).

Proof: (1) is a consequence of (2) and the fact that any stable K0-categorical the-
ory does not admit the f.c.p. (see [1]).

For (2), suppose that T does not satisfy (PI); then the formula v Φ w Λ
E0(v9w) AE{(V,W) admits the f.c.p., so that also Tsatisfies the f.c.p.

Thus we can restrict our attention to theories Tsatisfying (PI). For every struc-
ture M = (M,E0,Eι) such that Th(M) satisfies (+) and (PI), we build a new
structure M* of the same language in the following way:

(i) The domain of M* is composed by Mand TV + 1 elements Xi(X0,Xι)
(i < N) for any pair ^Yo^i of classes of E0,Eι in M such that Xo Π
Xι = 0 but, for any α0 E Xo and aλ E X\, M V E(a0,ax).
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(ii) E0,E{ are equivalence relations in M* defined in the obvious way in or-
der to extend the relations of M.

One can easily see that:

(iii) E(M*2) Π M 2 = E(M2);
(iv) Eo and E\ permute in M* (in particular, E is O-definable in M*);
(v) M* satisfies (+) and (PI) (for 7V+ 1).

As we shall see in Section 5, elementary equivalence, categoricity in any in-
finite power, -if.c.p. etc. are preserved under passing from M to M* and vice
versa. Thus there is no loss of generality for our purposes in replacing a theory
Tsatisfying (+) and (PI) with T* = Th(M*) where Mis any model of T. Hence
we can assume that Eo and E\ permute in T.

Furthermore, if Mis any structure with two permuting equivalence relations
satisfying (+), then we can decompose Min the following way:

Af= U (ΛffUAf/)
i<h

where, for all / < Λ,

Mf = {a EM:E(U,a) contains exactly / + 1 classes of Eo],

Ml = # e M - (J Mf: E( U, a) contains exactly i -I- 1 classes of Ex .
V j<h J

Clearly M satisfies (PI) if and only if, for all / < h, Mf and M/ satisfy (PI).
Furthermore this decomposition preserves elementary equivalence, categoricity,
-if.c.p., etc. in both senses (see Section 6 for the details). Hence there is no loss
of generality for our purposes in assuming that in M (and consequently in all
models of its theory) every 2s-class contains exactly h iio-classes.

Thus we will suppose from now on in this section that Γis a theory of two
permuting equivalence relations such that (+) holds and each /s-class contains ex-
actly h Eo -classes.

Let Γbe such a theory. Another necessary condition for the K0-categoricity
of Γis the following.

(P2) For all a0,... ,αΛ_i G {1,... ,7V, card U}9 there is N(a0,... ,άΛ_i) G ω
such that, for all a0,... ,#Λ_I G ί/pairwise equivalent in E{ and inequiva-
lent in Eo, the power of the set of Eγ -classes X in U satisfying card (X Π
E0(U,aj)) = ocj for ally < h is either <N(ao, ><*Λ-I) or infinite (and
hence = card U).

Theorem 4 Let T satisfy the previous assumptions. Then the following propo-
sitions are equivalent:
1. T is ^-categorical
2. T does not satisfy the /. c.p.
3. Tsatisfies (PI) and (P2).

Proof: 1. => 2. It suffices to recall that no stable K0-categorical theory satisfies
the f.c.p. (see [1]).

2. => 3. We already saw that, if Γdoes not have the f.c.p., then Tsatisfies
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(PI). It remains to show that the same holds for (P2). Recall from Shelah [9] that
the -if.c.p. fails exactly when there is a formula φ(v9 v\ w) such that

(i) for all a E £/, φ(v9υ\ά) defines an equivalence relation,
(ii) for all n E ω, there is a(n) E C/such that φ(υ,υ',a(n)) has finitely many

but >n equivalence classes.

Therefore it suffices to show that, if Γdoes not satisfy (P2), then such a for-
mula φ(v, υ\ w) can be found. Let αo> >«Λ-I be a counterexample to (P2),
and w denote (vv0,..., wΛ_j); put

ϋ(vfw): Λ (Eι(wifWj)Λ-*E0(wi9Wj))Λ Λ HotjZ(E0(Wj,z) ΛE{(V,Z))
i<j<h j<h

(where 3! card U means 3 > N),

φ(v,v'9w): (ΰ(v,W) Λ ϋiυ'^ΛExiVtV')) v (-iϋ{v,w) Λ ^ϋ(υ\w)).

3. => 1. Assume that Tsatisfies (PI) and (P2). Let Mbe a denumerable model
of T,X be a class of is in M; we wish to characterize the isomorphism type of
^(considered as a structure with two equivalence relations Eθ9Eχ). Notice that
a similar analysis can be done even when M = U, provided we replace Ko with
card U. First, let us sketch informally our argument. Λ^can be viewed as a ma-
trix with entries from {1,2,... ,7V,Ko), whose rows correspond to the iso-classes,
and whose columns correspond to the Ex -classes; hence there are h rows and
countably many columns. Any entry gives the power of the intersection of the
corresponding £Ό-class and Ex -class; so any column is described by a sequence
(αo> >«Λ-I) from (1>2,... ,Λf,K0}, and JΠs given by a function telling how
many columns of each type there are. Now let us make our argument more pre-
cise. Let F be a bijection of h onto the set of ^-classes of X, define a function
f = f(X,F) of {1,. . . ,Λr,K0}

Λ into ω U {Ko} by setting, for all ctOf... ,cth-ι E
{l,...,Λί,K0},

f(a0,... ,oίh_ι) = power of the set of E{-classes Yζ Xsuch that, for all
j< A, card (YΠ F(j)) is α y .

Notice that

( a ) / * 0 ;
(b) for all αo». »«Λ-i Ξ {1,... ,A ,̂K0}, either / ( α 0 , . . . ,αΛ_i) < N(a0,

. . .,αΛ_i) o r / ( α 0 , . . . ,«Λ-I) = ^o

(in particular, there exist at most finitely many functions f(X,F)). Clearly,
f(X,F) depends not only on X but also on F Hence let / = f(X,F), / ' =
f(X,Ff) where F, F' are bijections of h onto the set of Eo-classes of X. Then,
for allαo,.. . ,«Λ-I ^ U> .,^V,H0}, we have

/(αO» >«Λ-l) =//(«σ(0)» f«σ(Λ-l))

where σ is the permutation on h defined by σ = F'~ιF In the set Φ of all func-
tions of {1,. . . ,N,X0}

h in ω U {Ko} satisfying (a) and (b), consider the follow-
ing binary relation ~ : if f,g E Φ, t h e n / - g if and only if there is σ E Sh such
that Vαo> . ,α Λ _i E {1,. . . ,N,Xo}9f(aOi. . . , α Λ _ i ) = g(ασ(θ)>.. ,«σ(Λ-i))

Clearly, ~ is an equivalence relation on Φ; moreover, for every is-class X of
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a denumerable model of Γ, and for every pair F9F
r of bijections of h onto the

set of £Ό-classes of X9f(X9F)~ f(X9F').
We claim that, if M9M' are denumerable models of T, and X,X' are E-

classes of M,M' respectively, then

JT^ΛΓ'if and only if/-/'

where f = f(X,F),f =f(X',F') and F9F' are bijections of h onto the set of
Eo-classes oϊX9X

r respectively (owing to what we noticed above, the choice of
F9F' is inessential).

First, a s sume/-/ ' ; then there is σ G Sh such that, for all a0,... ,«Λ_i G

{1,...,7V,KO},

f(<x0,... ,αΛ_i) = /'(ασ(0)> ,«σ ( Λ_i)).

Put F " = F'σ~ι

9 hence F " is a bijection of h onto the set of £Ό~classes of X'\
let/'' =f{X',F"). Then, for all αo> . ,α Λ _! G {1,... ,JV,K0},/"(α0,... ,αΛ_i)
is the power of the set of £1-classes 7 ' c ^ ' such that, for all j < h, card
(Yf Π F"(y)) = oίj, and hence is the power of the set of Ex-classes Y' Q X' such
that, for ally < Λ, card (Y' Π F\j)) = aσU). Then

/ " ( α 0 , . . . ,«Λ-I) =//(ασ(θ)> .»ασ(Λ_i)) = / ( α θ 5 >«Λ-I).

Consequently there is/" =f(X\F") such t h a t / = / " . Without loss of general-
i t y , / = / ' . For all α o , . . ,«Λ-I G {1,... ,7V,K0}, there is a bijection of the set
of E\-classes Yof Xsuch that, for ally < h, card (y Π F(j)) = αy onto the set
of Ex-classes 7 ' of X' such that, for ally < h, card ( y Π F'O)) = αy. For ev-
ery Ex -class r of X (with card (Y Π F(y)) = α, for all j < h), let 7 ' be the Ex -
class of X' corresponding to Y. Then there is a bijection of Y Π F(y) onto
y Π F'(y') for ally < h; by combining these bijections, it is possible to build
an isomorphism of Fonto Y'. A similar union provides an isomorphism of X
onto X'.

Conversely, let / be an isomorphism of X onto X'. If F is a bijection of h
onto the set of iio-classes of X, then iF is a bijection of h onto the set of Eo-
classes of ΛΓ. Put / = f(X,F), / ' = f{X'JF). Then, for all αo> ,«Λ-I Ξ
{1,... ,ΛΓ,Ko},/(«o,... ,αΛ-i) =/ '(αo, ^ Λ - I ) - It follows that/ = / ' . (No-
tice that we have also proved that, if/' =f(X'9F'),fe Φ a n d / - / ' , then there
exists/" =f(X\F") such that/ = /".)

Finally, let us show that, if M,M' are denumerable models of Γ, then M -
M'. For all n G ω U {Ko}, put

( « if « G ω,

card U iϊ n = Ko.

Let/G Φ, w = (vv0,..., wΛ_!), and consider the following formulas:

(i) <p/(w) is the conjunction of
Λ (Eχ(WhWj) Λ -*E0(Wi9Wj))

i<j<h

and the formula assuring that, for all a0,... ,0:^-1 G {1,. . . 9N9 card
(7), there exist exactly f(a0,... ,αΛ_i) elements Λ: G ί/pairwise inequiv-
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alent in E\ such that, for any j < h, card (Ex (U9x) Π E0(U, wy)) = αy (it
is easy to see that this proposition really can be written by means of a
first-order formula),

(ii) φ/{υ) is the formula 3w (<p/(w) ΛE(WO,V)).

Claim 1 Iff G Φ, M is a denumerable model of T and a G M, then M 1=
<Pf(β) if and only if there is a bijection F of h onto the set of E0-classes of
E(M,a) such thatf = f(E(M,a),F).

The proof of this claim is straightforward.

Claim 2 ///,/ ' e Φ, andf~f\ then T\=W (φf(v)«+ φr(υ)).

Let a G U be such that \=φf(a), and let M be a denumerable model of Γ con-
taining a. Then there is Fsuch thztf=f(E(M,a),F) (Claim 1). As/' - / , there
is/" such that/' =f(E(Mia)iF

/). Then M¥φr{a).
In particular, if/,/' G Φ , / - / ' and 7> -. (3t;^/(t;)), then ΓN -i (3i;^(t;)).

Claim 3 Let ff G Φ be such that T \= lvφf(v) and T N Vt; (<^/(ι;) <->
^(i;));^«/^/'.

Let Mbe a denumerable model of Γ, a G M, M t= φ/(a). Then M t= φ/>(a), so
that there are/^F' satisfying/=/(£(M,ύr),F),/' =/(£'(M,α),F'). It follows
that/-/'.

Therefore T is able to recognize

(i) which isomorphism types of ̂ -classes occur in its denumerable models
(in fact, these isomorphism types correspond to the functions/G Φ satis-
fying T)r 3v φ/(v); we point out that there are finitely many);

(ii) when two functions//' G Φ correspond to the same isomorphism type
(in fact this happens exactly when T^3vφf(v)ΛW(φf(v)<-κpf>(υ)));

(iii) how many times an isomorphism type is represented (this is given by the
maximal number of elements pairwise inequivalent in E satisfying φ/(v)
where/ is any function of Φ corresponding to the isomorphism type).

Then, if M, M' are denumerable models of Γ, it is easy to build an isomorphism
between M and M'.

4 The aim of this section is to characterize #ι-categorical theories and, more
generally, nmd theories of two equivalence relations satisfying (+). The next
lemma shows that all these theories are K0-categorical.

Lemma 4 Let T be a theory of two equivalence relations satisfying (+). If
T is nmd, then T is X0-categorical. In particular, if T is ̂ rcategorical, then T
is ^Q-categoricaL

Proof: It is well known that, for every theory T,

Γis Kj-categorical => Γis nmd and superstable => T satisfies -if.c.p.

But in our case Γis superstable (Theorem 3), and Γdoes not admit the f.c.p. if
and only if Γis K0-categorical (Theorem 4). Then Lemma 4 follows immedi-
ately.
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Thus we can assume that T satisfies the characterization of K0-categorical
theories we gave in the last section. Moreover, as we already did in Section 3,
we can assume that EQ,Eι permute and every is-class contains exactly h Eo-
classes (the justification of these further assumptions will be given in the next sec-
tions).

Notation: For every / E Φ, let v(T,f) denote the power of the set of ^-classes
of U whose isomorphism type correspond to /.

Notice that either v(TJ) < Ko or v(TJ) = card U.
Let M be a model of T; it is easy to see that any nonalgebraic 1-type/? over

Mis fully determined by one of the following list of conditions:

(a) vΦm Epfor allra GM; E0(v,a) /\Eι(v,a) E/? for someαEMwith
(EonEι)(M9a) infinite.

(b) -iEι(v,m) E p for all m E M; for some / E Φ, α 0 , . . . , « Λ - I Ξ
{1,...,7V,XO} w i t h / ( α o , . . . , α A - i ) = Ko,

 a n d aθ9...9ah-X E M such
that )r<Pf{a),

E0(v9a0) Ep,

3lajW(E0(w,aj) ΛEI(V,W)) Ep for ally < Λ.

(c) -ιE0(v9m) Gp for all m E M; for some/E Φ with v(T9f) = card U9

αoί .ϊOtΛ^G {1,.. ,Λ ,̂K0} such that /(α o , . . ,αΛ_i) * 0 , p contains

3W(ι; = W O Λ ^ / ( W ) Λ Λ aία/ZίίΌίw/^ίΛ^iίw/,^)).

Lemma 5 Let M V T, A 2 M, p ' E Sx (A), p = p' \ M.
1. If p satisfies (d), then p' forks over M if and only if there is x E A such that

v = xEp/;
2. if p satisfies (b), then p' forks over M if and only if there is x E A such that

Eι{υ9x)ep';
3. ///? satisfies (c), ίΛe^ p ' /or/:5 over M if and only if there is xEA such that

E(v,x)Ep'.

Proof: 1. (<=) is obvious, since p' represents v = w which is not represented by p.
(=>) Let y,y' realizep with y,y' $. A, The previous analysis of (a) provides

an automorphism of U mapping y into y', and fixing in particular any element
of A. Then tp(y/A) = tp{yf/A). Hence there is a unique extension of p in
Si (A) containing v Φ x for all x E A, and this extension must equal the heir p\A
of p. Consequently, when p' Φp\A, there exists x E A such that v = x E p'.

2 and 3 can be shown in a similar way.

Lemma 6 Lei M1= Γ,p, g 6e nonalgebraic l-types over M,pφq. Then p /
q if and only if one of the following conditions holds:
1. -ι£Ί(ι;,m) E p Π q for all m E M; ίλere are α 0 , . . . ,tfΛ_i E M pairwise

equivalent in Ex but not in Eo, and a0,...,αΛ_! E {1,... 9N9 card U] such
that E0(v,a0) E p, E0(v,aι) E q and, for all j < h, "card (E0(U,aj) Π
Eι(Uiv)=af EpΠq;

2. -~>E(v,m)EpΓ) qfor all mEM, and there isfE Φ such that φf(v)EpΠq.
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Proof: Let x 1= q9 A = M U [x}9 then /? / q if and only if there is /?' G SΊ (v4)
such that/?' ^/? but/7' forks over M. First let us show that, ifpjLq, then 1 or
2 holds. We shall use Lemma 5, distinguishing three cases.

1st case: p satisfies (a). If/?' GSi(A)9p
/ Ώp and/?' forks overM, then there

is y GA such that ^ y G / ? ' (hence y 1=/?); as /? is nonalgebraic, j> = x; then

p = q

2nd case: p satisfies (b), in particular/? is defined by the formulas E0(v,a0)9

-ιE{(v,m) for all m GMand

3lajW(E0(w,aj) AEX(V,W)) (j<h)

for a suitable choice of aj9<xj(j < h). Let/?' G Sχ(A) extend/? and fork over M;
then there is y G M U {x} such that Ex(v,y) G /?'; furthermore, y = x as
-i£Ί(f,m) G/? for all m G M; hence -^Eχ(v9m) G # for all m G M9 there is
/ < Λ such that £o(*>»0ι) Ξ (7, and for ally < h "card (E0(U,aj) Π ̂ (C/,1;)) =
α y" G (̂  as p Φ q, we have / ^ 0 ; with no loss of generality, / = 1.

3rd case: p satisfies (c). Let/?' G Si (A) extend/? and fork over M; then there
isy EMU [x] such that E(v,y) G/?'; as above,y = x9 hence -*E(v9m) Eqϊor
all m G M and φf{υ) G q where/ is the function associated to/? in (c).

Conversely, assume that 1 or 2 holds; we claim that there is /?' G S! (^4) ex-
tending p and forking over M.

If 1 holds, then takey G E0(U,aQ) Π £ j ( L U ) and set/?' = ί/?(y/A). Then
/?' 2 /?, but /?' forks over M a s p satisfies (b) and E{ (v9x) G /?'.

If 2 holds, then let Jc,j?,/ G U be such that l=v?/(x) Λ E(X9X0), tYp and
H^/ίί') Λ E(t,y0). With no loss of generality, we can assume x = xθ9 t = y{

for a suitable / < Λ. For all y < h, let jSy G {1,. . . ,N,X0) be such that j3y =
card((£ 0 Π £i)( t/ ,^ y )); t h e n / ( / 3 0 , . . . ,j8Λ_i) > 0 and there exists y G E(U9x)
such that, for ally < h,

c2Lrd(E0(U9Xj)nE1(U9y))=βj.

We can assume y G E0(U9Xi); let /?' = tp(y/A). Then /?' 5 /?, in fact, if σ
denotes the permutation (z'O) G SΛ, then/? is fully determined by the formulas
-ιE(v9m) for all m G Mand, furthermore, by the sequence

(^(θ),...,i8σ(Λ-i))e{l,...,iV,Ko}Λ

together with the function g G Φ such that, for all aθ9... ,a^-i G {1,... ,Λ^,K0),

g(αO> ><*Λ-l) =/(«σ(0)» »ασ(Λ-l))

Moreover /?' forks over M since E(v,x) Gpr.

Theorem 5 Let The a theory of two permuting equivalence relations satis-
fying (+) and such that every E-class contains exactly h E0-classes. Then the fol-
lowing propositions are equivalent:
(i) Tisnmd

(ii) T is ^-categorical, for all f G Φ with v(T9f) > 0 and α 0 «Λ-I e
{1,...,JV,KO},
• if there is j < h such that α, = Ko or v(T9f) = card £/, ίΛefl /(αo> >

α Λ _ i ) < Λ ^ ( α o > ,«Λ-i);
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if there isj<h such that aj = Ko and v(T,f) = card U, thenf(aθ9...,
αΛ-i)=0.

Proof: (i) => (ii). We already saw that, if Γis nmd, then Γis K0-categorical. Let
MQ denote the (unique) denumerable model of Γ. Thus, for all M \= Γand for
allnonalgebraic/?GSi(M),/?/M0. Let/GΦ, α0,.. . ^ ^ G ( 1 , . . . ,N,X0],
v(TJ)>0.

Assume/(α 0 , . . . ,αΛ_i) = Ko, α, = Ko for some j < h. Let α0,... ,αΛ_! G
M o satisfy \=φ/(α), and x G U satisfy the type # given by

v Φ m G q for all m G Mo,

3!α/2(£0U,ff/) Λ £ Ί ( Z , I ; ) ) G # for all / < Λ.

Let Mbe the model of Tprime over MU [x] (Γis K0-categorical, hence ω-sta-
ble), and consider the 1-type/? over M defined by

υ Φ m G p for all m G M,

£O(*>>*)Λ£I( ! ; ,X) G/7.

Then Lemma 6 implies p ± Mo—a contradiction. Hence, if αy = Ko for some

j < h, then/(α O ί ,«Λ-I) < «o

Similar arguments show that, if v{T,f) = card t/, then/(a 0, . ,«Λ-I) < Ko

and, if both αy = Ko for some j < h and v(T,f) = card (7, then f(α0,...,

«Λ-I) = 0.
(ii) => (i). Let Mo denote the denumerable model of Γ. We have to show that,

if (ii) holds, then, for every MYTand for every nonalgebraicp G 5Ί(M), p jL
M o . This follows easily from Lemma 6.

Theorem 5' Let Tbe as in Theorem 5. Then the following propositions are
equivalent:
(i) T is $ι-categorical;

(ii) T is ^-categorical and satisfies one of the following conditions:
1. There exists exactly one —class of functions f E: Φ satisfying v{Tyf) =

card U, and, for all f G Φ with v(TJ) > 0 and a0,... ,αΛ_i G {1,...,
NfKoL/(«<)>• ,«Λ-I) < A^(αo» . . , « Λ - I ) (άnd = 0 when there is j <
h such that α y = K o ) ;

2. for all f EL Φ, ^ ( Γ , / ) < Ko; there exist g G Φ w/YΛ v(T,g) > 0 ύr^rf ά =

(aθ9...9ah-ι) G {l,...,Λ^,K0}
Λ5i/cΛ that either

for all j < h oίj < Ko ̂ Azrf g(ot) = Ko

or

/Λere isj < h such that αy = Ko and g(ά) = 1

while, for all f E Φ and β = (βθ9.. .,βh-i) € { 1 , . . . ,7V,K0}
Λ w/YΛ

^(Γ,/) > 0 andf* g or β Φ a, f(β) < Ko andf(β) = 0 wΛe« ίΛerβ fe
j < hsuch that βj = Ko.

Proof: Notice that Theorem 5 implies that, if T is unidimensional, then T is
ω-stable. Hence Γis Krcategorical if and only if Γis unidimensional, namely if



STABILITY 125

and only if, for all M t= Tand for all nonalgebraicp,q E Si (M), p jL q\ 1 and
2 just provide a complete list of all cases in which this property holds.

In [10] it will be shown that, if Γis any theory of two equivalence relations
satisfying (+), then Γis classifiable according to Shelah, and Dp T<3. Theo-
rem 5 provides a complete characterization of all theories T satisfying Dp T =
1. It may be interesting to point out that also the remaining cases (Dp T = 2,
DpT=3) occur for K0-categorical T.

Suppose that Dp T =2; then it suffices to assume that Eλ ^Eo, and there
is a unique class of Eo, containing infinitely many E\-classes, all infinite. Sup-
pose instead that DpT=3; then it suffices to assume that Ex^EQi moreover
Eo admits infinitely many classes, each class of Eo contains infinitely many
classes of E\, and each class of E\ is infinite.

5 In this section we will pay the first debt we contracted in Section 3, when
we associated to any structure M with two equivalence relations Eθ9Eι satisfy-
ing (+) and (PI) a new structure M* of the same language.

We said that there is no loss of generality for our purposes in replacing M
with M*. The aim of this section is to explain why. We tacitly assume from now
on that M,M' denote structures with two equivalence relations satisfying (+) and
(PI). Notice that, if Mis such a structure, then Mis 0-definable in M*, for in-
stance by the formula

-i(i\N+ 1 z(E0(υ,z) ΛE^V.Z))).

Lemma 7
(1) For allM, M\_M=M' if and only if M* = M'*. _
(2) For all M, if M Ξ Af *, then there is M' = Msuch that AT* = M.

Proof: (Sketch) (1) (*=) follows from the fact that Mis 0-definable in M*.
(=>) can be shown, for instance, by recalling that the first-order language for

our structures contains only finitely many extralogical symbols and hence = =
—ω (see [3]). We leave to the reader the straightforward proof of the fact that,
if M = ω AT, then M* ^ ω AT*. _

(2) Just set AΓ_= (JC G M: card ((Eo Π Ei)(M,x)) Φ N+ 1} with the struc-
ture induced by M.

In particular, if T= Th(M) and T* = Th(M*), then the models of T* are
just the structures A/'* where M' f= T.

One can easily see also that, for all M,M',

(i) any elementary embedding of M* into AT* contains an elementary em-
bedding of M into M'\

(ii) conversely, any elementary embedding of M into M' can be extended to
an embedding of M* into M'*, and this embedding is elementary, too.

Lemma 8 For all M,
(1) M is ^-categorical (^ι-categorical) if and only if M* is
(2) M is ω-stable if and only if M* is
(3) M is nmd if and only if M* is
(4) M does not have thefc.p. if and only if M* does not have thefc.p.
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Proof: First notice that, if ί/is the universe of T= Th(M)9 then U* is the uni-
verse of T* = 7%(M*).

(1) follows from the remark that M is infinite if and only if M* is and, in
this case, Mand M* have the same power.

(2) (*=) is a consequence of the fact that Mis O-definable in M*; (=») can be
shown by using a trivial counting types argument.

(3) It is simple to see that, for all x,y E U9

tp(x/M) = tp(y/M) (in T) iff tp(x/M*) = tp(y/M*) (in 71*),

tp(x/M) _L tp(y/M) (in Γ) iff tp(x/M*) J_ //?(j>/M*) (in Γ*).

On the other hand, any nonalgebraic 1-type over M* is jL to some type over M*
containing "i; G I/". As this holds for all M' N Γ, it follows that Γis nmd if
and only if T* is.

(4) (<=) follows again from the fact that Mis O-definable in M*. (=>) Assume
that M does not satisfy the f.c.p.; we have to show that neither does M*. We
will use the Poizat criterion [7] saying that, if T is a stable theory, and Tx is the
theory of nice pairs of models of T, then Tx is complete, and T does not have
the f.c.p. if and only if any ωx-saturated model of Tx is a nice pair. As above,
put T= Th(M)9 Γ* = ΓΛ(M*), and consider Tx and (T*)x: both of these the-
ories are complete, as Γand T* are superstable. We know that any ωx -saturated
model of Tx is a nice pair of models of T9 and we claim that the same holds
for T*.

First notice that, if (MQ,Afι) is a pair of models of Γsuch that Mx < Mo,
then (Mo ,Λf*) is a pair of models of Γ* again satisfying M* < Mo moreover
(MO,MX) is a substructure of (M0*,Mf). Furthermore, if (MOfMx)9 (Mό,M{)
are such pairs of models of Γ, then (MO,MX) = (MQ9M{) if and only if (MQ ,
Mf) = (Mό*,Mi*), and any pair (M0>^7i) of models of T* with Mx < Mo is
isomorphic to (Mo,M*) for some pair (Mθ9Mx) of models of T such that
Mj < M o .

In particular, all pairs (MQ,MX) with (Mθ9Mx) t= 7̂  are elementarily
equivalent; let (Tx)* denote their theory.

Claim (Γ1)* = (Γ*) 1.

As (T*)x is complete, it suffices to show that, if (Mo,M!) is a nice pair of mod-
els of Γ, then (Mo ,Mf) is a nice pair of models of T* (for, in this case, every
model of (Tx)* is elementarily equivalent to (MQ,MX) for some nice pair
(Mθ9Mx) of models of Γ, and consequently is a model of (T*)x; hence (T*)XQ
(Tx)* and, finally, (T*)x = (Tx)*). We already saw that Mo* > Mf. Then we
have to show that:

(a) M* is ωi-saturated
(b) for all ά G M o , every type over M* U a (in T*) is realized in Mζ.

Proof of (a). Let X* be a countable subset of Mx*9pe Sx (X* )9ySU realize
/?. Let X be the union between X* Π Mi and the set one gets by choosing, for
any element xEX* - Ml9 two elements a9bGMx such that xGE0(Mx 9a) Π
Ex (M*,b) (and taking #,ό in X* if possible). Then X is countable, and Jf £
M L
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If y G U, then there exists y0 G Mγ satisfying tp(y/X) in Γ, hence there ex-
ists an automorphism of U mapping y into y0 and fixing any element of X. One
can easily extend this automorphism to an automorphism of U* fixing any el-
ement of X*. Then y0 t=/λ

If y <£ U, let yo,y{ G ί / b e such that y G E0(U*,y0) Π Ex(U*,yi)\
Φ(yo>y\/X) i n T'\§ realized in M\, say by yό,y{, hence there is an automor-
phism of Umapping yo,y\ into yό,y{ and fixing any element of X; extend it to
an automorphism of U* fixing every element of X*; the image y' of y in this
automorphism belongs to M* and realizes p.

(b) can be shown in a similar way, and this concludes the proof of the claim.

Consider now any ω!-saturated model of (T*)x = (ΓO*; without loss of
generality, this model is of the form (MQ,M*) where (M0,Mι) f= 7^. More-
over (Mθ9Mι) is ω{-saturated, as (MOfMι) is O-definable in (MQ,M*). Then
(M0,Mι) is a nice pair of models of Γ, and hence (MQ,M*) is a nice pair of
models of T*.

Therefore T* does not have the f.c.p.

6 We have to pay the second debt we ran into during the previous sections,
when we decomposed any structure M with two equivalence relations EOiEι
satisfying (+) and permuting in the following way:

M= U (M?UM/)
i<h

where, for all / < h, Mf — {aEM:E(U9a) contains exactly / -I- 1 classes of Eo]
and M/ = {aGM — Uj<hMf :E(U,a) contains exactly / + 1 classes of Eγ}, and
we agreed to replace M with M% in our analysis.

In fact, as Mf,M} are O-definable in M for all / < Λ, it is straightforward
to show:

Lemma 9 Let M be as above, then
(1) ifMr = M, then M/e Ξ= Mf for all i < h and e G {0,1);
(2) ifM[e s Mi for all i < h and e G {0,1} and M' = U/,c Λf/% then AT = M;
(3) M is $o~categorical if and only if for all i < h and e G {0,1}, Mf is Ko-

categorical;
(4) M is K i-categorical if and only if for all i < h and e G {0,1}, Mf is finite

or Xι-categorical, and Mf is £Γcategorical for exactly one choice ofi and e;
(5) M is ω-stable if and only if for all i < h and e G {0,1}, Mf is ω-stable;
(6) M is nmd if and only if for all i < h and e G {0,1}, Mf is nmd\
(7) M does not satisfy thef c.p. if and only if for all i < h and e G {0,1}, Mf

does not satisfy the f c.p.

(As regards («=) of (7), use Theorem 4, which is satisfied by Mf for all / < h and
e G {0,1}, and the fact that any K0-categorical stable theory does not have the
f.c.p.)
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