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On Type Definable Subgroups
of a Stable Group

L. NEWELSKI

Abstract We investigate the way in which the minimal type-definable sub-
group of a stable group G containing a set A originates. We give a series of
applications on type-definable subgroups of a stable group G.

1 Introduction It is not known how to construct a stable group “ab ovo”.
The stability of a given group structure is deduced usually from some stronger
properties, for example the group’s being abelian-by-finite, or definable in some
stable structure. So at least one could wonder what type-definable subgroups of
a stable group G are possible to obtain. We address this problem here. In a way,
our results generalize Zilber’s ideas (cf. Zilber [12]) on generating subgroups by
indecomposable subsets of an w-stable group G.

Throughout, we work with a stable group G = (G, -, e), which is sufficiently
saturated (i.e., G is a monster model). L is the language of G. Given a type-
definable subset A of G we know that there is A, the minimal type-definable sub-
group of G containing A (cf. Poizat [9]). We investigate here the relationship be-
tween A and A. For simplicity, usually we consider A which is type-definable
almost over J. A finite set A of formulas of L is invariant under translation if
it consists of formulas of the form ¢(u-x-v; ) (u,v, ¥ are parameter variables
here). Except in Section 2, A with possible subscripts will denote a finite set of
formulas invariant under translation. One of the basic concepts of stable group
theory is that of generic type, due to Poizat ([9]; see also Hrushovski [4]). Re-
call that if H is a type-definable subgroup of G then a strong 1-type r of elements
of H is generic (for H) iff for every A, Ry(r) = Ry(H), where R, is the Morley
A-rank (see Wagon [11]). Notice that as A is invariant under translation, R, also
is invariant under translation, meaning that for each definable subset X of G and
a € G, Ry\(X) = Ry(a-X) = Ry(X-a). (This is the idea of “stratified order”
from [9]; cf. also [4].) Let N{ltA denote the Morley A-multiplicity. R, (a/A) ab-
breviates R, (tp(a/A)). Let R(p) denote (R, (p): A € L is finite and invariant
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under translation). 13( p) =< ﬁ(q) means that for every A, Ry(p) < Ro(q). Let
gen(H) denote the set of generic types of H. H is the connected component
of H. We give a description of gen(A4) in topological terms, and prove some cor-
ollaries. We formulate also some open problems. Recall the following remark
from [4], which can be taken as a definition of generic type.

1.1 Remark Assume H is a type-definable subgroup of G. Then r, a strong
1-type of elements of H, is generic for H iff for every b € H and a satisfying r|b,
a-blb.

In our notation we usually follow Baldwin [1] and Wagon [11]. For back-
ground on stable groups see [9], [4], and Hrushovski [5]. By [11] we have

1.2 Remark a | X iff for every A, Ry(a/X) = Rp(a).

1.2 gives a rank equivalent for the forking relation. However this equivalent has
one drawback. Condition R, (a/X) = R, (@) may involve formulas not in A, as
it may happen that R, (tpa(@)) > Ry ( a),In 1.3 we give another characterization
of forking. Let RA(p) = Ry(p|A) and R’(p) =(RA(p):ACSL).rin R} stands
for “restricted”.

1.3 Lemma Assume A € B. If R’(a/B) R’(a/A) then a | B(A) More-
quer, if for some model M < A, a | A(M), then a | B(A) implies R’(a/B)
R’(a/A)

Proof: The first part follows by [11], Section III. By Lachlan [7], if p € S(M)
then Mty (p|A) = 1. This implies the “moreover” part.

2 A theorem For simplicity we work here with sets type-definable almost
over the empty set of parameters, however all the proofs generalize immediately
to the case of arbitrary set of parameters. “Type-definable” will always mean in
this section “type-definable almost over &J”. Let S be the set of strong 1-types
over &, with the standard topology 7. Notice that there is an obvious correspon-
dence between closed subsets of S and type-definable subsets of G. By the open
mapping theorem, the mapping p — p = p| G is a homeomorphic embedding of
S into S(G). We equip S with the following strong topology 7’. Let (I,<) be a
directed set (i.e., < is a partial order on I and for all @, b € I there is ¢ € I with
c=a,b) and p ={p;,i € I) be a net of types from S. We say that p is strongly
convergent to g € S (or: q is a strong limit of p, g = slim p) if for every A there
is i € I such that for every j € I, j = i implies p;|A = ¢|A. In particular, a strong
limit of p is a limit of p in the usual sense. To distinguish between 7 and 7/, all
topological notlons regarding 7’ will be called strong. Notice that if g is a strong
limit of p then R’(q) is a pointwise limit of R’( Di),i€l. Forpe Slet Ry(p) =
Ri(p) and let R'(p) = (Ri(p):A S L.

We define binary operation * and unary operation ~! on S as follows. For
D,q €S, p*q=stp(x-y) and p~! = stp(x~!), where x, y are independent re-
alizations of p and g, respectively. Clearly this definition does not depend on a
particular choice of x and y. Similarly we define * on S(G). Notice that g =
p * riff ¢ = p = 7. Differing somewhat from the common notation, we let p”
denote p *...* p (ntimes), and p™" =p~' % ... % p~! (n times). If Pis a set
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of types then let P(A) denote the set of elements of A4 realizing some type from
P. For P < S let {(P) be the minimal type-definable subgroup of G containing
P(G). Clearly (P) is type-definable almost over & anyway. If P={p,,...,p,},
then we write {p;, ..., p,) instead of (P). Theorem 2.3 below explains how {P)
is formed. Let cl(P) denote the topological closure of P, and let *P denote the
closure of P under *. Let gen(P) be the set of r € cl(*P) such that there is no
q € cl(*P) with R, (r) < Rx(q), with some of the inequalities strict. As in [4]
we have

2.1 Fact If P < S is nonempty then gen(P) is nonempty, too. Moreover,
gen(P) is a closed subset of S.

Following [4], for p € Sand x € G let *p = r * p, where r = stp(x). For PS S
let *P = {*p:p € P}.

2.2 Lemma
(@) = is associative and continuous coordinate-wise.
(b) If P < S is closed, then for every x € G, *P is closed, too.
(©) Ra(p*q) = Ra(p), Ra(q).
(d) Ri(p*q)=Rr(p),Ri(q).

Proof: (a) That * is continuous coordinate-wise follows by the open mapping
theorem from Lascar and Poizat [8]. (b) follows from (a) and the fact that S is
compact. (c) and (d) are easy.

2.3 Theorem Assume P is a nonempty subset of S. Then {(P) = {x € G:
*gen(P) = gen(P)}. Also, gen(P) is the set of generic types of (P).

The rest of this section is devoted to the proof of this theorem. So we fix a
Pc 8. If p,q € S satisfy p(G),q(G) S (P), then also p * g(G) < (P). Also,
if Q € S and Q(G) < (P) then cl(Q)(G) < (P). Hence the set cl(*P) is our first
approximation of (P): we know that cl(*P)(G) € (P). It is surprising to find
out that this is quite a good approximation: by 2.3 all generics of (P) belong to
cl(*P), hence 2.3 implies in fact (P) = cl(*P)(G) -cl(*P)(G) (XY is the com-
plex product of X, Y € G). First notice that iteration of cl and * does not increase
cl(*P) anymore.

2.4 Fact *cl(*P) = cl(*P).

Proof: Let p,q € cl(*#P). It suffices to prove that within any open U contain-
ing p * g, there is r from *P. By 2.2, if g’ is close enough to g then p * q’ be-
longs to U, and for fixed q’, if p’ is close enough to p then p’ * ¢’ belongs to
U. We can choose p’ and g’ from *P, so we are done.

Let p=|L|, and let A,, o < u, be an enumeration of finite sets of formu-
las in L invariant under translation. We define by induction on « < u closed sub-
sets P, of cl(*P) as follows. Py = cl(*#P), Py = \,<s Py for limit 8. P, is the
set of p € P, such that R, (p) = Rs_(P,(G)). Notice that if we start with P =
S, then this procedure leads to P, = gen(G) (cf. the introduction to [4]), whence
P, does not depend on the particular choice of A,’s in this case. We will see that
this is always true, i.e. that P, = gen({P)), and so does not depend on the choice
of A,’s.
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Let n, = Ry, (P (G)) and k, = Mlt, (P,(G)). Let ¢, ;(x), i < k,, be dis-
joint formulas almost over & of A,-rank n, and A,-multiplicity 1 with P, ) €
Ui ¢4,i(G). Define ¢, ; ,(x) as ¢,,i(a-x). Let X ={a € G:°P, = P,}.

25Claim X =(\,<,{a € G: foreach i < ky, Rr (¢4,i,.(G) N P,(G)) =
ny}. In particular, X = {a € G:“P,< P,}, i.e. °P, S P, implies °P, = P,.

Proof: Notice that if P, S P, then for each o and i, Ry _(¢q,;,.(G) N P,(G)) =
n,, hence a € X, and we are done.

Notice that “R,_(¢4,i,.(G) N P,(G)) = n,” is a definable almost over &
property of a. Indeed, Ry (¢q,i,a(G) N P,(G)) = n, iff for some (unique) j,
Ry (€4,i,a(G) N @4, j(G)) = n,, the latter property of a being definable over
the parameters of ¢, ;,j < k,. Also, X is closed under taking inverses. In par-
ticular we get that X is a type-definable almost over & subgroup of G. The next
lemma concludes the proof of 2.3.

2.6 Lemma P(G) € X, also P, is the set of generic types of X. In particu-
lar, X = (P), P, does not depend on the choice of A,’s, n, = Ra,, (c1(*P))(G)
and P, = gen(P).

Proof: If p € P and q € P, then we have p * g € cl(*P) = P,. By induction on
a < p, by 2.2(c) we see that Ry (p * q) = n,, i.e. p * g € P,. This shows that
P(G) € X. X is type-definable, hence also (P) € X, and in particular P,(G) S
X. If r is a generic type of X then we have r * P, = P,, hence by 2.2(c) and our
definition of generic type, n, = Ry, (X) = Ra_(r), and each type from P, is
generic for X. We need to show yet that every generic of X belongs to P, (this
will imply X < {P), and finish the proof). Let r € gen(X) and p € P,. Let ¢ =
r*p.So q € P,. Let a,b be independent realizations of r, p respectively and
= a-b. By 1.2, looking at the A, -ranks of tp(c/b), we get b | ¢, hence a =
c-b~!satisfiesg* p~',i.e.r=qg*p~'. Wehave P, * P, = P,, hence P, *p <
P,. Similarly as in 2.5 we get P, * p = P,, i.e. there is r’ € P, with r’ ¥ p = q.
Again weget r' =q*p~!, hencer=r"and r € P,. This proves the lemma.

3 Applications and corollaries Let T be a stable theory. Hrushovski proved
in [5] that if p is a strong type and - is a definable partial binary operation with
some natural properties, defined for independent pairs of elements realizing p,
then (in €°?) there is a type-definable connected group (G,-) and a definable
embedding f: p (€) — G preserving -, such that f(p) is the generic type of G.
In other words: a definite place plus less definite binary operation on it yields
a definable group. Here we prove an analogous result: a definite group opera-
tion on a less definite place also yields a definable group, namely,

3.2 Theorem Assume T is stable, A < € and-is a definable binary operation
such that (A,-) is a group. Then (in €°9) there is a definable group H = (H,°)
and a definable group monomorphism h:A — H.

Proof: The proof is an adaptation of the proof of Hrushovski’s result from
[5], modulo Section 2. Hence we give a sketch only. Wlog A4 is contained in the
set of constants of the language of 7. As in Section 2, S denotes the set of
strong 1-types over &J. For a € € let p, = stp(a), and let P = {p,:a € A}. First
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we proceed as if we were acting within a group structure in Section 2. So for
D,q € S we define p * g as stp(x-y), where x, y are independent realizations of
Db, q respectively, provided x-y is defined. Notice that p, * p, is always defined
for a,b € A, and equals p,.,. It follows that *P = P, hence we can skip one
step from the construction in Section 2, and consider just cl(P) (which equals
cl(*P) here). By the open mapping theorem, if @, b € cl(P)(€) are independent,
then a- b is defined, and also belongs to cl(P)(€) (see the proof of 2.4). In par-
ticular, * is defined on cl(P) and *cl(P) = cl(P). Within cl(P) we look for
“generic types” of the group we are going to define. We proceed as in the proof
of 2.3; however, as in [4], we have to modify the meaning of A from Section 2.
Wlog e-x and x-e are defined for every x € €, and equal x, where e is the
identity element of A. Now A ranges over sets of the form {¢(a-x-b;y):
o(u-x-v;y) € A’ and a,b € cl(P)(C)} for some finite set A’ of formulas of
L = L(T). Most importantly, for this new meaning of A, 1.2 continues to hold
and 2.2(c) remains true for p,q € cl(P); hence we are able to carry on reason-
ings typical for generic types in a stable group. Let u = |T|, and let A,,a < p
be an enumeration of the finite subsets of L(7') invariant under --translation.
We define P, as in the proof of 2.3, and similarly as in Section 2 we prove the
following claim.

3.2 Claim
(@ Ifpecl(P),thenp* P, =P, *p=0P,.
(b) P, does not depend on the choice of A,’s, and R, (P,(€)) = R, (cl(P)(€)).

Let P’ = P,. Notice that P’ is a closed subset of cI(P). If P’ consisted of a
single type, the further proof would be nearly the same as in [5]. However, even
if P’ may have more elements than one, notice that:

(1) for each A, P’| A is finite.

On the set of functions f from €°? uniformly definable by instances of some
fixed formula, with {y € P’(€):y { f} € Dom(f), we define an equivalence re-
lation ~ by: f ~ f' iff for y € P/(€) with y | £, f', f(») =f'(»).

By (1), ~ is a definable equivalence relation, hence f/~ is an element of €.
If g =f/~ and y € P’(Q) is independent from g, then g(y) is defined in an ob-
vious way. In particular, every a € cl(P)(€) determines a P’-germ g, defined
forcl abyg,(c)=a-c. Let Fy={g,:a € cl(P)(C)} and let F be the set of P’-
germs of all definable functions f € €% with {y € P'(€):y | f} € Dom(f) such
that for y € P'(€) with y | f, f(») | f. Hence for g € F and y € P’(€) with
y 1 g we have g(») | g. Notice that Fj is type-definable almost over &. By the
choice of P’, 3.2 and 1.2, F; is contained in F.

For g,,g, € F let g, - g, be the P’-germ of the composition of g, and g;. By
the choice of F, g; » g, is properly defined and belongs to F. Now we define 4.
For a € cl(P)(G) let h(a) = g, € Fy. We check that k| A4 is an embedding and
maps - to o.

Indeed, if a # a’ € A then for any b € P’(€) with b | a,a’, a-b + a’-b (this
follows by the open mapping theorem and the fact that A is a group, i.e. satis-
fies the right cancellation law). Hence 4| A is an embedding.

Now let a,b € cl(P)(€). We have trivially

2) ifal band c =a-bthen g, g, = g..
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Of course ¢ € cl(P)(€). (2) amounts to saying that for d € P’(€) with d | a,b,c,
(a-b)-d = c-d, which is trivial.

We need yet to find the type-definable group H containing Fp. Let F; be the
closure of Fy under ». As in [5] we see that F; satisfies the right cancellation law
(in the proof we use the fact that for each g € F; and r € P’ there is y € P’(Q)
with y | g such that g(y) satisfies 7, this follows as in 3.2). Let F, be the closure
of {g,:a € P'(€)} under -. F, is a subset of F;. We will show that F, is type-
definable. As in [5] it suffices to prove that if a,b,c € P’(€) then for some
u,ve P'(€), g,°8p°8 = &, ° &, By 3.2, for each u € P’(€) and x € P’(€) with
x | u there is y € P’(€) with y | x and y | u such that u-y = x. Applying this
to x = b, we can choose u, v € P’(€) such that u-v = b, u and v are independent
from b and u,v | a,b,c(b). It follows that # | a,b,c and v | a,b,c. By (2),
84°8b°8c =84°8u°8v°8 = &a-u°8uv.c-@dvandul cimply a-u, v-c € P'(€).
Now, F, is a type-definable semigroup with the right cancellation law, hence by
[51, F, is a group. If a € cl(P)(€) and b € P’(Q) are independent, then a-b =
c € P'(€), and by (2), g,° g, = g.. As F, is a group, for some u,v € P’'(€),
(84 °8) ° 8 = & = &, ° 8- By the right cancellation law in F; we get g, =
8. ° 8. This shows that F; = F,, and H = F, satisfies our demands.

As in [5] we can prove that 4 is 1-1 on P’(€), and the proof above shows that
h maps P’ onto gen(H).

Another application of 2.3 consists in showing that existence of a subgroup
of G with some properties yields existence of type-definable subgroup of G with
these properties. Suppose W(x,,...,xX,) is a formula of L. We say that a sub-
set A of G satisfies W if all a < A satisfy W. If H is a type-definable subgroup
of G then we say that H satisfies W generically iff all independent tuples @ € H
of elements realizing generic types of H satisfy W.

3.3 Corollary If a subgroup A of G satisfies W then the minimal type-
definable subgroup of G containing A satisfies W generically.

Proof: Wlog A is a set of constants. Let P = {stp(a) : @ € A}. Then obviously
each independent tuple @ € cl(P)(G) of suitable length satisfies W. By 2.3, the
generic types of the minimal type-definable subgroups of G containing A belong
to cl(P), hence we are done.

Notice that if H is generically abelian then H is abelian. In particular, we get
another proof of an old result (cf. Baldwin and Pillay [2]).

3.4 Corollary If A is an abelian subgroup of G then A is also abelian.

Another application concerns the existence of free subgroups of G. Even
if it is not known if a free group with =2 generators is stable, at least we will
see that there are “generically free” stable groups. Let F (/) denote the free
group generated by the set . We say that a type-definable subgroup H of G is
generically free if for every n < w, for each nontrivial word v(xy,...,X,) in
F(x1,...,Xx,), H satisfies generically v(xy,...,x,) #e.

3.5 Lemma If A is a free subgroup of G with =2 generators then A is ge-
nerically free.
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Proof: Suppose [ is the set of free generators of A, and wlog [ is a set of con-
stants of L. We say that a word w in letters from 7 is positive if ! does not oc-
curin w for anya € I. Choose a # b € I. Let v, = a ™ "ba™"b, n > 0. We say
that a word w(x,,...,X,) in letters x;, . . ., X, is nontrivial if it is nonempty and
no x;x;~! or x;'x; occurs in w. The following claim can be proved by induction
on the length of w.

3.6 Claim Assume w(xy,...,Xy) is a nontrivial word in letters x,,. ..,
XmsNiy ki, i < m, are natural numbers. If ny,ki,n,,k,. ..,y k, grows fast
enough then for any positive words w;, i < m, of length k;, w(v,, wy,...,
Up,,Wm) # € holds in A.

Let A, be the semi-group generated by 1. If c € Ay then ¢ =¢,...c, for
some ¢y, . ..,c, € I. We define £(c) = n. Applying 2.3 in the language expanded
by adding constants for elements of A, we see that each generic type r of 4 is
in the closure of {stp(c):c € Ay}. Also, as in 2.5, for every v, w € A, the map-
pings r — stp(v) * r and r — r * stp(w) are permutations of gen(A). In particu-
lar, by 2.2(a), for every v,w € Ay, gen(A) < cl({stp(vew) : ¢ € Ap}). Hence for
every n,k we have

1) gen(/f) C cl({stp(v,c):c € Ay and £(c) = k}).

Now suppose the lemma is false. This means that for some nontrivial word
W(X1s. .. sXm), W(X15...,X,) = e belongs to r{(x;) ®...® r,(x,) for some
ri,...,rm € gen(A). By the open mapping theorem this means that 3U,vp, €
UaUyNp, € U,...3U,Vp,, € Uy, w(Xi,...,X,) = e € p1(x) ®...Q
DPm(Xm), where U; ranges over open neighborhoods of ;. By (1) and 3.6 we get
an easy contradiction.

It is well-known (cf. Shelah [10]) that there are two rotations of R which
generate a free group. By 3.5 we see that there is a type-definable subgroup H
of the group of linear automorphisms of C3, which is generically free. But the
field of complex numbers is w-stable, hence H is definable, and stable in itself.

4 On connected type-definable subgroups of G From now on, “a subgroup
of G” will always mean “a type-definable almost over & subgroup of G”. So if
H is a subgroup of G then gen(H) is a subset of S. Suppose H is a connected
subgroup of G and r € gen(H). Then r * r = r and (r) = H. In fact, by 2.3 we
have

4.1 Proposition Let r € S. Then the following are equivalent.

@ rxr=r

(b) (r) is connected and r is the generic type of {r). In particular, r ¥ r = r im-
pliesr =r=1,

Proposition 4.1 suggests the following problem. Is it possible to character-
ize, using only * and topological notions, the class of r € S such that (r) is con-
nected?

We can think of * and topology as our syntactical means, while {(r) being
connected is a kind of semantical notion. Another way to state this problem is
as follows: What are the possible syntactical reasons that make {r) connected?
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In this section we find an ample subset Con of S such that {r) is connected
for r € Con.

4.2 Remark Let H be a subgroup of G and p € S. Then
(a) p(G) € H iff for some (every) r € gen(H), p * r € gen(H)
(b) p(G) < HO iff for some (every) r € gen(H), p*r=r.

Proof: (a)—is obvious by 1.2. «. Let a, b be independent realizations of p, r re-
spectively. Then c =a-b € H, hencea=c-b~! € H.

(b) Let ry be the generic type of HC. Then by (a), p(G) < HCiff p * ro = ry.

—.Letregen(H). Thenrg*xr=r,andp*r=p* (ro*r)=(p*rg)*r=
rokr=r.

«. Suppose p * r = r for some r € gen(H). Let a, b be independent realiza-
tions of p, r respectively. Then a- b realizes r, b and a-b are in the same H°-coset
of H. It follows that @ = (a-b)-b~' € HO.

Notlce that by 2.2(d) and 4 2(a), if p(G) C H and r € gen(H) then R’ (p) =<
R’(r), and p € gen(H) iff R (p) = R’(r) This again shows that any reasonable
rank of a generic type is maximal possible. The next fact will be often used.

4.3 Fact Let H be a subgroup of G and p € S. Assume that for some r €
gen(H) R(r) R(p *r). Then p~' * p(G) < H® and for every r € gen(H),
R(r)=R(p*r).

Proof Choose a realizing p and b realizing r with a | b, where r € gen(H) and
R(r)=R(p*r).By1.2,a-b|a, hence a-bla’l,i.e.a-banda! areinde-
pendent realizations of p * r and p ! respectively. It follows that b =a~!- (a-b)
realizes p~ ' % (p*r)=(p~' €p) *r,i.e. (p~! * p) * r =r (* is associative).
By 4.2(b), p 1% p(G) < HO, , Hence, by 4.2(b) and 2.2(c), for every r' €
gen(H), R(r'y<R(p*r)=<R(p~' *p*r') < R(r'), which gives R(r') =
R(pr). , o

Notice that R(r) R(p *r)is equivalent by 1.2 and 1.3to R'(r) = R'(p * r).

4.4 Corollary p € Sand p(G) S (P) then p * p~! (G) < (P)°.

4.5 Definition We define an increasing sequence of sets Cony € Con; &
Con, € S. The definitions of Cong,Con,;,Con, reflect more and more sophisti-
cated reasons for ¢{r) to be connected. Let * denote the group operation in F =
F({x,:n < w}). The expression w(xy,...,X,) of the form a; *...* a;, where
each g; is either x; or xj‘l for some j < n, is called a *-tuple. If r{,...,r, € Sand
w(xy,...,X,) is a *-tuple, then w(r,...,r,) is the type from S obtained by
substituting in w(x;,...,x,) r; for x;. We call w a 0-*-tuple if w(x) = e holds
in F. Let

Cong={w(ry,...,rm):w(x,...,x,)isa0-*%-tuple,n<wandr,...,r,€S},
Con, ={p € S:p=stp(a;) *...* stp(a,) for some n, a; € G and

a;:...-a,=e}and
Con, = {p € S: there is an infinite indiscernible set I = {a',a?, ...} with
a'={ai,...,al},al-... -al =eand p =stp(al-a?-... al)}.

Finally, let Con = cl(Con,).
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It is easy to see that indeed Cony € Con; € Con,. Also, Congy,Con;,Con, are
all closed under *, hence by 2.4 Con is closed under *. If (r) is connected and
r is the generic of {r) then r € Cony, hence r € Con. The following was the mo-
tivation to define Con,. Suppose we define Con;(G) in S(G) like Con, in S. As-
sume some possibly forking extension » € S(G) of p € S belongs to Con,(G).
Then {r) is connected (to be shown below), hence also { p) is connected. The def-
inition of Con, grasps the syntactical meaning of the fact that there exists an
r € S(G) extending p, which belongs to Con(G).

In the next lemma we use local forking. However due to the remark after 1.2
we have to use R} instead of R,. Recall that for g € S, § = q|G.

4.6 Lemma If r € Con and Ry (q * r) = RA(q) then (§ * F)| A = §|A.

Proof: First assume r € Con,. Let r = stp(a;) *...* stp(ay) witha;- ... -a;, =
e. Let p; = stp(a;). Choose b realizing q, independent from a,,...,a;. Wlog
ai,...,a;, bl G. By 2.2(d) we have

(1) Ry(q) =RA(g*py) =...=Ry(g*pr*...%p) =Ry(g*r).

By induction on i < k we show

@) b-ay-...-a;realizes (§ * py *...% p;)|A and Ry (b-a;- ... -a;/G U
{al, e ,ak}) = Rg(b'al’ e ‘a,'/G).

For i = 0, (2) holds vacuously. Suppose (2) holds for i = ¢, we will prove it
for i = t + 1. We have Mlt, ((§ * p; *...* p;)|A) = 1, hence if c realizes
g*p; *...% pyand c ! ay,...,a,(G), then r = tpo(¢/G U {ay,...,a;}) =
tpa(b-ay- ... a,/GU {ay,...,a,}). We have c-a,, satisfies g * p; *...% p,, ;.
Clearly, r determines tps(c-a,4;/G U {ay,...,a;}) (as A is invariant under
translation).

Also, by (1) we have Ry (c-a,,,/GU {ay,...,a;}) = Ri(c-a,,1/G). Hence
we get tpA(c-a,+1/G U {al,. . ,ak}) = tpA(b-al- e -a,_,_l/G U {al, e ,ak})
and (2) holds fori =1t + 1.

Applying (2) for i = k, using a;- . . . -a; = e, we get that b realizes (g * 7)| A,
i.e. g|A = (g *7)A.

Now suppose r € Con,. Let G’ be a large saturated extension of G. Wlog we
can choose I = {a',a?, ...}, an indiscernible set witnessing r € Con,, such that
r=stp(af-...-a"), I{ Gand Iis based on G’, so that {@!,a?, ...} is indepen-
dent over G'. Thus, af- ... -a? realizes over G the type 7. Choose b realizing
q|G U I. 1t suffices to prove that tps(b/G) = tpa(b-ai- ... -a?/G). We shall
prove more, namely

(3) tpa(b/G’) =tpa(b-ai- ... -al/G").
Let ¢’ =tp(b/G’), r' =tp(aj- ... -a/G’) and p; = tp(a}/G’). We see that r’ =
py *...% p, (in S(G’)), and a}- ... -a” = e, hence r' € Con,(G’) defined in
S(G’) like Con, in S. Also tp(b-ai-...-a’/G') =q’ * r’. But b-a}-... -a
realizes over G§ * F, hence § * 7 = q@’ * r’| G. By the assumptions of Lemmas
2.2(d) and 1.3 we get

(4) RA(§) =Rx(q") = RA(q" *r') =R\ (g *F) = RA(§).
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Thus RA(q’) = RA(q’ * r’). Now we can repeat the first part of the proof with
r:=r,q:=q’and G:=G'toget ¢g’'|A=q' *r'|A,ie. (3).

Finally suppose that r € Con\Con, and R} (g * r) = Ry(q). For n < w, the
set of p € S with R, (p) = n is closed. By 2.2(a), for p € Con, close enough to
r we have R} (q * p) = R,(q), hence § * p|A = §|A. Again by 2.2(a), § * F|A =
gla.

When G is categorical, Zilber proved in [12] that if {A;:i < w} is a family
of indecomposable definable subsets of G, then U {A;:i < w} generates a defin-
able subgroup of G. This result was generalized to the superstable context in Ber-
line and Lascar [3]. Unfortunately, in the stable case we do not have such a
measure of types as Morley rank in the w-stable case or U-rank in the superstable
case. Here we consider the following problem. Suppose H;, i € I, are connected
subgroups of G. We know that H, the minimal type-definable subgroup contain-
ing all the H,’s, is connected. How is H related to the H;’s? As a surrogate for
Zilber’s result, given p; € Con such that H; = (p,), we describe topologically
how to find p € Con with (p) = H. Theorem 4.7(c) is the first step in this di-
rection. For Pc Sand r€ Slet P r={p* r:p € P}. Similarly we define r * P.

4.7 Theorem

(@) If r € Con then{r) is connected, moreover {r",n < w) stronglygonverges
to the generic type Qf (ry. So if q is the generic type of {r) then R'(q) is the
pointwise limit of R'(r"), n < w.

(b) If P< Sand r € Con then {(PU {r}) =(r=* P). Also, {P * ry ={r * P).

©) If prs...,p, € Con then {p;,...,p,) ={q), where g =p, *...*% p, €
Con.

Proof: (a) By 2.2(d), for each A, (R, (r"),n < w) is nondecreasing, and bounded
by R, (x = x), which is finite. Hence there is #(A) such that for n > n(A),
RA(r") = Ry(r™™)) and by 4.6, 7"|A = F"®)| A, Thus (r",n < w) strongly con-
verges to some q € S. Also, r * g = q. By Theorem 2.3, g is a generic of (r).
By 4.2(b), r(G) < (r)°, hence ¢(ry = (r)? is connected.

(b) Let p € P. It suffices to prove that r(G), p(G) S {r* P). Let q be a ge-
neric of (r * P). By 2.2 we have

*) R(q)<R(q*r)<R(qg*r*p)

r¥per*PpP, h;nce by 4.2(a), g * (r * p) € gen({r * P)). It follows that
R'(g * r * p) = R'(q), and in (*) equalities hold. By 4.6, g = g * r, hence by
4.2(a), r(G) = (r* P). Also, g * p = q * (r * p) is a generic of {(r * P), hence
by 4.2(a) again, p(G) € (r * P). Similarly, we show (P U {r}) = (P *r).

(c) follows from (b).

4.8 Corollary Assume P= {p;.i€ I} < Con. Ifj={iy,...,i,} S1Ithen we
define q; = p;, *...% p;,. Assume q €E R = Nigscl({g;:j€Jj S Tandjis
finite}). Then q € Con and {q) = (P).

Proof: Clearly, {g) S {P). Suppose H is an almost-J-definable subgroup of
G containing {q). By 4.7(c), for every i, {p;) € H, hence (P) € H. It follows
that (g) = (P).

Notice that if g; in 4.8 were defined as generic of {(p;, *...* p; ), then any
q € R would be the generic of (P), hence in fact R would be a singleton in such
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a case. We can say more. By 4.7 and 4.6, if r is the generic of {P) then ﬁ’(r) is
the pointwise supremum of {R’(p) :p € *P}. Also, r is the strong limit of some
net of types from *P.

In case when the U-rank of G is finite, we get a more exact counterpart of
Zilber’s result.

4.9 Corollary Assume G is a superstable group with finite U-rank and p €
Con. Then for some n, p" is the generic type of {p). In particular, {p) =
p"(G)-p"(G).

Proof: From 2.2(c) and 1.2 it follows that forg € S, U(g*xr) = U(q), U(r).

Hence we can clloose n such that for m > n, U(p") = U(p™). It follows that
also R'(p") = R'(p™), and by 4.6, p™ = p". By Theorem 2.3 we are done.

5 A special case In this section we focus our attention on the special case
of {p) for a single type p € S. For P < S in Theorem 2.3 we explain where the
generic types of {(P) lie. However, in some respect, the results of Section 3 im-
proved greatly Theorem 2.3: if p € Con and q is the generic of (p) then g =
slim,, p”. This formula uses only the topological notion of limit and independent
multiplication of types *, and does not mention any ranks at all! The following
question arises.

5.1 Question Assume P < S. Is it possible to find a generic type of (P) (say,
the generic type of (P)°) using only topological terms and *?

The first natural conjecture regarding this question was the statement (C) below.
For p € S let £(p) be liminf {p”:n < w} = {g € S: every open U containing
q contains p” for cofinally many n < w}.

(C) For p € S, gen({p)) = £(p).

By Theorem 2.3 we have of course gen({ p)) € £(p). Unfortunately Hrushov-
ski found an easy counterexample to (C). Namely, let G = (Q,+,1, P), where
P= {2”2 :n < w} € Q. Th(G) is w-stable with Morley rank w, P(x) is strongly
minimal, {stp(1)) = all of G, but the strongly minimal type in P is in £(stp(1))
and is not a generic of G.

We show however that (C) is true for several cases, for example for all sta-
ble groups of bounded exponent. In a way we shall answer positively question
5.1 in case when P < S is a singleton, in the double step Theorem 5.12 below.
We start with comparing ¢ p) and {(g) for various p,q € Con,. We need some
additional notation. Let w(x;,...,X,) = a; *...% a; be a *-tuple. For i < k let
w; be the shortest *-tuple such that in F ({x,,: n < w}), a; *...* a; = w; holds.
Let Ing(w) = {w;:i < k} and In(w) = {v € Ing(w) : v is not a proper initial seg-
ment of any v’ € Ing(w)}. As an example notice that if w = w(x,), then In(w)
has at most two elements which are of the form x; *...% x, or x{ ' #...% x{\.
5.2 Theorem Assume w(Xxy,...,X,),0(X1,...,X,) are 0-*%-tuples and
rl,...,r,,ES.

@ (W(ry, .. 1)) =AW (ry, .. sry) * W (ry,...,r) " Liw’ € In(w))).
(b) If every w' € In(w) is an initial segment of some v’ € In(v), then {w(r,
N 9 Y X =R €1 (ST 5 Y5
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Proof: (a) 2. First we prove that for each w’ € Ing(w), {W'(r1,...,r,) *
W(rLy . s Tn) 1Y SAW(r, ..oy
The proof is similar to that of 4.6 and 4.7(b). Let g be the generic of (w(ry,
S Tn)), T =W (ry,...,r,), and it suffices to prove that g * (r*r=!) = g. As

w’ e Ing(w), there is ap € S such that g * r * p is the generic of {w(ry,...
). Hence, R(g)=R(g*r).Byas3, (rxr-lyc <w(r1, co ).

Let H={(w/(r,...,ry) ¥ w'(ry,...,rp)! " :w’ € In(w)}), and let g be
the generic of H. Choose by,...,b, € G realizing ry, . . .,r, respectively, and if
w(ry,...,rp) =p *...* pi, where p; = rj, e = =1, then put @; = b;. Thus,
a;- ... -ay =e. Choose crealizing g, independent from b, ...,b,. Asin 4.6 (the
case r € Con,;) we prove that for every i <k, c-a,- ... -a;realizesq* p; *...*
Di (the proof relies on the definition of H). This implies {w(ry,...,r,)) S H.
(b) follows from (a).

By 5.2 and 4.4 we get the following corollary.
5.3 Corollary Let p € S. Then {p" * p~") S p"*' % p~ "Dy c (p)°.

One could wonder whether {(p”" * p~™") = {(p~" % p"). This seems unlikely,
although by 5.2 and 4.8 it is not hard to prove that {{p”" * p™":n < w}) =
{{p~" *p":n < w}). In the next lemma we shall see that the relationship be-
tween {p" * p~":n< w}and (p~" * p”:n < w} is even closer.

5.4 Lemma Let q be the generic type of {{p"*p ":n<w}])={{p " *p":
n<ol.

(a) q= slim,, p” *p~' = slim, p~™" * p”.

(b) R'(q) = hm,,R (p") (the limit is pointwise here).

Proof: First notice that R’ (q) = hm,,R (p"), as R'(p *p7") = ﬁ’(p"). On the
other hand we know that g € cl(*P), where P = {p” % p™":n < w}. For a finite
A choose m such that for n = m, R, (p”) = R,(p™). As in the proof of 4.6,
for every r € *P, p™ * F|A = p™|A. By 2.2(a), p™ * g|A = p™|A. By 2.2(d),
RL(p™) = Ry(p™ * q) = R\ (q). This shows (b).

Now let re O\ cl({p" * p™" :n > m}). ThenR (r) = llm,,R (ptxkp~") =
hm,,R (p") = R’ (q). So by 4.2(a), R’ (r) = R’ (q), and r is the generlc of
{{p" *p‘" n < w}). It follows that g =r, i.e. ¢ =lim, p" *p‘" But R’ (q) =
lim,, R (p" * p~"), hence we see that q is the strong limit of {p" * p™":n < w}.

5.5 Corollary Letp € S. There isa connected type-definable almost over &
subgroup H of {p)° such that R'(H) = lim, R'(p").

The ¢ from Lemma 5.4 might be called p“ * p~ or p ™ * p®. It is not hard
to prove that p # g * p~—' = g, hence such a notation would imply p+) *
p~ 179 = po x p=¢ which agrees well with w = 1 + w.

Now let us see what the connection is between {P) and {(P)° for P < S. First
we deal with P = {p}.

5.6 Lemma Let p € S. Then [{p):{p™] is finite for each n > 0. Also,
(PY° =N (p"y. In particular, [{p):{p)°] < 2%.

Proof: By 5.3, fori<n, p'* p~(G) € {p™), hence p'(G) is contained in one
left (and one right) { p”)-coset of { p). Thus also for every j < w, p/(G) is con-
tained in one left { p”)-coset and it follows that there are only finitely many left

—n
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{p"y-cosets containing some p’(G). In particular, for g, the generic type of
(P)°, qo(G) is contained in one { p”)-coset of {p). As go = qo * qo ', We have
40(G) S (p"y and (p)° < (p™).

Thus if g is a generic of { p) then q(G) is contained in one left { p”)-coset
of {p). Also, g € £(p) and there are only finitely many { p”)-cosets contain-
ing some p‘(G). Thus there are only finitely many { p”)-cosets containing q(G)
for some g € gen({ p)). This implies [{p):{p”")] is finite.

Now suppose that H is a relatively definable almost over & subgroup of {p)
with finite index in { p). Then ¢o(G) € H, hence by 2.3 for some n, p"(G) < H.
It follows that {p") S H, i.e. {p>° = NpclP™).

Notice that if X is a free group with « generators then there are < (x + 8y)-
many normal subgroups of X with finite index in X. Hence by a similar proof
we get

5.7 Corollary  If P C S then [{P):{P)°] < 2|PI+Ro,

Suppose for some k, p(x) Fx* = e; that is, p is a type of elements of finite or-
der. Then we have p* € Con,; hence by 5.6 we get the following corollary.

5.8 Corollary If p(x) F x* = e then [{p):(p)°] < k and gen({p)) =
£(p) is finite. Let q be the generic of {p)°. Then q = slim, p™*. Also, for i <
k slim,, p"™&* exists and is a generic of {p), and every generic of {p) is obtained
in this way.

5.9 Corollary If Th(G) is small and P < S is finite then { P) is connected-
by-finite.

Proof: By adding a finite set of constants to L we can assume that P € S(J).
By Theorem 2.3, every generic of {(P) is in cl(*P), hence S(JJ) being countable
implies that gen({P)) is countable, too, and [(P):(P)°] < w.

The next theorem shows that in many cases (C) is true. For the definition of
weakly normal groups, see [6]. Notice that any pure group which is abelian-by-
finite is weakly normal.

5.10 Theorem Assume p € S and G has bounded exponent or is weakly nor-
mal. Then gen({p)) = £(p).

Proof: In case when G has bounded exponent the conclusion follows by 5.8. So
suppose G is weakly normal. Choose any g € £(p). We will prove that g €
gen({p)). Let r be the generic of { p) such that g~! * r(G) € (p)°, that is ¢(G)
and r(G) are in the same {p)°-coset of {p). We will prove that g = r. By
Hrushovski and Pillay [6], every definable subset of G is a Boolean combination
of cosets of almost over J definable subgroups of G. Hence, fix an almost-J-de-
finable H < G. It suffices to prove that for any a € G, r(G) < aH iff g(G) S aH.

Suppose r(G) € aH. Then r~! # r(G) € H, hence {p)° < H. As q(G) and
r(G) are in the same { p)°-cosets, we get ¢(G) < aH.

Now suppose g(G) € aH. Then G(x) F x € aH, and q € £(p), so there are
infinitely many n with p”(G) € aH. Choose n,k > 0 with p”(G), p"*(G)
aH. It follows that p*(G) < H, hence again by 5.6 (p)° < H. As above we get
r(G) c aH.
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It is easy to see that * restricted to gen({ p)) is continuous (as a binary func-
tion). Unfortunately, * is not always continuous on £ (p), because this implies
(C) for p. Define f,: S — S by f,(q) = p * ¢, and similarly define f,-1

5.11 Lemma  f,|£(p) is a permutation of £(p). Also, f,-1 ° f,|L£(p) =
idg(p).

Proof: Suppose {p™:i € I) is a net converging to g € £(p), and wlog (p"~!:
i € I) converges to ¢’ € £(p). We see that f,(¢q’) = g, hence Rng(f,|£(p)) =
L£(p). For a fixed A, as in the proof of 4.6 and 5.4, we see that if » is large
enough then p~! % p * p"| A = p"|A. It follows that (p~' * p * p™:i € I also
converges to g. But this means that f,-1 ¢ f,|£(p) = id¢(,), and we are done.

Let p € S. Suppose we are given a task of getting a generic type of {p); we
know topology, independent multiplication *, but cannot measure any ranks.
The first guess would be to choose a go € £(p). We know that possibly
gen({p)) # £(p). So it may happen that g, & gen({ p)). However g, in some
respect is more similar to a generic of {p) than any p”, for example any rank
of g is = that rank of p”. Also, {p)° S (go) S {p), gen({qo)) S gen({p)) and
£(g0) € £(p) (this is proved below). So maybe if we try again and choose
q1 € £(qy), then we are more lucky in getting a generic of {p). The next the-
orem confirms this guess.

5.12 Double step theorem Assumep € S,q€ £L(p) andr e £(q). Then r
is a generic type of (D).

Proof: First notice that

(D) (P’ S<q) S (p).

Indeed, any almost-J-definable subgroup H of G containing (g) contains
p"(G) for some n, hence also {(p”). By 5.6, {(p)° < (p"y < H. Looking at
ranks, (1) implies gen({g)) S gen({p)). Also, £(p) is closed and closed under
*, hence £(gq) € £(p). Now let go = ¢! * g. We show that

(2) g0 € £(p).

Choose a net {p™:i € I'y converging to g. Then {p ™ :i € I converges to g ..
It suffices to find within an arbitrary open U containing g, a type from £(p).
By 2.2(a) we can find an i € I such that p ™ * g € U, By 5.11, the mapping
s — p~" % s is a permutation of £(p), hence p~™™ * g € £(p).

By (1), (p)° S<qo) € {g) S<{p), hence {p)° =(qp)° =<q)°. But g, € Con,
hence by 4.7, {q§,n < w) is strongly convergent to q1 the generlc type of
(qo) = (p)°. By 5.3, 5.4 and 2.2(d) it follows that R(q;) = hm,, ’(qo) =
lim,, R’(q”) We know that any s € £(p) is a generic of (p) iff R’ (s) = R (q1),
and for every s € L(p), R (s) < R (q1). On the other hand by 2.2(d), R’ (r)y=
hm,,R (q") = R’(ql), as r € £(q). This implies R (r)y= R’ (q1), hence ris a ge-
neric type of {p).

Take r from 5.12. By 5.6 we can define the generic type r’ of (p)° as
slim,, 7. A similar argument yields the following corollary.
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5.13. Corollary Let p € S. The following conditions are equivalent.
(@) p is a generic type of {p).

(b) p = lim, p™'*!

(¢) p=slim,p
A challenging problem is to generalize 5.12 for arbitrary P S S. This would tell

us more about restrictions on the structure of G imposed by the stability as-
sumption.

n!+1
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