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Type-Free Property Theory,

Exemplification and Russell's Paradox

FRANCESCO ORILIA

Abstract This paper presents a type-free property-theoretic system in the
spirit of a framework proposed by Menzel and then supplements it with a
theory of truth and exemplification. The notions of a truth-relevantly com-
plex (simple) sentence and of a truth-relevant subsentence are introduced and
then used in order to motivate the proposed theory. Finally, it is shown how
the theory avoids RusselΓs paradox and similar problems. Some potential ap-
plications to the foundations of mathematics and to natural language seman-
tics are sketched in the introduction.

/ Introduction In the last few years, several type-free frameworks that can
be thought of as conveying a theory of properties —more generally properties,
relations, and propositions1 (PRPs)—have been proposed (Bealer [1], Castaneda
[4], Cocchiarella [8], Feferman [11], Jubien [14], Menzel [17], Scholck [19],
Turner [20], etc.).

A type-free property-theoretic framework appears to be a better framework
than one based on type theory for certain problems in the foundations of math-
ematics and natural language semantics. For example, Feferman [11] argues for
the relevance of a type-free framework in order to account for important aspects
of mathematics, and Cocchiarella [8] and Bealer [1] have both used type-free sys-
tems in order to reconstruct logicism. Regarding natural language semantics,
Chierchia [6] and Chierchia and Turner [7] have used type-free systems to de-
velop a Montague-style semantics for fragments of English and have argued for
the superiority of such an approach, as opposed to one based on type theory
(e.g., Montague [18]), in order to account for a number of important linguistic
phenomena.

A major constraint in developing a type-free property theory is constituted
by the need to circumvent Russell's paradox. As a matter of fact, Russell's par-
adox is at least two paradoxes, one regarding sets and the membership relation,
the other regarding properties and predication. There is a widespread agreement
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that the iterative conception of set has provided a satisfactory solution to the first
paradox, but nothing comparable has happened for the latter (cf. [2]).

Ideally, one seeks a solution that can be motivated independently of Russell's
and similar paradoxes. The system proposed by Menzel [17] is particularly in-
teresting in this respect. It is based on the idea that complex PRPs must be
thought of as "built up" from simpler ones on the basis of logical operations.
This framework avoids Russell's paradox by ruling out the a priori postulation
of a Russellian property of non-self-predication. On the other hand, the same
constraints that rule out non-self-predication also rule out, inter alia, those PRPs
that can be used to model in a natural way the natural numbers and natural lan-
guage quantifiers, thereby undermining the application of Menzel's framework
to the foundation of mathematics and to natural language semantics.2 For ex-
ample, according to standard treatments, the number zero could be modelled as
a property with no instances, i.e., [λ/ —(3x)(/(x))], and some and every by
l\fg*x(f(x) & g(x))] and [λfgVx(f(x) -+g(x))]9 respectively. But none of
these PRPs is available if Menzel's constraints are accepted (cf. Section 3 below).

Nevertheless, a Menzelian framework does not rule out that there might be
primitive simple exemplification relationships (of different Λ-adicity), in partic-
ular a dyadic one, which we might designate by " / 2 " (where the letter "/" is
meant to be remindful of "instantiation"). If this relation is admitted, a version
of "useful" PRPs such as the ones mentioned above can be provided. For exam-
ple, some and every could be interpreted as [λfg3x(I2(f,x) & I2(g,x))] and
[λfgVx(I2(f,x) -+ I2(g,x))]> respectively. These and analogous definitions of
crucial natural language notions open the road to the use of a Menzelian frame-
work in natural language semantics, e.g., along the lines in which a system such
as that of Turner [20] has been used in [7].

Furthermore, zero could be interpreted as [\f — (3x)(I2(f,x))], and, in a
similar vein, Fregean-style definitions of the other primitive notions involved in
Peano's arithmetics could be provided. By supplying fine-grained identity con-
ditions for PRPs, Peano's axioms could then be proven, along the lines of [1].

On the other hand, once dyadic exemplification is available, a complex prop-
erty of non-self-exemplification can be built up from it. Hence, the hypothesis
that there are exemplification relations must be developed with care. Obviously,
they will have to be governed by axioms or rules which somehow justify the use
of the term "exemplification," and, if one is not careful enough, these axioms
(rules) might generate a new version of Russell's paradox, once non-self-
exemplification is predicated of itself (if not in other ways).

The main purpose of this paper is to present a theory of exemplification that
can be mounted on a Menzel-style framework and which escapes Russell's par-
adox and similar "logical nightmares".

Although this theory appears resistant to Russellian arguments and the like,
so far I have not been able to provide a consistency result for it. Nevertheless,
since the characteristic axioms of this theory can be intuitively motivated inde-
pendently of the paradoxes, and since it differs substantially (as far as I know)
from any other type-free property theory that can be found in literature, it is well
worth presenting it in its own right. The field of type-free property theory is still
relatively young and it is difficult to tell at this stage which lines of research will
prove more fruitful. Hence, all the available approaches which show some prom-
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ise should be seriously considered and compared in the dia-philosophical spirit
of Castaήeda [5]. Furthermore, it is hoped that interest in the theory presented
in this paper will more easily lead to a (relative) consistency proof for it.

2 Property theory and Russell's paradox Prima facie, an appropriate for-
mal framework for property theory is constituted by a multi-sorted second-order
language with individual variables and predicate variables of different Λ-adicity,
and which allows for: (i) predicate terms occurring in both subject and predicate
position, and (ii) the formation of complex predicates, by means of a rule such
as the following3:

(GR) If A is a wff and aι,...9an are n distinct individual variables,
[λ a\... an A] is an Λ-adic predicate term (which is also called, for con-
venience, a lambda-abstract).4

As regards the logistic associated with such a language, it is natural to as-
sume standard axioms and rules for classical logic with identity supplemented
with a lambda-conversion axiom, which has the function of giving complex predi-
cates their intended meaning. It can be stated as follows:

(λ-conv) [\aι.. ,anA]bι.. .bn +> A[bχ/aι,... ,bn/an] (provided bt is free
for aj in A, 1 < / < n).

Unfortunately, (GR) grants the formation of the "Russellian" expression
" [\x 3/(/= x & —f(x))]", and since predicate terms are allowed to occur in both
subject and predicate position, the full lambda-conversion scheme (λ-conv) and
obvious transformations immediately lead to

(rl) [λx 3/(/ = x & -/(*))][λx 3/(/ = x & -f(x))] ~-[λx 3/(/ = x &
-/(*))] [λxlf(f =x& -/(*))] .

3 The system M One way to block the paradox is by restricting in a system-
atic way the formation of lambda-abstracts. This can be done, e.g., by replac-
ing (GR) with the weaker (GR') below:

(GR') If A is a wff in which (i) no bound variable occurs in predicate position
and (ii) ax,..., an are variables which do not occur free in predicate po-
sition in v4, or in any term that occurs in predicate position in A, then
[λ a\... an A] is a predicate term.

The system resulting from the one outlined in Section 2 by means of such a
replacement will be called "M". In turn, the language of M will be called
"L(M)'\

It is easy to see that (GR') makes the Russellian expression " [λx 3f(f= x &
—f(x))]" ill-formed. But this is not its only merit, since (GR') can be motivated
on philosophical grounds, independently of Russell's paradox. However, since
the weakening of (GR) in favor of (GR') constitutes the central feature of the sys-
tem LPRP of [17], I refer the reader to this work for a philosophical motivation
of (GR') and hence, indirectly, of the system M. Here I shall only provide a quick
sketch that will do for our present purposes.
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Drawing from [1], [16], and [21], Menzel individuates a number of basic log-
ical operations that can be performed on given PRPs. Examples are negation,
conjunction, universalization and existentialization (of a given argument posi-
tion), reflexivization (of two given argument positions), etc. Now, each lambda
abstract that (GR') generates can be thought of as expressing the result of per-
forming one such operation on given PRPs. For example, [λx —Px] can be re-
garded as the negation of P; [\xyzw (Px & Qyzw)] as the conjunction of P and
Q; [λxy Qxyx] as the reflexivization of the first and third argument position of
Q; [λxw vy (Qyxw)] as the universalization of the first argument position of Q.
On the contrary, each predicate delivered by (GR), but not by (GR'), cannot be
regarded in such a way. Examples are the Russellian predicate " [λx 3/(/= x &
-/(*))]" , as well as the useful predicates α [λ/-(3X)(/(ΛΓ))]" , "[\3x(/(x) &
g(x))] " and " [λfg Vx(f(x) -» g(x))] ", mentioned in the introduction.5

In order to illustrate this last point, let us focus on the Russellian predicate
" [λx 3f(f= x & -f(x))]". Prima facie, this predicate could be regarded, roughly
speaking, as the result of applying reflexivization and then existentialization to
a complex PRP resulting from the conjunction of two simpler PRPs. One of
them is identity, assuming of course that this is the relation denoted by the predi-
cate constant " = " , and the other should be a complex PRP resulting from the
application of negation to a simpler PRP. But there is no candidate for this sim-
pler PRP, since in the Russellian expression the formula dominated by negation
is "f(x)" and "/" is not a predicate constant, but a predicate variable bound by
an existential quantifier.

Menzel gives rigorous definitions of the logical operations that I have men-
tioned, as well as of additional ones. Furthermore, MenzePs system LPRP in-
cludes a number of axioms that jointly constitute a sort of fine-grained identity
theory for PRPs, and is given an algebraic semantics in which the denotation of
complex lambda-abstracts depends systematically on that of simpler ones. LPRP
is proven to be consistent as well as valid and complete with respect to this
semantics.

An important difference between M and MenzeΓs LPRP is that whereas M
supports full lambda-conversion, in LPRP lambda-conversion fails in a few spe-
cial cases. Full lambda-conversion, in any case, is not against the spirit of Men-
zeΓs approach. Furthermore, since in Mall the Russellian predicates are ruled
out at the outset by (GR'), it can plausibly be conjectured that Mis no less con-
sistent than LPRP, notwithstanding the difference in question.

4 MenzeΓs approach and exemplification As mentioned in the introduc-
tion, MenzeΓs machinery to generate complex PRPs does not grant the existence
of any PRP that can be taken to correspond to the notion of dyadic exemplifi-
cation. At the same time, it does not rule out its existence either. Assuming that
there is such a PRP and that we designate it by "/ 2 ," the most obvious way to
capture the meaning of " / 2 " is, prima facie, by means of the following axiom:

(I) I2Rxa++Rιa.

Nevertheless, once the language of Mis suitably augmented and (I) is added
to M's axiom schemes, a version of Russell's paradox arises, for if I2 is a rela-
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tion, then one can generate the complex property [\x -I2xx], via application
of reflexivization and negation. By lambda-conversion

(r2) [ λx -I2xx] [ λx -I2xx] ++ - / 2 [ \χ -I2xx] [ \χ -I2xx]

and, by (I)

(r3) [\x -I2xx][λx -I2xx] ^ - [ λ x -I2xx][λx -I2xx]. (Cf. [17], p. 20.)

Menzel concludes that

there cannot be such a thing as r ["/2" in my terminology] [cf. [17], p. 20] . . .
or else (much more doubtfully, I think) it must have a very different logical be-
havior than what we intuitively think it should have; cf. again Bealer [1] 94 ff.
[cf. [17] note 15, p. 56]

Let us generalize a bit on this issue. The first step is to supplement L{M) by
introducing among the primitive predicate constants of M, for each n > 1, the
predicate constant In, meant to represent the H-adic instantiation or exemplifi-
cation relation. Let us call the resulting language L(MI).

In general, a formula of the form uIn+ιRnaχ... an" could be read as "(the
fl-adic relation) Rn is instantiated (exemplified) by a\,..., an (taken in that or-
der)." Note that, as we are in a type-free setting, I have not ruled out iterated
occurrences of exemplification predicates. For example, "/ 4 / 3 /? 2 α 1 α 2 " could be
read as "7 3 is instantiated by R2, a\9a2 (taken in that order).

Since we can naturally take propositions to be zero-adic properties, we can,
by the same token, take truth to be monadic exemplification (taking zero-adic
properties, i.e. propositions, as its "intended" arguments). Accordingly, I shall
informally use the more suggestive "Γ" instead of "7 1 " (cf. [20], p. 457).

Now that the language we are working with encompasses a family of «-adic
exemplification relations, let us consider a generalized version of (I):

(In) In+ιRna\... an <-> Rna\... an (where Rn is any Λ-adic predicate term).

Note that, for n = 1,

(I1) T[λA]~[\A]

and, by (λ-conv),

(T) T[λA]++A.

Certainly, (T) is prima facie the most obvious way to capture the notion of
truth, yet we should be suspicious about it, because of paradoxes such as the liar.
As far as the case of n > 2 goes, it is well-known that, for any n, there is an n-
adic version of Russell's paradox of predication (see, e.g., [3]) which of course,
given (In), would be reproducible as a paradox of exemplification. In conclu-
sion, (In) as a whole must be abandoned and replaced.

5 A theory of truth and exemplification I shall address MenzeFs skepti-
cism about exemplification's having a logical behavior different from the one em-
bodied in (I), and more generally in (In), by providing an alternative theory of
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exemplification that can be mounted on M and that is suggested by rather intu-
itive distinctions and principles.

Essentially, (In) tells us how to treat In+ιRnaι... an, for any sentence of the
form Rna{... an. I take it that an alternative theory of exemplification should
do the same, but, being alternative, not for any sentence of the form Rnaγ... an

should this theory treat In+ιRnaγ... an in the way demanded by (In).
We need therefore: (i) a relevant classification of the sentences of L(MI), and

(ii) for each kind of sentence resulting from this classification, principles that sug-
gest to us how to treat the members of the kind in question. In other words, these
principles should suggest to us whether the members of a given kind should be
treated according to (In), and, if not, according to which principle.

Ideally, this classification and these principles should have an intuitive value
and a raison d'etre independent of RusselΓs paradox. The classification I shall
provide is based on the notions of a truth-relevantly complex (simple) sentence
and of a truth-relevant subsentence. These notions can be characterized by means
of the following examples.

Example 1
(1) Snow is white.

At least prima facie (1) does not appear to contain any subsentence, and thus,
a fortiori, it does not contain any subsentence whose truth is relevant to its truth.
Hence, intuitively, it should be classified as truth-relevantly simple.

Example 2
(2) That snow is white is a proposition.

Certainly, (1) can be considered a subsentence of (2), but not a truth-rele-
vant one, for the truth of (2) does not in any sense depend on the truth of (1).

Example 3
(3) Snow is not white.

By any reasonable standard, (1) is a subsentence of (3) and, moreover, a truth
relevant subsentence, for certainly the truth of (3) depends on whether or not (1)
is the case. Accordingly, (1) should be classified as a truth-relevant subsentence
of (3), and (3) as truth-relevantly complex.

Example 4
(4) Snow is nonwhite.

Although superficially (4) has a simple subject-predicate structure, it hides
a connective in the complex predicate "nonwhite." Intuitively, this makes it truth-
relevantly complex in a way analogous to (3), for the truth of (4) depends, in the
same way as that of (3), on the truth of (1). This latter sentence should thus be
considered a truth-relevant subsentence of (4).

Example 5
(5) That snow is white is true.

Now, (5) is similar to (2) in that both can naturally be taken to have (1) as
their only subsentence. However, they differ in that the truth of (1) certainly ap-
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pears to be relevant to the truth of (5). Accordingly, (1) should be classified as
a truth-relevant subsentence of (5) and (5) as truth-relevantly complex.

Example 6
(6) Snow exemplifies (being) white.

As noted, truth can be regarded as monadic exemplification. Hence, for rea-
sons analogous to those of Example 5, and despite the fact that the surface gram-
matical structure of (6) may not suggest this, (1) can naturally be taken to be a
truth-relevant subsentence of (6). The latter should therefore be regarded as truth-
relevantly complex.

In the context of L(MI)9 these intuitive ideas can be made rigorous by means
of the following inductive definition:

(a) If A is a sentence of the form (B & C) then A is a truth-relevantly com-
plex sentence and B and C are its truth-relevant subsentences;

(b) If A is a sentence of the form - 5 , A is a truth-relevantly complex sen-
tence and B is its truth-relevant subsentence.

(c) If A is a sentence of the form V&B, then A is a truth-relevantly com-
plex sentence and, for any term c such that B[c/b] is a sentence, B[c/b]
is a truth-relevant subsentence of A.

(dl) If A is atomic of the form Rnaχ... an, R
n is In, and ax... an is a sen-

tence, then A is truth-relevantly complex and a\... an is its truth-
relevant subsentence.

(d2) If A is atomic of the form [λ ax... an B] cx... cn9 where B is atomic,
then A is truth-relevantly complex and B\cx/aχ.. .cn/an] is its
truth-relevant subsentence.

(d3) If A is atomic of the form [λ a\... an —B] Cγ... cπ, then A is truth-
relevantly complex and B\c\/aχ... cn/an] is its truth-relevant subsen-
tence.

(d4) If A is atomic of the form [\ax.. .an{B & C)]cχ.. .cn, then A is
truth-relevantly complex and B[C\/a\... cn/an] and C[c\/aχ... cn/an]
are its truth-relevant subsentences.

(d5) If A is atomic of the form [λ a\... an VbB] C\.. ,cn9 then A is truth-
relevantly complex and, for any term d such that (i) d is free for b in
A\cx/a\.. .cn/an] and (ii) A\cx/aχ.. .cn/an][d/b] is a sentence,
A[cx/aι.. .cn/an][d/b] is a truth-relevant subsentence of A.

(d6) If A is atomic and does not fall in any of the above cases, then A is
truth-relevantly simple.

(I shall say that in case (a), conjunction makes A truth-relevantly complex.
Mutatis mutandis, I shall use a similar terminology for the other cases, except,
of course, for the last one.)

I have thus distinguished between truth-relevantly simple and truth-relevantly
complex subsentences of L(MI), and in turn I have distinguished eight kinds of
truth-relevantly complex sentences, on the basis of the logical notions of L(MI)
generating truth-relevant complexity. Among the logical notions of L(MI) I have
included not only connectives and quantifiers, but also, essentially following [1],
for any n, rt-adic exemplification.

Intuitively, the truth-relevantly simple sentences are such that the only thing
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we can and need do in order to determine whether or not they are true is, roughly
speaking, to "look at" the world as it contingently happens to be. The truth-value
of truth-relevantly complex sentences, on the other hand, cannot be determined
in a similar way. The laws governing the logical notions become relevant. In fact,
these laws tell us how we can try to compute the truth-value of truth-relevantly
complex sentences, on the assumption that the contingent world informs us about
the truth-value of the appropriate truth-relevantly simple sentences.

These ideas can be captured by means of the following principles:

(Tl) The truth of a truth-relevantly complex (nominalized)6 sentence depends
on the truth of its truth relevant (nominalized) subsentences, on the ba-
sis of the laws governing the logical notion that makes A truth-relevantly
complex.

(T2) The truth of a truth-relevantly simple (nominalized) sentence A depends
on whether or not A?

As the above remarks introducing (Tl) and (T2) indicate, the nine-folded
classification of sentences that I have provided, and the principles (Tl) and (T2),
are supported by epistemological considerations which are quite independent of
Russell's paradox. It is therefore interesting to see which set of axioms they
suggest.

Now, (T2) immediately suggests

(T-collapse') T[\Raχ... an] <-> Rax... an (provided R is a primitive predicate
constant other than In).

Since the laws governing negation, conjunction, and the universal quantifiers
are assumed from classical logic, and since lambda-conversion extends the ap-
plicability of these laws so as to cover cases (d2)-(d5), (Tl) suggests the following
principles:

(T-neg) T[λ -A] <-» -T[\A].
(T-conj) T[λA &£]<-> T[\A] & T[λB].
(T-univ) T[ λ VaA ]++VaT[\A].
(T-Iambda) T[\[\aλ. ..anA]bx . . . £ „ ] " [\ax. ..anT[\A]]bx ...bn.

An attempt to use (Tl) to understand what axiom(s) should cover Case (dl)
seems to take us into a loop, for the laws governing, for any n, «-adic exemplifi-
cation, are precisely what we are trying to uncover. On the other hand, we have
already granted (T-collapse')-(T-lambda'). This means that we know the answer
to our problem at least for some special cases. For example, if the Rax... an of
(dl) is Γ[λ -A], then given (T-neg'), the truth of [λ -A] depends on that of
-T[λA], which suggests T[λ T[λ -A]] <-> T[λ -T[λA]]. Furthermore, given
(T-neg'), the righthand side of this biconditional is equivalent to -T[λ T[λA]].

In sum, as regards (dl), (Tl) suggests that we generalize on (T-collapse)-
(T-univ) as follows:

(T-collapse) T[λ... T[\ Rax... an] . . . ] <-> Rax ...an (provided R is a primi-

m times m times

tive predicate constant other than / " ) .
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( T - n e g ) Γ [ λ . . . T[λ - A ] . . . ] * * - Γ [ λ . . . T [ \ A ] ...].

m times m times m times m times

( T - c o n j ) Γ [ λ T [ \ A & B] ... ] <- ( T [ λ . . . T [ \ A ] . . . ]

m times m times m times m times

& Γ[λ. . .Γ[λ5] . . . ] ) .

m times w times

( T - u n i v ) T [ λ . . . T [ λ V a A ] . . . ] ++VaT[λ.. . T [ λ A ] . . . ] .

w times w times w times m times

(T-lambda) Γ [ λ . . . Γ [ λ [ λ ax... anA]bχ . . . & „ ] . . . ] < - »

m times m times

[λaι...anT[λ...T[\A]...]]bi...bn.

m times m times

((T-collapse)-(T-lambda) should appear no less intuitive than their counterparts
without iterated truth predicates, for essentially they just add the further infor-
mation that the logical behavior of iterated occurrences of the truth predicate
is the same as that of just a single occurrence.)

At this point, in order to capture all the cases covered by (dl), all we have
to do is to establish an intuitively obvious "bridge" between truth and exemplifi-
cation:

(T/I) Γ[λ . . . Γ [ λ / w + 1 ^ i ...an]...]++

m times m times

Γ[λ. . . Γ[λ T[\Rnax.. .an]] . . . ] 8 , where Rn is any predicate.

m times m times

(Compare (T/I) to Turner's (S) in [20], p. 458.)
As Appendix I shows, in the presence of (T/I), (I-collapse) and (I-transfer)

below are just a more compact version of (T-collapse)-(T-lambda). Accordingly,
I elect to take them as axiom schemes. I shall refer by "MI" to the system which
results from M by adding (T/I), (I-transfer) and (I-collapse) to the axioms of M,
modulo extension of the language of M t o L(MI).

(I-collapse) In+m... In+xRax ...an++ Rax ...an (provided: (i) R is a primitive
predicate constant, and (ii) R is not In).

(I-transfer) In+m.. . / ^ [ λ ^ . ..bnA]ax ...an++ [λbx.. .ftΛ^{/m}]flri.. .an.

In general, A[Im] is defined to be the wff which results from A by replac-
ing every atomic subwff Rcλ... ck of A which does not occur within a lambda-
abstract occurring in A with Ik+m... Ik+ιRcx ...ck.

Example 1 If A is -P2xy9 A{IX} is -I3P2xy.

Example 2 If A is (-I2fz & (Vg)(Q3fgx -> ίλx-Px]g)), A[I2} is
(-/4/3/2/* & (Vg)(/5/4β3/gx-»/3/2[λ;t -Px]g)).
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6 Exemplification-normal vs. exemplification-abnormal predicates We
have seen that (T1)-(T3) suggest the principles (T-collapse)-(T/I). It is worth
adding that, as far as I can see, in no way do (T1)-(T3) directly suggest (In),
that is, the axiom which generates a version of Russell's paradox, by granting
In+ιRaχ... an <-• Rax... an, for any predicate R.

In the absence of a consistency proof, we cannot exclude, of course, that
(In) is implied by classical logic plus (λ-conv) and (T-collapse)-(T/I). Neverthe-
less, the Russellian argument, as reconstructed in MI, strongly suggests that
this is not the case.

Consider (r2) again. It is a theorem of MI, yet (In) is no longer available to
derive (r3) from it. Since " [λx —I2xx] " is not primitive, (I-collapse) is not ap-
plicable. Repeated applications of (I-transfer) and lambda-conversion however
lead to this chain of equivalences:

(r4) -I2[λx -I2xx][λx -I2xx]~I3I2[λx -I2xx][λx -I2xx]
(r5) I3I2[λx -I2xx][λx -I2xx] ++ -I4I3I2[λx -I2xx][λx -I2xx] etc.9

The derivability of (r2) might prima facie appear to be an unfortunate result.
Even though it is not a source of inconsistency for MI, it is, one might think,
a bizarre, if not paradoxical, statement. (r2) might in fact be read as "non-self-
exemplification is non-self-exemplifying iff non-self-exemplification does not ex-
emplify non-self-exemplification".

Far from being unfortunate, this result was quite to be desired, for of course
it must be true of any given property P, that P is non-self-exemplifying iff P does
not exemplify P Non-self-exemplification itself ([λx -I2xx]) cannot be an ex-
ception!

In other words, (r2) is a (logical) truth as trivial as

(Tr) [λx -I2xx] (red) <-• -72(red,red).

Many philosophers and logicians have pointed out that predicating self-
exemplification of itself does not lead to contradiction, but only to trivialities.
Hence, they have wondered why predicating, in a parallel way, non-self-
exemplification of itself leads instead to contradiction. MI solves the puzzle by
taking both predications to result, democratically, in trivialities.

On the other hand, the "innocuous" character of self-exemplification, repre-
sentable with "[\xl2xx]," shows up with the fact that " [λxl2xx] [λxl2xx] <+
In+2 ...I2[λx I2xx][λx I2 xx] " (for any n > 2), is a theorem of ML This can
be shown by repeated applications of (λ-conv) and (I-transfer) to the left-hand
side of the biconditional.

In general, call an atomic sentence Raλ... an of L(MI) m-exemplification
normal (m-exemplification abnormal) iff \-MII

n+m.. .In+ιRaι ...an <-•
Rax.. .an(\-Mi ~Un+m . / Λ + 1 Λ α i . ..an^Raγ. ..an)).

Analogously, call a predicate Rn of L(MI) m-exemplification normal
(m-exemplification abnormal) iff hM/Vtfi... Van(Γ+m . . . In+ιRa{ ...an++
Rax. ..an)(\-MI - v α i . . . Van(In+m .. .In+1Ra{ ...an*+Rax. . . * „ ) ) .

Given these definitions, the above results show that: (i) for any odd m, "[\x
-I2xx] [λx -I2xx]" is m-exemplification abnormal, (ii) for any even m, it is m-
exemplification normal, and (iii) for any m, u[λxl2xx][λxl2xx]" is m-
exemplification normal.
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Curry's paradox and the liar offer us two more cases of exemplification ab-
normal predicates and sentences. The reader can verify it by considering the fol-
lowing "Curry" and "liar" sentences:

(C) [λxI2xx^A][λxI2xx-+A].
(L) [λ3j>(Vz (this-proposition(z) <-• z = y) & - 7 » ] . 1 0

Classes of exemplification-normal predicates and sentences can also be char-
acterized. For example, any predicate Rn of L(M) with no variable in predicate
position, or any predicate of L(MI) obtained therefrom by prefixing sequences
Ip+k... Ip+ι to atomic subwffs Rpa\... ap of Rn can be proven to be, for any
m, ^-exemplification normal. The reader can convince herself of this, by not-
ing that, given

(N) In+m.. .In+1[λaι. ..anA]bx ...bn,

where [λfli.. .anA] is any such predicate, repeated applications of (I-trans-
fer) and (λ-conv) finally succeed in "transferring" the leftmost occurrence of
"In+m . . . Γ+ι" in (N) exactly to the relevant subwffs Ip+k... Ip+ιRpcλ ...cp

of A [bχ/aχ... bn/an], where Rp is a primitive predicate constant other than In.
At that juncture, (I-collapse) can be applied, thereby getting rid, so to speak, of
the sequence In+m... In+ι. The precise proof is by induction on the rank of (N),
where the rank of a wff is defined essentially along the lines of [17], p. 27. For
brevity's and simplicity's sake, I shall omit these technical details.

7 Conclusion The system MI embodies a Menzel-style property theory sup-
plemented with a theory of exemplification. For reasons outlined in the intro-
duction, a theory of this kind promises to be a useful framework for natural
language semantics and the foundations of mathematics. In addition, MIis in-
dependently well-motivated and presents a number of intriguing aspects. Efforts
must then be directed toward a development of a semantics and a proof of (rel-
ative) consistency for it.

A standard way to obtain a relative consistency result for a given formal sys-
tem is by mapping it into a standard set theory such as Zermelo-FraenkePs. This
method has the further advantage that it may yield an intuitively well motivated
set-theoretical semantics which provides further insight into the concepts that the
system in question is supposed to model.

In the case of MI, an obvious way to proceed is by interpreting its exemplifi-
cation relations by means of the predication relation(s) of extant property-
theoretic systems which already have a formal semantics. However, this task may
be more difficult than it appears to be at first glance. For example, systems such
as those of Cocchiarella ([8],[9]) are very different in spirit from MI, since they
restrict lambda-conversion by using the notion of stratification. Contrariwise,
MI allows lambda-conversion for predicates (e.g., [λx(3f)(f= x & Ixx)]) which
in an intuitive sense can be regarded as unstratified, provided that the exemplifi-
cation predicates are seen as a counterpart of predication.

A system such as that of Jubien [14] does not seem a good candidate either,
since, contrary to MI, it interprets predication essentially along the lines of a set
theory without extensionality.11
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At first glance, the system of Turner [20] might seem a better candidate, since
its theorem "T[ —p(r, r)] ++p(r9 r)"12 is certainly in the spirit of (r2) above. Nev-
ertheless, Turner's system does not have a counterpart of (T-neg), a principle
which essentially allows negation to be moved in and out of truth and exemplifi-
cation contexts.

The model-theoretic version of Turner's system is based on an extension to
predication of the methods used by Gupta [12] and Herzeberger [13] to model
the notion of truth. These methods constitute an alternative to those expounded
by Kripke [15], although they are in many respects in the same spirit. Hence, a
model-theoretic account of property theory can similarly be developed by extend-
ing Kripke's account of truth. 1 3 It is not obvious, however, that this will yield
models of MI, since Kripke's approach is based on truth-value gaps, whereas MI
is firmly entrenched in classical logic.
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NOTES

1. Bealer's terminology in [1].

2. Unless of course one introduces specific meaning postulates for each concept in-
volved in a given application, as suggested in footnote 19, p. 57, of [17].

3. Before we proceed, it will be convenient to fix a few conventions. I shall use A, B,
C, etc. as metavariables ranging over wffs and R, a, b, c, d, etc. (with or without
numerical superscripts or subscripts) as metavariables ranging over predicate and
singular terms. Furthermore, I shall assume standard notions of freedom, bondage,
and free for (for the proper substitution of variables). A\bχ/ax,..., bn/an] will be
understood to be the expression which results from A by simultaneously replacing
each free occurrence of at in A with bt (1 < / < n).

I shall also assume standard notions of sub-wff, predicate (function), and sub-
ject (argument) position. However, since we shall be dealing with complex predicates
of the form [\aλ.. ,anA], this perhaps deserves a further comment. If A is an
atomic wff of the form Raλ.. .an, then R has an occurrence in predicate position
and each aι (I < i < n) has an occurrence in subject position in A or in any wff B
such that A is a subwff of B. From this it does not follow that "x" occurs in predi-
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cate position in, e.g., "[λywQxyw]zz9" even though "x" is embedded in
"[\ywPxyw]," which in turn occurs in predicate position in i6[λywPxyw]zz."

Moreover, it is assumed that in all the systems that I will consider, negation,
conjunction, and the universal quantifier are taken as primitives, and the other con-
nectives and the existential quantifier are defined in standard ways.

Finally, it will be convenient to assume that atomic sentences have the form
Rd\.. .an, although for readability I take sometime the liberty to use a notation of
the form R(aί9... ,an).

4. The restriction to individual variables in (GR) captures the intuition that the range
of application of PRPs is fully general (cf. [10], [17]). Given a more liberal version
of (GR) wherein this restriction is dropped, Russell's property need not be repre-
sented as in (rl) below, since the simpler " [λ/ —/(/)]" is available.

5. Similarly, " [λ/ -/(/)] " (cf. Note 4 above) cannot be seen as expressing the result
of applying negation to a given property.

6. Roughly speaking, nominalization is the grammatical operation which transforms
a sentence into a name, thereby making it a possible subject of predication. Hence,
in particular, nominalization makes predicating truth of a sentence possible. In En-
glish, "that," as prefixed to a sentence, constitutes the typical nominalization device.
In a language such as L(MI)9 " [λ . . . ] , " i.e., a vacuous use of the lambda opera-
tor, can play the role of the English "that".

7. In (Tl) and (T2) I talk of sentences rather than propositions, mainly for ease of ex-
position. As a matter of fact, I take propositions rather than sentences to be the pri-
mary bearers of truth and falsehood. Of course, there is no problem in recasting
(Tl) and (T2) so as to eliminate their nominalistic flavor, but it would take some
additional machinery to do it rigorously. Note that as a consequence of the
nominalistic flavor of (Tl), (c) and (d5) above are somehow reminiscent of the sub-
stitutional account of quantifiers and of the problems connected with it. These as-
sociations would be avoided in a non-nominalistic reformulation of (Tl).

8. Contrary to (a)-(d6), (T-collapse)-(T/I) have to do with wffs in general and not just
with sentences. This is not an incongruence. Intuitively, the notion of truth applies
to sentences, hence in (a)-(d6) I talk of sentences. But typically in a calculus we deal
with open wffs in order to carry out certain inferences, hence the restriction to sen-
tences is lifted in (T-collapse)-(T/I).

9. Analogous results can be obtained in MI by "self-predicating" lambda-abstracts such
as " [\x 3/(/= x & -I2fx)]". On the other hand, it is worth noting that, by elim-
inating the second proviso on (I-collapse), "/2[λx— I2xx][λx— I2xx]9"
"I2[λx3f(f=x & -I2fx)][λx3f(f=x & -I2fx)]," etc. lead to contradiction.

10. In (C), A is any sentence. As regards (L), note that in order to prove that it is ex-
emplification abnormal, we need of course appropriate assumptions concerning the
predicate "this-proposition."

11. Although one of the referees mentioned in the acknowledgements has suggested that
it should be possible to find a model of MI inside a model of Jubien's impure prop-
erty theory [14].

12. Where "/?" stands for predication and V is an abbreviation for the Russellian prop-
erty as represented in Turner's system.

13. This is implicit in Kripke [15]'s remarks on constructing fixed point models for satis-
faction.
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APPENDIX

Theorem hM / (I-transfer) & (I-collapse) <-> (T-lambda) & (T-neg) & (T-conj)
& (T-univ) & (T-collapse).

Proof: For simplicity, I shall concentrate on the particular case of m — 1
(roughly speaking, m iterations of "T" and "In" in (I-transfer)-(I-collapse) and
(T-lambda)- (T-collapse), respectively), though of course the proof can be gen-
eralized in obvious ways.
A. (=> direction)

(a) show (T-collapse):
(=>) Assume T[λRaι... an] (where R is primitive and is not In);
7«+1 * * ! . . . *„ (by (T/I));
Rax... an (by (I-collapse)).
(<=) Proceed in reverse order.

(b) Show (T-neg):
(=>) assume T[\-A];
-A{Iι} (by (I-transfer) and (λ-conv). Note that if m > 1, one should
first apply (T/I) as many times as needed);
-T[\A] (by (λ-conv) and (I-transfer). Again (T/I) would be needed
i f m > 1).
(«=) Proceed in reverse order.

(c) Show (T-conj) and (d) show (T-univ): proceed as in (a).
(d) Show (T-lambda):

(=>) Assume Γ[λ[λαi . . .anA]b\... bn] and proceed as in (a) above so
as to get T[\A[b\/a\... bn/an]]. Then apply (λ-conv) in order to get
[\a1...anT[\A]]bι...bn.
(<=) Proceed in reverse order.

B. (<= direction)
(a') Show (I-collapse): proceed as in (a) but in reverse order.
(b') Show (I-transfer): the proof is by induction on the length of A.

1 (base case). A is RkCχ... ck.
(=>) Assume In+ι [Xb^.-bn Rkcλ... ck] ax... an\
T\\Rkcx. ..ck[aι/bι. ..an/bn]] (by (T/I), (T-lambda) and (λ-conv))
[\bx...bn Ik+ιRcx ...ck]ax...an (by (T/I) and (λ-conv)).

(<=) Proceed in reverse order.
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2 (negation). A is -B.
(=0 Assume/[λZ?!.. .bn -B]aχ.. .an;
-T[λB[a1/bι...an/bn]] (by (T/I), (T-lambda), (λ-conv) and
(T-neg));
- [ λ ^ . . .bn T[λB]]aι.. ,an (by (λ-conv);
-I[\bι...bnB]aι...anQ>y (T-lambda) and (T/I));
- [λ bx... bn B{In}]ai... an (by the induction hypothesis);
-B[In] \ax/bx. ..an/b] (by (λ-conv);
[λbλ ...bn -BilnWax ...an (by (λ-conv).
(«=) Proceed as above but in reverse order.

3 (conjunction) and 4 (universal quantifier). Proceed as in 2, using
(T-conj) and (T-univ) instead of (T-neg).




