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Inequality in Constructive Mathematics

WIM RUITENBURG

Abstract We present difference relations as a natural generalization of in-
equality in constructive mathematics. Differences on a set S are defined as
binary relations on all powers Sn simultaneously, satisfying axiom schemas
generalizing the ones for inequality. The denial inequality and the apartness
relation are special cases of a difference relation. Several theorems in con-
structive algebra are given that unify and generalize well-known results in
constructive algebra previously employing special cases of difference rela-
tions. Finally, we discuss extended differences for a set S as collections of re-
lations defined on all powers Sx simultaneously.

Introduction In mathematics the natural generalization of equality is equiv-
alence. A theory with equivalence involves the reflexive, symmetric, and tran-
sitive equivalence, and functions and relations respecting this equivalence. In
constructive mathematics the same theory with equivalence relations works with-
out difficulty. For inequality the situation is more complicated. There are dif-
ferent versions of constructive inequality that only in classical mathematics are
equal to the one standard inequality. Examples are: denial inequality, where
x Φ y if and only if it is not true that x = y9 that is, —uc = y; and tight apartness,
whose axiomatization we will present later on. The natural inequality on the set
of real numbers R, defined by r Φ s if and only \i\r — s\>\/n for some natu-
ral number n, is a tight apartness. Tight apartness and denial inequality are in-
dependent; a tight apartness need not be a denial inequality, a denial inequality
need not be a tight apartness. We know of no definition of a binary relation on
a set S, generalizing both denial inequality and apartness, that allows for a sub-
stantial constructive theory of inequality.

There are several theorems in algebra and elsewhere that hold if we use denial
inequality as the intended inequality, and that also hold if we use a tight apart-
ness as the intended inequality. Sometimes there may even be a third version of
inequality that makes the theorem work. For each of these cases we need a new
proof to establish our result. For a uniform treatment of such theorems we
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present a generalization of the inequalities mentioned above, called a difference.
Rather than defining a binary relation on a set S, a difference is a collection of
binary relations defined on all powers Sn simultaneously. Then for some the-
orems we only need a difference to establish the conclusion. In Section 2 we
present examples of theorems that have generalizations employing differences
instead of denial inequality or apartness.

To illustrate why inequality is more troublesome than equality when we gen-
eralize to a constructive context, we consider the problem in the context of some
first-order language with equality =. Besides the logical axiom schemata and
rules concerning the logical operators and constants we have for equality the ax-
iom schemas

T \-x = x

x = y V Ax -+ Ay,

where in the last schema the variables x, y are not bound by a quantifier of A.
If = is an equivalence relation, then A is any formula built up from functions
and relations that preserve the equivalence. It is well-known that we may restrict
Ax to atomic formulas and equations/= g. The general case follows from this
subcollection. The schemas above work in constructive mathematics as well as
in classical mathematics.

From the schemas for equality we derive the obvious axiom schemas for in-
equality Φ by reversing the entailments:

χφχ\- ±

AyVxΦywAx,

where in the last schema the variables x9y are not bound by a quantifier of A.
The schemas for inequality are just fine in classical mathematics. Unfortu-

nately, the introduction of a disjunction in a rule for a generalized inequality is
unacceptable in constructive mathematics. In general, even denial inequality fails
to obey the schemas.

To find a way out, suppose that Ax is the equation/(x) Φ t, where/: S->S
and x,t G S. Classically that gives

f(y)φt\-XφyVf(X)φtm

Then one inequality introduces a disjunction of two inequalities. Repeated ap-
plication implies that, unless we somehow interfere, we end up with disjunctions
of inequalities, a prospect unacceptable in constructive mathematics. The par-
tial solution proposed in this paper is to replace the introduction of disjunctions
like

Xι Φ y\ v v xn Φ yn

by introducing differences among sequences of elements:

< * ! , . . . , * „ > Φ<yu...,yn>

This seems to be the best that one can hope for without introducing disjunctions,
but it requires an extension from a definition of Φ on a set S to a definition
of Φ involving all powers S". The axiom schema involves functions i:Sm-+Sn

only.
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In Section 1 we show that in a first-order context the logical motivation pre-
sented above provides us with a natural generalization of the notion of inequality.
In Section 2 we demonstrate the necessity and sufficiency of difference in elemen-
tary algebra. In Section 3 we hint at a more general formulation of difference,
employing all powers Sx rather than only finite powers Sn.

1 Difference relations We define difference relations and strong extension-
ality in a way motivated by the discussion in the Introduction, and show that they
satisfy the right properties. This presents us with the problem that the original
definition, though well-motivated, lacks the elegance of a compact set of axioms.
Fortunately, with Propositions 1.5 and 1.6, we are able to reduce the complicated
definition below to a set of six axioms for difference, and a simple schema for
strong extensionality.

From here on we use boldface letters to represent sequences of elements. Let
5 be a set, and let Λ be a set of partial functions f: Sm -> Sn between powers
of S. Using partial functions rather than total functions is useful for later when
we discuss functions/: S-• Tbetween different sets with difference relations.
Then E(A) denotes the smallest set of partial functions between powers of S that
includes Λ, all projections TΓ/IS" -• S, and is closed under composition and
products. The set E = E(0) is called the set of elementary maps. So elementary
maps i:Sm^Sn are such that for all / the coordinate maps π, f :Sm-+S are pro-
jections.

A difference on S consists of relations Φn on the powers Sn

9 all usually writ-
ten Φ, satisfying the axiom schemata

(1) < x , α > * < y , α > - x * y ;

(2) f(y)=M^<x,f(x)>*<y,t>,

where a G S, x,y G Sm, f: Sm -> Sn G E, and t e Sn. We tacitly assume that
f (y), f (x), etc. are defined when they occur in formulas. A difference is called
proper if it satisfies the additional axiom schema

(3) i « > * < ».

A set Λ is strongly extensional with respect to a difference relation Φ if (2) holds
for all f G£(Λ).

There are two questions that we must answer to justify our definition of dif-
ference: Does it provide us with a useful theory; and does it provide us with a
natural generalization of the notion of nonequivalence? We start with a quick
look at the second question by looking at the complement of difference and at
the complement of nonequivalence.

A difference induces relations - on the sets Sn defined by x - y «•> -ιχ Φ y.
We say x is nearby y if x - y. Then - satisfies the schemas

< > ~ < > if Φ is proper;

x ~ y -> <x, a) ~ <y, a); and

<x,f(x)>~<y,t>-*f(y)~t,

where a G S, x,y G Sm, f: Sm -+ Sn G E, and t G S". The relation ~ is symmet-
ric (see Proposition 1.1) and, if Φ is proper, reflexive; but - need not be tran-
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sitive. In Examples 1.14 and 1.15 we present models showing that even in classical
mathematics it is possible to have elements x, y, z such that x and y are nearby,
y and z are nearby, but x Φ z. So differences are essentially more general than
the complements of equivalence relations. Nearness is stable, that is, -i-ix ~ y
implies x — y.

A difference is an inequivalence if its nearness relation is an equivalence re-
lation on each of the powers Sn. From Proposition 1.16 it follows that a differ-
ence is an inequivalence if and only if it is proper and its corresponding nearness
relation satisfies

(4) x - y if and only if v/(#, ~ y,).

A difference is an inequality if it satisfies

x — y if and only if -ι -ιχ = y

for all n and x , y e S " . Obviously, inequalities are inequivalences.
Many natural examples of difference relations are derived from equivalence

relations. One easily verifies that each equivalence relation = induces an inequiva-
lence by

χ^yHΊχ = y,

where x = y is short for vi'(Xj ΞJ/;), The relation - is the double negation of = .
The set Λ of all partial functions that preserve the equivalence is a strongly ex-
tensional set. One example is the empty inequivalence, where = is the maximum
equivalence relation and the underlying set is one single equivalence class. The
derived relation ~ is identical to =. Another example is the denial inequality,
where = is the minimum equivalence relation, that is, Ξ= is the equality rela-
tion = . All partial functions respect equality and the maximal equivalence re-
lation. So the set of all partial functions is strongly extensional with respect to
the empty inequivalence as well as the denial inequality.

Proposition 1.1 Differences are symmetric.

Proof: From y ^ t w e get <x,x> Φ <y,t> for all x. Substitute t for x and apply
(1) repeatedly to get t Φ y.

Proposition 1.2 Let A be a strongly extensional set of partial functions. Then
foralliGE(A),

(5) <f(x),z> Φ <f(y),w> -> <x,z> Φ <y,w>.

Proof: From <f(x),z> Φ <f(y),w> we get, using (2), <p,q,f(p),q> Φ <x,z,f(y),w>
for all p and q with f (p) defined. Substituting y for p and w for q gives us
<y,w,f(y),w> Φ <x,z,f(y),w>. By repeated application of (1) we get <y,w> Φ
<x,z>. So by Proposition 1.1, <x,z> Φ <y,w>.

Corollary 1.3

(6) <x, a, a) Φ <y, b, b) -+ <x, a) Φ <y, by,

(7) x Φ y -> <x, a) Φ <y, by, and

(8) < x τ l , . . . ,xπn) Φ <yTi9...,y^n) -* < * i , . . . ,xn) Φ (yu... ,yn),

where Έ is a permutation on [1,... ,n}.
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Proposition 1.4

(9) <x, a) Φ <y, b) -> <x, b) Φ <y, a);

(10) <x,a)Φ(y9b)->(x,a,cyΦ(y9c,b).

Proof: From the assumption of (9) we get <z, e,z, c> =£ <x, a,y,b) for all z
and c. Substitute x for z and b for c to get <x, b,x, b) Φ <x, #,y, Z?>. So by (8) and
(1) we have <x, b) Φ <y,α>.

The assumption of (10) implies <z, c,z, c> =£ <x, α,y, δ> for all z. Substitute
x for z and use (8) and (1) to get <x, c, c) Φ <y, a, b). So by (8) and (9) we have
<x,α,c> Φ <y,c,6>.

Proposition 1.5 Let Φ be a relation on the powers Sn of a set S. Then Φ is
a difference if and only if the following conditions hold,

(1) <x,a)Φ<y,a)-+xΦy;

(6) <x, a, a) Φ <y, b, b) -+ <x, a) Φ <y, b);

(7) x*y-><x,tf>*<y,Z?>;

(8) O^ri,...,*™) ^ ( Λ i Λ Λ ) ^ ^ ^ > ̂ ( Λ Λ>;

(9) <x, a) Φ <y, Z>> -> <x, Z>> * <y, a}; and

(10) <x, α> Φ <y, Z?> -• <x, a, c) Φ <y, c, b),

where (8) holds for all permutations π.

Proof: Clearly conditions (1) and (6) through (10) hold for a difference rela-
tion. Conversely, suppose we have relations Φ on the powers Sn of a set S satis-
fying the conditions above. To prove (2), let f:Sm-+ Sn be an elementary map
such that f(y) Φ t. The map f is a sequence of projections ( τ r λ i , . . . , τrλ Λ). So
<y\u - - - ,y\n) * t Repeated application of (8) and (10) yields <yλι,xλu . . . ,
y\n,x\n> * (Xλuh,- . ,x\n, '*>• So by (8), <f(y),f(x)> Φ <f(x),t>. Applying (8)
and (9) repeatedly, we get <f (x),f (x)> Φ <f (y,)t>. So by (6), (7), and (8) we get
<x,f(x)>*<y,t>.

Proposition 1.5 has two applications. First, it replaces schema (2) by a short
sequence of elementary rules. Second, it suggests natural ways for generalizing
difference relations. Prime choices are generalizations Φ satisfying the conditions
of Proposition 1.5 but with (6) or (10) removed. The structure of Example 1.15.1
satisfies all the conditions of Proposition 1.5, except (6). On domain S = Z, de-
fine x Φ y by I #/—>>/1 ^ 2 for some /. Then Φ is a generalized difference rela-
tion satisfying all conditions of Proposition 1.5, except (10).

The definition of strongly extensional sets of functions allows for the pos-
sibility that a set need not be strongly extensional even if all its members are. For-
tunately, this does not happen. Theorem 1.6 expresses strong extensionality of
sets in terms of the individual functions.

Theorem 1.6 Let Φbe a difference on S and let Abe a set of partial functions
between finite powers on S. Then A is a strongly extensional set if and only if each
f E Λ satisfies the schema

(5) <f(x),z> Φ <f(y),w> -> <x,z> Φ <y,w>.
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Proof: By Proposition 1.2, (5) follows from the strong extensionality of Λ. Con-
versely, suppose that (5) holds for all f G Λ. A trivial induction on the complex-
ity of f shows that (5) holds for all f E E(A). Now suppose f(j ) ̂  t and f(x)
exists, for some f E E(A). Substitution in the schema h Φ t-» <g,g> Φ <h,t> gives
<f(x),f(x)> Φ <f(y),t>. Applying (5) yields <x,f(x)> Φ <y,t>.

By Theorem 1.6 we are justified to define a function f to be strongly exten-
sional if it satisfies the schema (5).

Proposition 1.7 Constant functions are strongly extensional.

Proof: Let f be a constant function with value a. Then <a,z> Φ <a,w> implies
z Φ w, and thus <x,z> Φ <y,w>.

By Theorem 1.6 we know that the collection of strongly extensional functions
is closed under composition and product. Next we show that the collection is also
closed under a natural form of implicit definition. Traditionally, a (partial) func-
tion h is implicitly defined by the (partial) functions/ and g when/(x, hy) and
g(x9 hy) exist whenever hx and hy exist; when/(jc, hx) = g(x, hx) whenever hx
exists; and when/(x,p) — g(x,p) Λf(x, q) = g(x, q) implies/? = q, for allx9p, q.
In ring theory, for example, the partial function of multiplicative inverse is im-
plicitly definable from multiplication and the constant 1. We show that functions
that are implicitly defined in the way explained below are strongly extensional
if the functions used in its construction are.

Let S be a set with difference Φ. A partial function h is implicitly defined
with respect to Φ if there exist strongly extensional partial functions f and g such
that f(x,h(y)) and g(x,h(y)) are defined whenever h(x) and h(y) are defined,
satisfying

f(x,h(x)) = g(x,h(x)) whenever h(x) is defined; and

<p,z> Φ <q,w> -> <f(x,p),f(x,q),z> Φ <g(x,p),g(x,q),w>

whenever f(x,p), f(x,q), g(x,p), and g(x,q) are defined.

Proposition 1.8 Partial functions that are implicitly defined with respect to
a difference relation are strongly extensional.

Proof: Let h(x) = y be implicitly defined with respect to a difference by the
equation f (x,y) = g(x,y). Suppose <h(r),z> Φ <h(s),w>. For all x such that h(x)
is defined we have <f(x,h(r)),f(x,h(s)),z> Φ <g(x,h(r)),g(x,h(s)),w>. Substitute
x = r. Using f(r,h(r)) = g(r,h(r)) we get <f(r,h(s)),z> Φ <g(r,h(s)),w>. By (2)
we have <s,f(s,h(s)),z> Φ <r,g(r,h(s)),w>. By (8) and (10), <s,f(s,h(s)),
g(s,h(s)),z> Φ <r,g(s,h(s)),g(r,h(s)),w>. Since f(s,h(s)) = g(s,h(s)) and g is
strongly extensional we have <s,s,h(s),z> Φ <r,r,h(s),w>. So <r,z> Φ <s,w>. Thus
h is strongly extensional.

If there exists x such that x Φ x, then everything is different from everything
in each Sn, as follows from Proposition 1.9 below.

Proposition 1.9 For all x, y, and z we have x Φ x -• y Φ z.

Proof: Suppose x Φ x for some x. Repeated application of (1) implies < > Φ < >.
Repeated application of (7) then yields y Φ z for all y and z.
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So a difference is proper if and only if it is contained in the denial inequality.
The tight apartness on the real numbers R was introduced by Brouwer [2]

and subsequently axiomatized by Heyting in 1925 (see [6]). The following is a
new way of defining apartness relations: By employing the notion of difference
relation. An apartness is a proper difference relation satisfying the extra axiom
schema

x Φ y ++ (Xj Φ y i for s o m e / ) ,

for all n and x,y G Sn. By Proposition 1.16, an apartness is an inequivalence.
By Propositions 1.4 and 1.9 an apartness must satisfy the well-known conditions

(11) ^aΦa;

(12) a Φ b -+ b Φ a-, and

(13) aΦb-> (aΦcvcΦb).

An apartness relation is tight if ~^a Φ b implies a = b. A tight apartness is an in-
equality. By Proposition 1.6, a function f is strongly extensional if and only if
f(x) Φ f(y) implies that xt Φ yt for some /. Properties (11), (12), and (13) suffice
to reconstruct an apartness relation.

Proposition 1.10 Let Φ be a binary relation on S. Define ΦonSnby\Φy
if and only if Xi Φ j>, for some i. If Φ satisfies (1), (12), and (13), then the ex-
tension to all Sn is a difference. If Φ satisfies (11), (12), and (13), then it is an
apartness.

Proof: Clearly, (11) implies (1). As to (2), let f: Sm -• Sn be an elementary map,
y G S w , and t E S" such that f (y) Φ t. So π, f (y) Φ U for some /'. If 717 f is the
projection on t h e / h coordinate, then >>y Φ tj. So Xj Φ yj a s / h coordinate of
<x,f(x)> Φ <y,t>, or xj Φ tt as (m + /) t h coordinate of <x,f(x)> Φ <y,t>.

The standard example of a tight apartness relation is the one on the real line.
Define r Φ s if and only if there exists a positive natural number n such that
\r-s\ >\/n.

A generalization of the apartness on R is the apartness on local rings. A
local ring is a ring (satisfying the usual universal properties for rings) such that
if r + s is a unit, then r is a unit or s is a unit. A local ring is nontriυial if 1 is
not equal to 0. A Heyting field is a nontrivial commutative local ring such that
0 is the only nonunit, that is, if r is not a unit, then r = 0. The real numbers form
a Heyting field (see Mines et al. [10]).

Let R be a local ring. Define r Φ s if and only if r — s is a unit. If r — s is a
unit, then s — r is a unit. So Φ is symmetric. If r Φ s, then r — t + t — s is a unit,
so by the local ring property, r - tis a unit or t - s is a unit. Thus r Φ t or t Φ s.
If r Φ r, then 0 is a unit, sosΦt for allsand t. By Proposition 1.10 Φ is a dif-
ference relation on R. It is an apartness on R if and only if R is nontrivial. If R
is commutative, then Φ is a tight apartness if and only if R is a Heyting field.

Unions and intersections of differences are again differences:

Proposition 1.11 Let Φi9 i El, be a collection of relations, each defined on
all finite powers ofS simultaneously. Define ΦbyxΦy if and only ifx Φt yfor
some i E /. If all Φj satisfy one of the properties (1) through (3) or (6) through
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(13) then Φ satisfies that same property. In particular, if all Φt are differences,
then so is Φ; if all Φi are proper, then so is Φ; and if all Φi are apartnesses, then
so is Φ. If all Φi are inequivalences, then so is Φ.

Proof: The cases for conditions (1) through (3) and conditions (6) through (13)
immediately follow from their logical form. Suppose that all Φj are inequiva-
lences, and suppose that x - y and y - z. Then x ~, y and y ~, z for all /. So
x ~; z for all /, and thus x - z.

Proposition 1.12 Let Φif i E /, be a collection of relations, each defined on
all finite powers ofS simultaneously. Define ΦbyxΦy if and only ifx Φt yfor
all i E /. If all Φj satisfy one of the properties (1) through (3) or (6) through
(12) then Φ satisfies that same property. In particular, if all Φi are differences,
then so is Φ; and if at least one Φt is proper, then so is Φ.

Proof: The cases for conditions (1) through (3) and conditions (6) through (12)
immediately follow from their logical form.

Proposition 1.13 Let [ Φi}i be a collection of differences on a set. Then par-
tial functions that are strongly extensional with respect to all Φt are also strongly
extensional with respect to their union and intersection.

Proof: Suppose Φ is the union of the differences Φi, and let f be strongly ex-
tensional with respect to all Φh If <f (x),z> Φ <f (y),w>, then <f (x),z> Φt <f (y),w>
for some /. So <x,z> Φ{ <y,w>, and thus <x,z> Φ <y,w>. A similar argument
works for the intersection case.

Local rings with inequality defined by r Φ s if and only if r - s is invertible
are examples of structures that need not have a proper difference relation. The
standard difference on a local ring is proper only if the ring is nontrivial. For
some applications, however, it may be essential to have a proper difference. In
that case Proposition 1.12 is useful: Intersect the existing difference with denial
inequality to make it proper. All functions are strongly extensional with respect
to the denial inequality. Then Proposition 1.13 guarantees that functions that
are strongly extensional with respect to the original difference are still strongly
extensional with respect to the intersection of the original difference with denial
inequality.

Examples 1.14 Even in classical mathematics, intersections of inequivalences
need not be inequivalences. So we use Proposition 1.12 to construct an exam-
ple of a discrete set with a decidable difference relation that is not an inequiva-
lence.

1.14.1. Consider the discrete set S = {a, b, c] with differences Φx and Φ2 that
are complements of the equivalence relations on S with partitions [[a, b},{c}}
and {{a],{b, c}} respectively. Then the intersection Φ of Φ\ and Φ2 is such that
a Φ c, a ~ b, and b ~ c. So Φ is a decidable difference that is not the comple-
ment of a transitive relation even though Φx and Φ2 are decidable apartnesses.
Thus differences are essentially more general than complements of equivalence
relations.

1.14.2. Even if a difference is such that for some n the associated nearness is
an equivalence relation on Sι for all i <n, then it still need not be an inequiva-
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lence. Example: Let R be a nontrivial commutative ring, and set S = Rn. Define
x Φ y if and only if S = Σ/ (*/ - y^R- By Proposition 1.5 Φ is a difference on
S. Then x - y for all / < n and x,y E S'. But the nearness relation is not an
equivalence in Sn,for if eu..., eΛ is a basis of S,then<0,0,.. . ,0>~<0,e2> • ->en)
and (09e2i...9en) - <euel9.. .9en)y but <0,0,...,0> =£ <β!,e2,. » O

1.14.3. If =£ is an apartness relation, then the schema

f (x) Φ f (y) - > x ^ y

suffices to show that f is strongly extensional. In general, the schema is insuf-
ficient as it is essentially weaker than (5). Let S be the discrete set of Example
1.14.1 with decidable difference Φ. Define/: S->S byf(a) = a9f(b) = a, and
f(c) = b. Then the schema above holds since/(x) ~f(y) for all x9y E S. But
/ is not strongly extensional since (f(b)9b) Φ (f(c),c) and (b, b) ~ <c, c>.

Examples 1.15 Let (S, d) be a set S with pseudometric d9 that is, d is a func-
tion from S 2 to R such that d(x,x) = 0, d(x9y) = d(y9x)9 and tf(x,z) <
tf(*».y) + d(y,z). It is well-known that a pseudometric induces an apartness re-
lation on 5 by s Φ t if and only if d(s91)>0. The apartness is tight if and only
if the pseudometric is a metric. Let r be a real number. A difference with reso-
lution r > 0 on S is a difference =£ satisfying a Φ b if d(a9b) > r9 and # - Z? if
d(a, b) < r, for all a9bES. So the standard apartness on 5 is a difference with
resolution 0. For each r > 0, do there exist differences with resolution r on S?

1.15.1. Before resolving this question, consider the following nonexample. De-
fine x Φr y if and only if Σιid(xi9 y{) > r. Then Φr satisfies the conditions of
Proposition 1.5 except for condition (6). Functions f satisfy (5) if Σιjd(fj(x)9

fj(y)) ^ Σad(xi9yj). This nonexample suggests ways by which to generalize the
notion of difference relation.

1.15.2. To construct differences with resolution r on S, we follow a less ele-
gant route. A subset X c= S is open if for all x E X there exists e > 0 such that
B(x9 e) c χ9 where B(x9 e) = {y E S | d(x9y) < e}. For each pair of open sets
p = (Ap9 Bp) such that ApUBp = Sv/e define the difference Φp byxΦpy if and
only if there exists / such that d(xi9 yt) > 0, and Xj E A and j>/ E 5, or ΛΓ/ E 5 and
j>/ E >1. We easily verify that Φp is an apartness relation. For A ^ S and r E R,
define rf(>l) < r to mean that d(a9 b) < r for all a9 b E A. Similarly, d(A) > r
means that d(a9 b) > r for some #, 6 E ̂ 4. A ccwer of S is a collection 7 of pairs
p = (^Ip, Bp) of open sets ^ and Bp with APU Bp = S9 such that Upeγ ^p = S.
By Proposition 1.11, the union Φy of the apartnesses ^ is again an apartness.
A cover γ has refinement r if d(Ap) < r for all p E γ. Clearly, if γ has refine-
ment r9 then a Φyb whenever d(a9b)> r. Let =£Γ be the intersection of all cov-
ers Φy of refinement r. We leave it as an exercise to show that Φr is a difference
with resolution r. If r < s1, then (^5) <Ξ ( ^ r ) .

Unfortunately, difference relations Φr usually have few strongly extensional
functions.

A nearness relation associated with an inequivalence is completely determined
by its binary relation — on S:
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Proposition 1.16 A difference is an inequivalence if and only if it is proper
and satisfies

(4) x-y^V/ta-Λ).

Proof: Suppose Φ is proper and satisfies (4). Obviously, ~ is reflexive and sym-
metric. Let x - y and y - z. Then by (4) <x,y> ~ <y,z>. Repeated application
of (8) and (10) yields x - z. Conversely, suppose that the difference is an in-
equivalence. Reflexivity implies that Φ is proper, and (7) and (8) imply x ~ y ->
Vi(Xi ~ yd- Suppose x — y and a ~ b. It suffices to show <x, a) ~ <y, b). This
follows immediately from <x, a) ~ <x, b) and <x, b) ~ <y, b), and the transitiv-
ity of - .

Lemma 1.17 A proper difference is an inequality if and only if -*a = b im-
plies -i -iff Φ b, for all a, b.

Proof: Suppose Φ is a proper difference such that -«α = b implies -^^aΦb, for
all a, b. From Proposition 1.9 it follows that x Φ x implies _L. So we have x Φ
y -> "iχ = y. Assume ->x = y. Then -i-iai'-ix,- = yt. So -I-I3/-I-IJC, Φ yi. And
thus -i-ia/x/ Φ yi9 hence -i-ιχ Φ y. So Φ is an inequality.

The converse is trivial.

Corollary 1.18 The union of a proper difference and an inequality is an in-
equality.

Proof: Let Φ be the union of a proper difference Φ\ and an inequality Φ2. By
Proposition 1.11, Φ is a proper difference. Suppose -iff = b. Then -i-iff =£2 6,
so -i-«ff Φ b. So by Lemma 1.17 Φ is an inequality.

There is no unique way to define what a strongly extensional relation is. In
this paper we present two ways. One involves functions between sets with dif-
ferences.

We may identify an Λ-ary relation on a set S with a function from Sn to
Ω = (P{0}, the truth value object. Following an approach along that line, an n-
ary relation is a special case of a function/: S-+ Tbetween sets with differences,
be it that we have to choose a difference relation for Ω. If there exists a set
U = S U T with difference such that this difference with restriction to S and T
is the difference of S and Trespectively, then/ is just a partial function/: 1/-+ U.
Instead of the union of S and T there may be difference maintaining embeddings
of S and Γinto a set U with difference, that is, the differences on S and Tare
the same as those of U restricted to the images of S and T respectively. If such
U exist, then define/: S -• Tto be strongly extensional if/: U-+ U is strongly
extensional in the sense of Theorem 1.6. This definition of strong extensional-
ity depends on our choice of U and on the difference on U.

In many cases there is a natural choice for £/. If/: Sm -+ Sn is a map be-
tween powers of a set 5 with difference, then Sm and Sn are sets with differ-
ences induced by the difference of S. For all k, the embedding / : Sk -> Sk+ι

defined by /<x, a> = <x, ff, ff> maintains difference. So choose U = Sp with
/? = max(m, n). There exist difference preserving maps of Sm and S" into Sp.
Then/: 5 W -• Sn is strongly extensional as defined in Theorem 1.6 if and only
if/: C/-> C/ is strongly extensional in the sense of Theorem 1.6.
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If there is no choice for U as described in the example above, the disjoint
union can be an alternative. Let U = S II T. We extend the difference relations
of S and Γto ί/, and consider the function/: S-* Γas partial function fυ: ί/-*> CΛ
Define ^ on powers Un by setting x Φ y if and only if either for some /, JC, and
j>ι come from different sets S and Γ, or else, up to a permutation TΓ of the indi-
ces, there exist Si,s2 E S p and tj,t2 E 7^ such that πx = <Si,ti), Try = <s2,t2>,
and Si =£ s2 over S or ti =£ t 2 over T. The relation =£ on U is called the canoni-
cal extension of the difference relations on S and Γ.

Proposition 1.19 Let S and T be sets with proper difference relations, and
let U= SU T be the disjoint union. Then the canonical extension Φ to U is a
proper difference relation whose restrictions to S and Tare the differences on S
and T respectively.

Proof: Clearly, the canonical extension satisfies (1) and (3), and the restrictions
of Φ to S and T reproduce the original differences on them. Note that this re-
quires the differences on S and Γto be proper. Let f: Um -» Un be an elemen-
tary map such that f (y) Φ t. Then f is a sequence of projections (τr λ l , . . . , τrχΛ).
So <7χi,..., AΛ) =* *• If Λ/ ^ U f° r s o m e ' because they are from different sets
S and Γ, then for the same reason (xλi,xλi) Φ <Jx/>^>> and so by repeated
application of (7), (8), and (10) <x,f(x)> Φ <y,t>. Otherwise, suppose we have
x φ y because for some /, Xf and yt are from different sets S and T Then by (7),
<x,f (x)> Φ <y,t>. Finally, suppose that for all / either both JC, and yt are in S or
both are in T, and that for all / either both yλi and ί, are in S or both are in T.
Then there exists a permutation TΓ such that τrf(y) = <fs(y),fr(y)> and πt =
<t s,tΓ>, where f5(y) Φ ts over S or fΓ(y) ^ t Γ over T. Let x s, xΓ, y s, and yτ be
the subsequences of x and y of elements that belong to S and T respectively. Then
<X5,f5(x)> Φ <y5,ts> or <xΓ,fΓ(x)> Φ <yΓ,tΓ>. After merging the two relations,
weget<x,f(x)> ^<y,t>.

The assumption of properness is essential in Proposition 1.19. If we don't
assume the differences on S and Γare proper, we may not be able to derive (1)
for the canonical extension Φ on S II T If for example s Φ s for some s E S,
then <s, t) Φ (s, t) for all t E T, and thus by (1) we would have t Φ t for all t E
T So the difference on T could not be proper either.

Another way to define strongly extensional «-ary relations is by returning to
the original classical axiomatization of inequality:

xΦx\- ±

AyYxΦyy Ax,

where in the last schema the variables x,y are not bound by a quantifier of A.
We wish to replace the right-hand side of the second schema by a difference be-
tween sequences (x,A) Φ {y>x). So defining strong extensionality for relations
using sequences reduces to introducing a new constant A to S and extending the
difference relation from S to S U [A}. Let R be an n-ary relation on S. Then R
is a unary relation on Sn. Rather than defining strong extensionality of R over
S, we define strong extensionality of R over Sn. So without loss of generality we
define strong extensionality for unary relations only. Let R be a unary relation
on a set S with difference. Then R is strongly extensional if there is an extension
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U= S U [r] with difference relation, such that the difference of C/with restric-
tion to S is the original difference of S, and such that for all sES, Rs holds if
and only if s Φ r.

Example 1.20 Let 5 be a set with apartness, and let R be a unary relation on
S satisfying

(14) Rs^(sΦtvRt).

Then R is strongly extensional: The apartness of S extends to be apartness on
S U [r] by setting r Φ s if and only if Rs. Conversely, if the difference on
S U [r] is an apartness, then R satisfies (14).

2 Applications to algebra Groups and rings with differences are defined by
the usual universal axioms together with the condition that the standard func-
tions are strongly extensional. So a group G with difference consists of a set G
with a difference relation, constant e, unary function - 1 : G^> G, and binary
function :GxG-+G such that - 1 and are strongly extensional and such that
for all g, h,i G G we have

g e = e g = g;

g (h-i) = (g'h)-i and

g'g~ι =g~ι g = e.

Proposition 2.1 Let Gbea group with a difference relation on the underly-
ing set. Then G is a group with difference if and only if for all a, b, x, c, d we have
that <α,c> Φ (b,ά) implies <αx,c> Φ (bx,ά) and (xa,c) Φ (xb,ύ).

Proof: It suffices to show that multiplication and inverse are strongly exten-
sional. Suppose (ab,z) Φ <crf,w>. Multiply by c~ι on the left and by b~x on the
right to get (c~ιa,z) Φ (db~\γt). So ( c ' V M ) Φ <1,db~\yf). So after two
more multiplications we arrive at <α, 6,z> Φ <c,c?,w>. Thus multiplication is
strongly extensional.

The strong extensionality of the inverse follows from Proposition 1.8 with
f(x,y) =xy and g(x,y) = 1.

Let G be a group with normal subgroup N. Define ΦN by x ΦN y if and
only if the normal subgroup generated by { . . . jX/^Γ1* ) contains N. One
easily verifies that ΦN satisfies the conditions of Propositions 1.5 and 2.1. So G
with ΦN is a group with difference.

The following example of a group with difference was suggested to us by
Fred Richman. It illustrates that there exists an elementary algebraic structure
whose natural relation Φ is a difference that cannot be shown to be an inequiva-
lence. Let Z be the group of integers and let N be the set of natural numbers.
Define Q to be the quotient group Q = Z N / Σ N Z. A natural way to define an
inequality on Q would be to set a Φ 0 if and only if there are infinitely many
« G N such that a(#) is not 0, that is, for all m > 0 there exists n> m such that
a(«) is not 0. Define Φ by < a 1 ? . . . ,aΛ> Φ 0 if and only if there are infinitely
many elements unequal to 0; and <ai, . . . ,aπ> Φ (bu... ,bn) if and only if
<ai — b i , . . . ,aπ — brt> Φ 0. It is immediate from Propositions 1.5 and 2.1 that
this makes Q a group with difference.
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A subset X c Y is detachable from Y if the union of X and its complement
equals Y. Let E be the set of even numbers and let O be the set of odd numbers.
So Eand O are countably infinite detachable subsets of N such that EU O = N9

and EΠO= 0 . Consider the principle EO: If A <Ξ N is a detachable subset such
that AΠE and A Π O are not infinite, then A is not infinite.

Now assume that the difference Φ on Q is an inequivalence. Let A c N be
a detachable subset such that AΠE and y4 Π O are not infinite. Define a9bEQ
by #(H) = 1 if and only if In GA9 and b(n) = 1 if and only if 2« + 1 e ^4. Then
a ~ 0 and Z? — 0. If =£ is an inequivalence, then (a,b) ~ 0. But this means that
A is not infinite. So if Φ is an inequivalence, then EO holds.

The principle EO is not derivable in constructive mathematics. In Section 4
we present a topos ε G whose natural number object N has a detachable subset
X such that both X and N\X are not infinite. EO implies that there exists no
such X: a detachable infinite subset A Q N is isomorphic to N, and AΠE and
ADO then are isomorphic to a partition A" and N/Xof detachable subsets of N.

A ring with difference is a set R with difference satisfying the well-known
universal axioms for zero, one, addition, and multiplication such that addition
and multiplication are strongly extensional. A ring is nontrivial if 1 Φ 0. The par-
tial function of multiplicative inverse/(x) = x" 1 is implicitly defined by the
equation xy ~ 1, hence by Proposition 1.8 is strongly extensional.

Proposition 2.2 Let R be a ring with a difference relation on the underlying
set. Then R is a ring with difference if and only if for all a, Z?,jc,c,d we have
that <α,c> Φ (b,d) implies (a + x,c) Φ (b + x,d>, and (ab,c) Φ <0,d> implies
<Z?,c> Φ <0,d> and <α,c> Φ <0,d>.

Proof: By Proposition 2.1 the additive abelian group is a group with difference.
Suppose {ab,τ) Φ <crf,w>. Then (ab9ad,z) Φ (ad,cd9w). So (a(b - d)9

(a - c)d9τ) Φ <0,0,w>, and thus {b - d9a - c,z> Φ <0,0,w>. So (a9b9z) Φ
<c,rf,w>.

The abelian group Q above is a ring with difference with multiplication
a b = c with c(n) = a(n)b{n) for all n.

Let R be a ring, / a two-sided ideal of R. Define =£/ by x Φj y if and only if
the ideal ΣnR(Xi — y^R contains /. We immediately see from Propositions 1.5
and 2.2 that this makes R a ring with difference Φi

Proposition 2.3 Let R be a ring with difference, and let n>0. Then we have

(0 <axϊ9.. .9axn9y) Φθ-+(a9y) Φθ;

(ii) xΦθ->lΦθ;

(iii) <an

9y) Φ0-+ <α,y> Φ 0; and

(iv) (an

9 b + ac9x) Φθ->(a9 Z?,x> Φ 0.

Proof: For (i) we have (axu . . . 9axn9y) Φ 0-+ (axu... 9axn9y) Φ (0xl9...,
θΛΓπ,0>.So<flr,y>^0.

(ii) follows immediately from (i).
By (i), (an+ι

9y) Φ 0 implies {an

9y) Φ 0. Repeated application yields (iii).
For (iv), (an

9 b + αc,x> Φ <0",0 + 0c,0,... ,0>, so (a9 b9x) Φ 0.
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The polynomial ring R[X] over a commutative ring R with difference is de-
fined in the usual way. It remains to construct a difference on R[X]. R[X] can
be considered as a subset of U«eN^Λ> and so borrows the difference from R by
defining (fx,... ,/„> Φ (gλ,..., gn) if and only if the sequences of coefficients
differ over R, that is,

<#oi> . . . ,am\, . . . ,^O/iJ >βffin) Φ <&01 > >^/wl> > ^0/ι> > bmn)9

where/} = tf0/ + . . . + αm/Jfw and & = bOi> + 4- bmiX
m. We easily see that the

addition and multiplication operations of R[X] are strongly extensional since
they are built up from the addition and multiplication operations of R.

We say degf< n i f / = a0 H -I- anX
n for some at E R. We say degf> n

if / = S + hXn for some g,AE R[X] with cfegg < Λ - 1 and h Φ 0. Let

g = b0 + + bm Xm for some 6/ E # . We say <feg/ < degg if for all k,
(ak9 ...9an)Φ0 implies (bk,..., bm) Φ 0. We say degf < degg if for all k9

<ak9 ...yan)Φ0 implies <bk+ϊ, ...,bm)Φθ.

The definition of integral domain presents us with the problems of establish-
ing what structures we want to be integral domains, and what properties we
should be able to derive for integral domains. The ring Z of integers and the ring
R of real numbers with apartness must be integral domains; integral domains
must have quotient fields, where a field is an integral domain such that a is in-
vertible whenever a Φ 0; and polynomial rings in one variable over integral do-
mains must be integral domains.

A commutative ring with difference is an integral domain with difference if
it satisfies:

(1) 1 Φ 0;

(2) aΦθΛab = 0->6 = 0;

(3) aΦθΛbΦθ-+abΦθ;

(4) X ^ 0 Λ ( . . . 9Xjb9... > = 0 -• b = 0; and

(5) xΦ0ΛyΦ0-+(...9xiyJ9...yΦ0.

Afield with difference is an integral domain with difference satisfying

(6) If a Φ 0 then a is invertible.

Clearly, (4) implies (2), and (5) implies (3). LetR = Z[X, Y9 Z]/(XZ, YZ9 Z
2),

and let / = XR + YR9 the ideal generated by X and Y. Define x Φ y if and only
if the ideal Σ/ (#,• - yj)R contains some power In of /. Then R is a commuta-
tive ring with difference. We have a Φ 0 if and only if a = 1 + rZ or — 1 + rZ for
some r E R. So a Φ 0 if and only if a is a unit. We easily verify that R satisfies
(1), (2), (3), (5), and (6). But (4) fails since <X9 Y>Φθ and {XZ9 YZ) = 0.

Let R = Z[X9 Y]. Define x Φ y if and only if the ideal Σ, (*, - yi)R con-
tains the ideal / = XR + YR. Then R is a commutative ring with difference, and
a Φ 0 if and only if α = 1 or - 1 . So we easily verify that R satisfies (1), (2), (3),
(4), and (6). But (5) fails because {X9 Y)Φθ while <X2

9XY9 Y2) - 0.
Let Z be the ring of integers. The prime ideals 2Z and 3Z induce the usual

decidable equivalence relations ~ 2 and ~ 3 on Z with corresponding difference
relations Φ2 and =£3. The standard ring operations preserve the equivalences, so
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Z is an integral domain with difference with respect to Φ2 as well as with respect
to Φ3. Let Φ be the intersection of Φ2 and Φ3. Then by Proposition 1.13 Z is
an integral domain with difference with respect to Φ. Note that the decidable re-
lation Φ is not an inequivalence as 2 - 0 and 3 - 0 , while <2,3> Φ 0.

Proposition 2.4 Let R be a commutative ring with difference satisfying (1),
(2), and (3).IfΦ is an apartness, then R is an integral domain, IfΦis denial
inequality and equality is stable, that is, —«—»α = b implies a = b, then R is an in-
tegral domain.

Proof: The case for apartness is trivial.
Suppose that Φ is denial inequality and = is stable. If x Φ 0 and < . . . ,

xty,... > = 0, then -i-i3/(jcf- Φ θAXty = 0). So -π.y = 0, and thus y = 0. That
proves (4). Let x and y be such that x Φ 0, y Φ 0, and < . . . , jt, .yy , . . . > = 0. Then
for all / and j we have -ι -i (xι> = 0 v yj = 0). So for all /, -> -• (x, = 0 v y = 0).
Thus -i-ι(χ = 0 v y = 0). Contradiction. Thus R satisfies (5).

So not only the ring Z and the ring R with apartness, but even the ring of
real numbers R with denial inequality are integral domains with difference.

From ([10], p. 47) we know that (1), (2), and (3) are necessary and sufficient
to embed a commutative ring with difference in a field. The quotient field Q of
an integral domain R is constructed by localizing to the set S = {s G R \ s Φ 0}.
Then S is a multiplicative set because of (1) and (3), and R embeds in Q because
of (2). The difference on Q is defined by (X\/Sι,... ,xn/sn) Φ 0 over Q if and
only if (xu... ,xn) Φ 0 over R. Obviously, this relation satisfies (1), (4), and
(5).

It remains to present the motivations for (4) and (5) in the definition of in-
tegral domains with difference. Suppose R[X] is a commutative ring satisfying
(2). Then for a l l / = ΣiXiX* ΦOandyGR such that fy = 0, we havey = 0.
So R satisfies (4). Suppose R[X] is a commutative ring satisfying (3). Let/ =
ΣiXiX* and g = Σj yjXJ be such that fΦ 0 and g Φ 0. Then/g Φ 0. So

(*OJΌ> >Σχkyh-k, >χmyn) * o.

Using the strong extensionality of addition we get < . . . ,X/^/,... > Φ 0. Thus R
satisfies (5). So if polynomial rings R[X] over integral domains R must be in-
tegral domains themselves, then (4) and (5) are necessary. With Proposition 2.7
we establish that (1) through (5) are sufficient.

Lemma 2.5 Let R be a commutative ring with difference satisfying (5). Then

(i) <ax,..., an) Φ 0 -• < α Γ , ...,a^)Φθ;

(ii) <α,x> ^ 0 Λ <£,X> Φ 0 -• (ab,x) Φ 0.

Proof: < # ! , . . . , an) Φ 0 implies < . . . , #/#,, . . . > Φ 0. Repeated application
of Proposition 2.3(i) yields (au.. .,an-X,afc) Φ 0. Iteration of this process
yields (i).

If <tf,x> Φ 0 and <b,x) Φ 0, then (5) implies

<ab, axi,..., axn, bxu..., bxn,... ,*,-*,•,... > Φ 0.

Repeated application of Proposition 2.3(i) yields (ab,x) Φ 0.
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Lemma 2.6 Proposition 2.5(ii) is equivalent to (5).

Proof: Let x x y = < . . . , JC/ĵ  , . . . >, and t~' the sequence t with tj removed.
Suppose x ^ O and y Φ 0, and let z = <x,y>. Then <x x y,z~'> Φ 0 for all /. So
by Proposition 2.5(ii), <x x y,z~~zW> Φ 0 for all / <y. Applying Proposition
2.5(ii) to this new collection by comparing all sequences that differ in one coor-
dinate gives <x x y,z~ι'~J>~k) Φ 0 for all i <j <k. After sufficiently many ap-
plications of this operation we obtain x x y Φ 0.

Proposition 2.7 If R is a commutative ring with difference satisfying one of
the properties (1) or (5), then R[X] satisfies the same property. IfR satisfies
both (4) and (5), then so does R[X]. IfR is an integral domain with difference,
then so is R[X].

Proof: The case for (1) is trivial.
Suppose R satisfies (5). Let A be an n X n matrix and bGRn such that d =

det A Φ 0 and b Φ 0. Let A be the adjoint of A, that is, A A = A A = dl. Then
A Ah = db Φ 0. From the strong extensionality of A we obtain Ab Φ 0. So
if det A Φ 0 and b Φ 0, then Ab Φ 0. Let fg E Λ[ΛΓ], h G Λt^] 7 1 be such
that </,h> Φ 0 and <g,h> Φ 0. Then/= Σ, «/Ar/ and g = ΣjbjXj for certain
α, , 6, E i?. Identify polynomials of degree at most p with vectors in Rp. Then
the coefficients of fg = ΣikCkXk form the vector Ab, where

a0 0 0 . . . 0

ax a0 0 . . . 0

a2 ax a0 0

am am_ι am_2 ••• # o
^ = . . .

an an_ι an-2 ••• # « - m

0 #„ #„_! . . . an-m+ι

0 0 0 . . . an

and

V

b = ^ .

So we must show that <Λb,h> =£ 0. Let A,^ be the (w + 1) x (m + 1) submatrix
of Λ with the α, on the diagonal, and let <i, = det^l,. Then dt = a/"+1 +
Σj<ίCijPj(a) ΐoi somePj. Now/? satisfies (5), so < α ^ + 1 , . . . ,σ^+1,h> ^ 0 . So
by a finite induction on n, using Proposition 2.3(iv), d = <rfo> ><4>h> Φ 0.
Let A'i be the adjoint of At. So ̂ 4 •<£"/,..., ci+m)τ = rf,b. There exists a linear
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map F= < . . . ,A'iΊch... >: Rm+n+ι ->/j(w+i)(n+i) s u c h that Fis a strongly exten-
sional map satisfying FAb = < . . . , dxb31,... > and FO = 0. So <Λ4b, h> Φ <F0,0>.
Hence 04b, h> Φ 0. Thus </g,h> Φ 0.

Suppose Z? satisfies (4) and (5). Let </ 1 ? . . . ,/w> =£ 0 and g be such that
</i£> >fmg) = 0> for./},g G Λ[A1. We may identify g and ally} with vectors
in /?Λ+1 for some n. Then fig is a vector in /?2/I+1, and/g = Ajb, where ̂ 4, is a
(2« + 1) x (/I + 1)-matrix as above, and b is an (n + 1) x 1 vector associated
with g. Let Aij be the (n + l ) x (« + l) submatrix of At with theyth coefficient
on the diagonal, and set dy = detAy. Then < . . . , dij9... > Φ 0. Apply a se-
quence of elementary maps Ft as above. Then < . . . , dijbk,... > = 0. So b = 0.
Thus g = 0.

3 Differences for all powers In Section 2 we were just able to extend the
difference from a ring R to the polynomial ring R [X] because R [X] c= U«eN Rn

Extending the difference to the power series ring Z?[[AΠ] requires a substantial
extension of the definition of difference: define Φ on all powers Sx simulta-
neously rather than on finite powers Sn only. The definition presented in this
section follows the 'finite' version of Section 1.

A generalized (proper) difference Φ on a set S is defined on all powers Sx

simultaneously. It satisfies axiom schemata that are straightforward generaliza-
tions of Section 1(1), Section 1(2), and Section 1(3).

We generalize Axiom (1) of Section 1 as follows: Let X = YU Z. If/ is a
function with domain X, then we write fγ and/ z for the functions restricted to
the subdomains Y and Z respectively. The generalization of Section 1(1) now
reads: for all X, Y, Z such that X = Y U Z, and all /, g: X-• S, we have:

(1) If fΦ g and fz = gz, then/ y Φ gγ.

For a generalization of Axiom (2) of Section 1 we must extend our defini-
tion of elementary function. Let S be the set for which we define a difference
tion. For each function f:Y^X there is a corresponding map /* : Sx -> Sγ

defined by/*(g) = gf. The elementary maps of Section 1, defined between finite
powers of 5, are of the form /* :Sm -> Sn

9 where / is a function from n =
[0,..., n — 1} to m = {0,..., m — 1}. More generally, elementary maps between
Sx and Sγ are defined as the maps/*, with/: Y-+X. The generalization of
Section 1(2) now reads: For all sets A and B, / : SA -* SB an elementary map,
x,yeSA, and teSB,

(2) iffy Φ U then {xjx) Φ <y91), where <*,/*>,<>>, t) G SAUB.

Proper differences satisfy

(3) < > Φ < > is false,

where < > is the unique element of 5° = 1.
We define nearness — by/— g if and only if -*fφ g. An inequivalence is a

proper difference such that for all sets X = YU Z and/,g:X-+ S, if fγ — gγ

a n d / z ~ g z , then/~g.
A proper difference is an apartness if for all X and/ g:X-+S, iffΦ g, then

/(*) =* g(x) for s o m e A: G X Clearly, an apartness is an inequivalence.



550 WIM RUITENBURG

For each collection Λ of partial functions between powers of S, E(A) is the
smallest subcategory of partial maps between powers of S that includes Λ and
the elementary maps. The collection E = E( 0 ) of elementary maps itself forms
a subcategory. We define Λ to be a collection of strongly extensional maps if all
(partial) maps oί E(A) satisfy (2). As in Section 1, we easily show that Λ is
strongly extensional if and only if for all/: Sx-* Sγ E Λ, all Z , J C J G Sx, and
Z, w E Sz

9

<fx,z> Φ <fy9 w) implies (x9z> Φ <y, w).

There is a canonical way to extend differences defined on the finite powers
Sn to differences on all powers Sx. Let Φ be a difference on all finite powers.
For all X define Φ on Sx by / Φ g if and only if there is an n E N and a map
e: {1,... ,n] - Xsuch that/e Φ ge9 that is, </<?(l),... Je(n)) Φ <ge(l),. . . ,
ge(n)}. We call this the infinite extension of =£. The extension preserves strong
extensionality of functions.

Proposition 3.1 The infinite extension of a difference relation on the finite
powers Sn is a difference. If the finite difference is proper, an inequivalence or
an apartness, then so is the infinite extension.

Proof: Let/,g:X-> S be maps such that fΦg9 and suppose X = YU Z such
that fz = gz There is a map e:{\,...,n}-*X such that fe Φ ge. Since Φ is a
difference on the finite powers Sn

9 we can remove all coordinates / for which
e(i) EZ9 because for them/e(/) = ge(i). So there is a subsequence generated
by a map d: {1,..., m] -> Yΐor some m-<n such that/rf Φ gd. Thus/y Φ gγ.
So Φ satisfies (1).

Suppose fy Φ t for y E SA

9 f = g*: SA -• SB elementary, and t E SB. So
yge Φ te for some e:{l,...9n] -+ B. Then (x9fx)(ge9e) = {xge9fxe) Φ
<yge9 te) = <y9 t){ge9e). Thus {x9fx) Φ <y91). So Φ satisfies (2).

Clearly, if a finite difference is proper, then so is its infinite extension.
Suppose the finite difference is an inequivalence, and let X = Y U Z be sets

and/,g: A'-* S such that/y — gy and/ z — g z If /=£ g9 then/e =£ ge for some
e:n ->X There are/?,# such that p + q = n9 ep\p-+Yand eq:q-+ Z. Then
/£/> - ££/> and/β^ - g^. So/e - ge. Contradiction. T h u s / - g.

The case for apartness is trivial.

If Φ is the denial inequality on the finite powers Sn, then its canonical ex-
tension as defined above usually is not the denial inequality on infinite powers
Sx.

Example: the denial inequality on the set N of natural numbers is the well-
known discrete inequality, while the infinite extension to NN is the apartness re-
lation defined by/=£ g if and only if f(n) Φ g(n) for some n.

A map/: Sx-> Sγ is strongly extensional with respect to a difference if for
all Z and v, w E Sz, if {fxuv) Φ (fx2, w> in S™2, then (xuv) Φ (x2, w> in
Sxuz.

Obviously, if/: Sm -• Sn is strongly extensional with respect to a difference
relation on the finite powers, then it is also strongly extensional with respect to
the infinite extension.
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Proposition 3.2 Let R [[X]] be the power series ring over a commutative ring
R with difference. The difference on R[[X]] = RN is the infinite extension of the
difference on R. If R satisfies Section 2(5), then so does R[[X]].

Proof: L e t / = Σ / * / * ' , g = ΣjbjXJ e R[[X]]9 h G R[[X]]n be such that
</,h> Φ 0 and <g,h> Φ 0. Let/ m = Σi*m aW and gn = Σj*n bjXJ. By Propo-
sition 2.7 there are m,« such that (fmgn9h) =£ 0. W r i t e ^ = Σ/ C/Jf'. We prove
by induction on m + Λthat < c 0 , . . . ,c m + π ,h> =£0. If m + n = 0, then<co,h> =£0.
Induction step: If (fmgnih) Φ 0, then < c 0 , . . . , c m + π , . . . , # , £ , , . . . ,h> Φ 0,
where /, j are all pairs such that i+j<m + n and i < m or j < n. So < c 0 , . . . ,
cm+njm-ugn-uh) Φ 0, where/_! = g_x = 0. And thus by induction < c 0 , . . . ,
cm+n,h) ΦO.

In general, if R is an integral domain with difference, then ^[[ΛΠ], with the
infinite extension as difference relation, may not satisfy Section 2(4). Let R =
Z[S, Z o , Zx, Z 2 , . . . ] / / , where 7 is the ideal generated by SZ 0 and SZi+ΐ + Z, ,
for all i. Define x ^ y if and only if the ideal Σ/ (JCf- - Λ)-R equals /^. Then R is
an integral domain with difference. Let/,g G Λ[[AΊ] be defined b y / = S + ^
and g = Σ i Z A'1'. T h e n / ^ 0, fg = 0, but g is not identical to 0. So R[[X]] does
not satisfy Section 2(4).

Acknowledgment—The idea of a generalized notion of inequality arose following sug-
gestions by William Julian during the writing of [10]. Thanks are due to Fred Richman
for suggesting one of the examples, and to John Simms for some helpful discussions on
set theory.
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4 Appendix: A topos model We construct a topos δ whose natural num-
ber object N has a detachable subset Xsuch that both Xand N\Xare not in-
finite, where a subset Γ ^ N i s infinite if for all m there exists n> m such that
nE Y. We hasten to add that the construction of the topos model itself uses prin-
ciples from classical logic and set theory.

All languages that we consider are for a higher-order logic as described in
Fourman [5] or Lambek and Scott [9], with additional type constants and func-
tion constants. We construct a sequence of higher-order languages Lh theories
[TjI i e N} for the languages Lh and topos models (ε, | ί € N ) for the theories
Tt.

Let Lo be the language with extra type constant N, extra function symbol
s:N->N9 and extra constant symbol 0 of type N. Let To be the theory of higher-
order logic for Lo with the Axiom Schema of Choice (epimorphisms split), im-
plying excluded middle Diaconescu [4], and the additional schema: (N,s,0) is
a natural number object in Lo ([5] or Johnstone [7] or [9]). Obviously, To has
a topos model contained in the category of sets S. Define exp\ for all ordinals
λ by expo = No, exPa+\ = 2exPa, and expx = U<*<λ expa f° r limit ordinals λ. Set
ε 0 = Vλ with λ a regular cardinal bigger than expω9 where Fλ is an initial seg-
ment of the cumulative hierarchy (see van Dalen [3], p. 168, or Johnstone [8],
p. 71).

Suppose Li and 7} have been defined and a model 8Z constructed. Define
Lj+ι as the extension of Lz obtained by adding constant symbols for all elements
of the natural number object iV, E 18, |, plus one more symbol ci+ι. Define 7}+1

as the extension of 7} by adding all properties for the constants satisfied by the
corresponding elements of Nj in 8, , plus the axiom schema ci+\ > n for all
constants n of TV,. Set S/+1 = 8/VF, where F is an ultrafilter on TV, that exists
and is free in 8/. The category 8 / + 1 is a subcategory of 8/ with embedding
σ, : 8/+i -• 8/, and is a topos with natural number object Ni+Ϊ = Nf'/F. For ci+χ
choose the diagonal element (id:Ni^>Nϊ)/F. Then 8/+i is a model of 7}+1.

Consider the sequence of categories

. . . • O 2 • O i • C o ,

where the σ, are the inclusion functors. Note that the σ, are left exact. We use the
glueing construction as described in [7], p. 109, to construct a new topos. Let
8 = Π, 8/. Let G = (G, e,δ) be the comonad on 8 defined by
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G ( Π A ) = Π Π Λ ;

δΠ, A = Π τi: s i l l A) - Π Λ ; and
i \ i / i

*Π/Λ = Π Π Π **: G(A) -* G2M).

The functor G is left exact. So by ([7], Theorem 2.32) the category 8G of co-
algebras is a topos.

The objects of SG are most easily described as sequences

A = ( A 0 ^ A ι ^ A 2 ^ . . . ) ,

where A>G 18/1 and α,- is a morphism of 8, . Morphisms f:A-+B consist of se-
q u e n c e s ^ (/o>/i>/2, )> where the^ r .A^Bi are such that 6/+1y; =/)+!«/.
We easily see that AT = (Nθ9Nχ, Λf2,...) is the natural number object of 8G. Let
X= (X0,XuX2,... JbethesubobjectofΛ^definedby^/^ {nGN2i\c2j-\ <
Λ < c2y for somey < / j and X2i+\ = j « E N2i+i | c2y_i < « < c2y for somey < /
or c 2 / + 1 < «}. We easily verify:

Theorem 4.1 A" /51 a detachable subobject of N such that neither X nor N\X
is infinite.




