Notre Dame Journal of Formal Logic Volume 33, Number 1, Winter 1992

A Model in Which Every Kurepa Tree Is Thick

RENLING JIN

Abstract In this paper we show that, assuming the existence of two strongly inaccessible cardinals, it is consistent with *CH* (or $\neg CH$) plus $2^{\omega_1} > \omega_2$ that there exists a Kurepa tree with 2^{ω_1} -many branches and no ω_1 -trees have λ -many branches for some λ strictly between ω_1 and 2^{ω_1} .

A tree is a partially ordered set $(T, <_T)$ such that for every $t \in T$, the set $\{s \in T : s <_T t\}$ is well-ordered. $(T', <_T')$ is a subtree of $(T, <_T)$ if $T' \subseteq T$ and $<_{T'} = <_T \cap T' \times T'$. We shall not distinguish a tree $(T, <_T)$ from its domain T. Let $ht_T(t)$, the *height* of t in T, be the order type of $\{s \in T : s <_T t\}$, let T_{α} , the α -th level of T, be the set $\{t \in T : ht_T(t) = \alpha\}$, and let ht(T), the height of T, be the set $\{t \in T : ht_T(t) = \alpha\}$ are been determined by a branch of T we mean a linearly ordered subset of T which intersects every nonempty level of T. Let $\mathfrak{B}(T)$ be the set of all branches of T.

T is called an κ -tree for some regular cardinal κ if $|T| = \kappa$ and $ht(T) = \kappa$. An ω_1 -tree is called a Kurepa tree if $|T_{\alpha}| < \omega_1$ for every $\alpha < \omega_1$ and $|\mathfrak{B}(T)| > \omega_1$. A Kurepa tree *T* is called thick if $|\mathfrak{B}(T)| = 2^{\omega_1}$. An ω_1 -tree is called a Jech-Kunen tree if $\omega_1 < |\mathfrak{B}(T)| < 2^{\omega_1}$.

It is obvious that under CH plus $2^{\omega_1} > \omega_2$, (1) a Jech-Kunen tree T is a Kurepa tree if $|T_{\alpha}| < \omega_1$ for every $\alpha < \omega_1$; (2) a Kurepa tree T is a Jech-Kunen tree if it is not thick.

The independence of the existence of a Kurepa tree was proved by Silver (see Kunen [7]). In [3], Jech constructed by forcing a model of *CH* plus $2^{\omega_1} > \omega_2$, in which there is a Jech-Kunen tree. In fact, it is a Kurepa tree with less than 2^{ω_1} -many branches. The independence of the existence of a Jech-Kunen tree (in terms of a compact Hausdorff space) under *CH* plus $2^{\omega_1} > \omega_2$ was given by Kunen [6]. The detailed proof can be found in Juhász [5], Theorem 4.8. In Kunen's model all Kurepa trees, including those with 2^{ω_1} -many branches, are also killed. Is it necessary to kill all Kurepa trees when we kill all Jech-Kunen trees? In Jin [4], Kunen proved that it is consistent with *CH* plus $2^{\omega_1} > \omega_2$ that there is a thick Kurepa tree which has no Jech-Kunen subtrees. So it is natural to ask

Received July 15, 1991; revised September 23, 1991

KUREPA TREES

whether it is consistent with CH plus $2^{\omega_1} > \omega_2$ that there exists a thick Kurepa tree and there are no Jech-Kunen trees. Next we will give a positive answer by assuming the existence of two strongly inaccessible cardinals. (Note that the assumption of one strongly inaccessible cardinal is necessary for killing all Jech-Kunen trees.)

Theorem 1 Assuming the existence of two strongly inaccessible cardinals, it is consistent with CH plus $2^{\omega_1} > \omega_2$ that there exists a thick Kurepa tree and there are no Jech-Kunen trees.

In order to prove the theorem we need some notation and a lemma from Devlin [2] which plays a key role in our proofs. By a *poset* we mean a partially ordered set with a largest element. We always let 1_P be the largest element of a poset **P**. Let *I*, *J* be two sets and λ be a cardinal.

$$Fn(I, J, \lambda) = \{f: f \text{ is a function}, f \subseteq I \times J \text{ and } |f| < \lambda\}$$

is a poset ordered by reverse inclusion. We omit λ if $\lambda = \omega$. Let *I* be a subset of an ordinal κ and λ be a cardinal.

$$Lv(I,\lambda) = \{ f: f \text{ is a function}, f \subseteq (I \times \lambda) \times \kappa, |f| < \lambda \text{ and} \\ \forall \langle \alpha, \beta \rangle \in \text{dom}(f)(f(\alpha, \beta) \in \alpha) \}$$

is a poset ordered by reverse inclusion.

Let 2^{α} be the set of all functions from α to 2 and $2^{<\kappa} = \bigcup_{\alpha < \kappa} 2^{\alpha}$. Then $2^{<\kappa}$ is a tree ordered by inclusion.

In forcing arguments we let \dot{a} be a name for a and \ddot{a} be a name for \dot{a} . We always assume the consistency of ZFC and let M denote a countable transitive model of ZFC. The author refers to [7] for background in forcing and refers to Todorčević [9] for background in trees.

Lemma 2 Let P, P' be two posets in M such that P has κ -c.c. and P' is κ -closed in M, where κ is a regular cardinal in M. Let G_P be a P-generic filter over M and $G_{P'}$ be a P'-generic filter over $M[G_P]$. Let T be a κ -tree in $M[G_P]$. If T has a new branch B in $M[G_P][G_{P'}] \setminus M[G_P]$, then T has a subtree T' in $M[G_P]$, which is isomorphic to the tree $\langle 2^{<\kappa} \cap M, \subseteq \rangle$.

Proof: First we work within *M*. In the proof we always let i = 0, 1. Without loss of generality we can assume that $|T_0| = 1$ and

$$1_{\mathbf{P}} \Vdash_{\mathbf{P}} (1_{\mathbf{P}'} \Vdash_{\mathbf{P}'} (\ddot{B} \text{ is a branch of } T)).$$

Claim 1 Let $\alpha < \kappa$ and $q \in \mathbf{P}'$. Then there is a $q' \leq_{\mathbf{P}'} q$ such that

$$1_{\mathsf{P}} \Vdash_{\mathsf{P}} (\Phi(\alpha, q', T, B)),$$

where

$$\Phi(\alpha, q, \dot{T}, \ddot{B}) =_{df} (\exists y \in \dot{T}_{\alpha}) (q \Vdash_{\mathbf{P}'} (y \in \ddot{B})).$$

Proof of Claim 1: Replace ω_1 by κ in the proof of Lemma 3.6 (in [2]).

Claim 2 Let $\alpha < \kappa$, $q \in \mathbf{P}'$ and $\mathbf{1}_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Phi(\alpha, q, T, B))$. Then there is a $\beta < \kappa$, $\beta > \alpha$, and $q^i \leq_{\mathbf{P}'} q$ such that

$$1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Psi(\alpha, \beta, q, q^0, q^1, \dot{T}, \ddot{B})),$$

where

$$\Psi(\alpha, \beta, q, q^0, q^1, \dot{T}, \ddot{B}) =_{df} [if \ x \in \dot{T}_{\alpha} and \ q \Vdash_{\mathbf{P}'} (x \in \ddot{B}), \\ then \ there \ are \ x^i \in \dot{T}_{\beta}, \ x^0 \neq x^1 and \ x <_T x^i \\ such \ that \ q^i \Vdash_{\mathbf{P}'} (x^i \in \ddot{B})].$$

Proof of Claim 2: Replace ω_1 by κ in the proof of Lemma 3.6 (in [2]).

Claim 3 Let δ be an ordinal below κ . Let $\langle q_{\gamma} : \gamma < \delta \rangle$ be a decreasing sequence in \mathbf{P}' and $\langle \alpha_{\gamma} : \gamma < \delta \rangle$ be an increasing sequence in κ such that

$$1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Phi(\alpha_{\gamma}, q_{\gamma}, \dot{T}, \dot{B}))$$

for all $\gamma < \delta$. Let $\alpha_{\delta} = \sup\{\alpha_{\gamma} : \gamma < \delta\}$. Then there is a $q \leq_{\mathbf{P}'} q_{\gamma}$ for all $\gamma < \delta$ such that

$$1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Phi(\alpha_{\delta}, q, T, B)).$$

Proof of Claim 3: Since \mathbf{P}' is κ -closed in M, there is a $q' \in \mathbf{P}'$ such that $q' \leq_{\mathbf{P}'} q_{\gamma}$ for all $\gamma < \delta$. By Claim 1 there is a $q \leq_{\mathbf{P}'} q'$ such that

 $1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Phi(\alpha_{\delta}, q, \dot{T}, \ddot{B})).$

This ends the proof of Claim 3.

We now prove the lemma. We construct a subset $\overline{\mathbf{P}} = \{p_s : s \in 2^{<\kappa}\}$ of \mathbf{P}' and a subset $O = \{\alpha_s : s \in 2^{<\kappa}\}$ of κ in M such that

(1) the map $s \mapsto p_s$ is an isomorphic imbedding from $\langle 2^{<\kappa}, \subseteq \rangle$ to **P'** in *M*.

(2) $\forall s, t \in 2^{<\kappa} (s \subseteq t \text{ and } s \neq t \rightarrow \alpha_s < \alpha_t).$

(3) $\alpha_{s^{\wedge}(0)} = \alpha_{s^{\wedge}(1)}$ for all $s \in 2^{<\kappa}$.

(4) $1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Phi(\alpha_s, p_s, \dot{T}, \ddot{B}))$ for all $s \in 2^{<\kappa}$.

(5) $1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Psi(\alpha_s, \alpha_{s^{\wedge}(0)}, p_s, p_{s^{\wedge}(0)}, p_{s^{\wedge}(1)}, \dot{T}, \dot{B}))$ for all $s \in 2^{<\kappa}$.

Let $\alpha_{\langle \rangle} = 0$ and $p_{\langle \rangle} = 1_{\mathbf{P}'}$. Assume that we have α_s and p_s for all $s \in 2^{<\kappa}$.

Case 1. $\alpha = \gamma + 1$. Let $s \in 2^{\gamma}$. Since

$$1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Phi(\alpha_s, p_s, \dot{T}, \ddot{B})),$$

then there is a $\beta < \kappa$, $\beta > \alpha_s$, and $q^i \leq_{\mathbf{P}'} p_s$ such that

$$1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Psi(\alpha_s, \beta, p_s, q^0, q^1, \dot{T}, \ddot{B}))$$

by Claim 2. Let $\alpha_{s^{\uparrow}(i)} = \beta$ and $p_{s^{\uparrow}(i)} = q^i$. (Note that q^0, q^1 are incompatible by Claim 2.)

Let G be any **P**-generic filter over M. Then

$$M[G] \models [\Phi(\alpha_s, p_s, T, \dot{B})].$$

Hence in M[G] there is an $x \in T_{\alpha_s}$ such that $p_s \Vdash_{\mathbf{P}'} (x \in \dot{B})$. Since

$$M[G] \models [\Psi(\alpha_s, \alpha_{s^{\wedge}(0)}, p_s, p_{s^{\wedge}(0)}, p_{s^{\wedge}(1)}, T, B) \text{ and } x \in T_{\alpha_s}],$$

then there are $x^i \in T_{\alpha_{s'(i)}}$ such that

 $M[G] \models [p_{s^{\hat{}}\langle i\rangle} \Vdash_{\mathbf{P}'} (x^i \in \dot{B})].$

122

This implies that

$$1_{\mathbf{P}} \Vdash_{\mathbf{P}} (\Phi(\alpha_{s^{\uparrow}\langle i \rangle}, p_{s^{\uparrow}\langle i \rangle}, T, B)).$$

Case 2. α is a limit ordinal below κ .

Let $s \in 2^{\alpha}$. Since $\langle \alpha_{s \dagger \beta} : \beta < \alpha \rangle$ is increasing in κ , $\langle p_{s \dagger \beta} : \beta < \alpha \rangle$ is decreasing in **P**' and

$$1_{\mathsf{P}} \Vdash_{\mathsf{P}} (\Phi(\alpha_{s \restriction \beta}, p_{s \restriction \beta}, \dot{T}, \dot{B}))$$

for all $\beta < \alpha$, then there is an

$$\alpha_s = \sup\{\alpha_{s \restriction \beta} : \beta < \alpha\}$$

and a $p_s \leq_{\mathbf{P}'} p_{s \upharpoonright \beta}$ for all $\beta < \alpha$ such that

$$1_{\mathbf{P}} \Vdash_P (\Phi(\alpha_s, p_s, \dot{T}, \dot{B}))$$

by Claim 3.

We now work within $M[G_P]$ to construct a subtree $T' = \{t_s : s \in 2^{<\kappa} \cap M\}$ of T such that

- (1) the map $s \mapsto t_s$ is an isomorphic imbedding from $\langle 2^{<\kappa} \cap M, \subseteq \rangle$ to T.
- (2) $t_s \in T_{\alpha_s}$ and $p_s \Vdash_{\mathbf{P}'} (t_s \in \dot{B})$ for all $s \in 2^{<\kappa} \cap M$.

Let $t_{\langle \rangle}$ be the element in T_0 . Assume that we have t_s for all $s \in 2^{<\alpha} \cap M$.

Case 1. $\alpha = \beta + 1$.

Let $s \in 2^{\beta} \cap M$. Since $p_s \Vdash_{\mathbf{P}'} (t_s \in \dot{B})$ and $\Psi(\alpha_s, \alpha_{s^{\uparrow}(0)}, p_s, p_{s^{\uparrow}(0)}, p_{s^{\uparrow}(1)}, T, \dot{B})$ is true, there are $t^i \in T_{\alpha_{s^{\uparrow}(0)}}$ such that $t <_T t^i, t^0 \neq t^1$, and $p_{s^{\uparrow}(i)} \Vdash_{\mathbf{P}'} (t^i \in \dot{B})$. Let $t_{s^{\uparrow}(i)} = t^i$ for i = 0, 1.

Case 2. α is a limit ordinal below κ .

Let $s \in 2^{\alpha} \cap M$. Since $\Phi(\alpha_s, p_s, T, \dot{B})$ is true, there is an $x \in T_{\alpha_s}$, such that $p_s \Vdash_{\mathbf{P}'} (x \in \dot{B})$. Since $\forall \beta < \alpha \ (p_s \leq p_{s \restriction \beta})$, then $p_s \Vdash_{\mathbf{P}'} (t_{s \restriction \beta} \in \dot{B})$. Now $t_{s \restriction \beta} <_T x$ because $\alpha_s > \alpha_{s \restriction \beta}$ for all $\beta < \alpha$.

Let $t_s = x$.

We have now finished construction and T' is a desired subtree of T.

Proof of Theorem 1: Let $\kappa_1 < \kappa_2$ be two inaccessible cardinals in M. Let $\mathbf{P}_1 = Lv(\kappa_2, \kappa_1)$, $\mathbf{P}_2 = Fn(\kappa_2^+, 2, \kappa_1)$, and $\mathbf{P}_3 = Lv(\kappa_1, \omega)$ in M. Let G_1 be a \mathbf{P}_1 -generic filter over $M, M' = M[G_1]$, G_2 be a \mathbf{P}_2 -generic filter over $M', M'' = M'[G_2]$, G_3 be a \mathbf{P}_3 -generic filter over M'' and $M''' = M''[G_3]$. We want to show that $M''' \models [CH, 2^{\omega_1} = \omega_3$, there exists a thick Kurepa tree and there exist no Jech-Kunen trees].

We list some simple facts first:

- (1) $M' \models [2^{\kappa_1} = \kappa_1^+ = \kappa_2].$
- (2) $M'' \models [2^{\kappa_1} = \kappa_1^{++} = \kappa_2^+].$
- (3) $M'' \models [CH, \kappa_1 = \omega_1, 2^{\omega_1} = \omega_3 = \kappa_1^{++} \text{ and } T = \langle 2^{<\kappa} \cap M'', \subseteq \rangle \text{ is a thick Kurepa tree.}]$

See [7], p. 232 for the proof of this.

We now show that in M'' there are no Jech-Kunen trees.

RENLING JIN

Suppose that T is a Jech-Kunen tree in M''. Since the cardinality of T is $\omega_1 = \kappa_1$, there exists a $\theta < \kappa_2$ and a subset $I \subseteq \kappa_2^+$ of power κ_1 such that

$$\mathcal{T} \in M[G_1 \cap Lv(\theta, \kappa_1)][G_2 \cap Fn(I, 2, \kappa_1)][G_3].$$

Let $G'_1 = G_1 \cap Lv(\theta, \kappa_1)$, $G''_1 = G_1 \cap Lv(\kappa_2 \setminus \theta, \kappa_1)$, $G'_2 = G_2 \cap Fn(I, 2, \kappa_1)$ and $G''_2 = G_2 \cap Fn(\kappa_2^+ \setminus I, 2, \kappa_1)$. Then the cardinality of $\mathfrak{B}(T)$ in $M[G'_1][G'_2][G_3]$ is less than κ_2 . Since the cardinality of $\mathfrak{B}(T)$ in M''' is at least $\omega_2 = \kappa_2$, there exists a new branch of T in $M''' \setminus M[G'_1][G'_2][G_3]$.

P₃ has κ_1 -c.c. and $Lv(\kappa_2 \setminus \theta, \kappa_1) \times Fn(\kappa_2^+ \setminus I, 2, \kappa_1)$ is κ_1 -closed. By Lemma 2, there exists a subtree T' of T in $M[G'_1][G'_2][G_3]$, which is isomorphic to the tree $\langle 2^{<\kappa_1} \cap M[G'_1][G'_2], \subseteq \rangle$.

Now we have that $\overline{M}''' \models [|\mathfrak{B}(T')| = 2^{\kappa_1} = \kappa_2^+ = 2^{\omega_1}]$. Since

 $M''' \models [|\mathfrak{B}(T)| \ge |\mathfrak{B}(T')| = 2^{\omega_1}],$

T cannot be a Jech-Kunen tree in M''. A contradiction.

Remark In the proof above \mathbf{P}_2 can be $Fn(\lambda, 2, \kappa_1)$ for any regular cardinal $\lambda > \kappa_1$. As a result 2^{ω_1} can be very large in the final model.

Corollary 3 Assuming the existence of two strongly inaccessible cardinals, it is consistent with CH plus $2^{\omega_1} > \omega_2$ that every Kurepa tree is thick.

Remark: We call that a Kurepa tree T is thin if $|\mathfrak{B}(T)| = \omega_2$. If we start from M, a model of GCH, let $\mathbf{P} = Fn(\kappa, 2, \omega_1)$ for some regular cardinal $\kappa > \omega_2$ in M and G be a P-generic filter over M, then M[G] is a model of CH plus $2^{\omega_1} > \omega_2$ in which every Kurepa tree is thin. It is interesting to compare this with the above corollary.

Under $\neg CH$, an ω_1 -tree is called a *Canadian* tree (Baumgartner [1]) (or a weak Kurepa tree-see Todorčević [8]) if $|\mathfrak{B}(T)| > \omega_1$.

Corollary 4 Assuming the existence of two strongly inaccessible cardinals, it is consistent with $\neg CH$ plus $2^{\omega_1} > \omega_2$ that there exists a thick Kurepa tree and every Canadian tree has 2^{ω_1} -many branches.

Proof: Let M, P_1 , P_2 , G_1 , G_2 , M', and M'' be the same as in the proof of Theorem 1. Let

 $\mathbf{P}_3 = Lv(\kappa_1, \omega) \times Fn(\kappa_2^+, 2),$

 G_3 be a \mathbf{P}_3 -generic filter over M'' and $M''' = M''[G_3]$. Then

 $M''' \models [2^{\omega} = 2^{\omega_1} = \omega_3 \text{ and there exists a thick Kurepa tree.}]$

Let T be a Canadian tree in M''. Then there exists a subset I of κ_2^+ with $|I| \le \kappa_1$ such that

$$T \in M''[G_3 \cap Lv(\kappa_1, \omega) \times Fn(I,2)].$$

Let $G'_3 = G_3 \cap Lv(\kappa_1, \omega) \times Fn(I,2)$. Since $Fn(\kappa_2^+ \setminus I, 2)$ is σ -centered, every branch of T in M''' is already in $M''[G'_3]$. Since $Lv(\kappa_1, \omega) \times Fn(I,2)$ is also κ_1 c.c., then by the same argument as in the proof of Theorem 1 we can show that T has $2^{\omega_1} = \kappa_2^+ = \omega_3$ -many branches in $M''[G'_3]$. Hence T has $2^{\omega_1} = \omega_3$ -many branches in M'''. We would like to end this paper by asking some questions.

 Can we find a model of CH plus 2^{ω1} > ω2 in which there exists a Jech-Kunen tree but there are no Kurepa trees?

The author found [4], by assuming the existence of one inaccessible cardinal, a model of *CH* plus $2^{\omega_1} > \omega_2$ in which there exists a Jech-Kunen tree which has no Kurepa subtrees.

- (2) Can we assume the existence of only one inaccessible cardinal in Theorem 1?
- (3) Can we add Martin's Axiom to the model in Corollary 4?
- (4) Can we find a model of *CH* plus $2^{\omega_1} = \omega_4$ in which only Kurepa trees with ω_3 -many branches exist?

REFERENCES

- Baumgartner, J. E., "Iterated forcing," pp. 1-59 in Surveys in Set Theory, edited by A. R. D. Mathias, London Mathematical Society Lecture Note Series 87, Cambridge University Press, Cambridge, 1983.
- [2] Devlin, K. J., "ℵ₁-trees," Annals of Mathematical Logic, vol. 13 (1978), pp. 267-330.
- [3] Jech, T., "Trees," The Journal of Symbolic Logic, vol. 36 (1971), pp. 1-14.
- [4] Jin, R., "Some independence results related to the Kurepa tree," Notre Dame Journal of Formal Logic, vol. 32 (1991), pp. 448-457.
- [5] Juhász, I., "Cardinal functions II," pp. 63-110 in Handbook of Set Theoretic Topology, edited by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984.
- [6] Kunen, K., "On the cardinality of compact spaces," Notices of the American Mathematical Society, vol. 22 (1975), p. 212.
- [7] Kunen, K., Set Theory, an Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [8] Todorčević, S., "Some consequences of MA + ¬wKH," Topology and Its Applications, vol. 12 (1981), pp. 187–202.
- [9] Todorčević, S., "Trees and linearly ordered sets," pp. 235-293 in Handbook of Set Theoretic Topology, edited by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984.

Department of Mathematics University of Wisconsin Madison, WI 53706