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Introduction First a suitable definition of an axiom schema is given. Then
it is proved that the class of(Qω, Ko) two-cardinal models, although recursively
axiomatizable [12], cannot be axiomatized by finitely many schemata. Essentially
the same proof shows that logic with the quantifier "there exist at least K many",
where K is a strong limit cardinal, cannot be so axiomatized. Conclusions related
to the literature are then drawn.

/ Since the publication by Mostowski of [8] in 1957, researchers have
expended much effort in the study of logics extending first-order logic. The com-
pleteness problem for such logics, naturally enough, has been perhaps the major
concern, and has been settled for various logics with varying degrees of success.

At one end of this spectrum lies the work on logic with the quantifier "there
exist uncountably many," L(ζ) K l ) . Early research by Vaught [13] and Fuhrken
[3] in 1964 revealed, respectively, that L{Q^χ) is recursively axiomatizable, and
that it is countably compact. The techniques used to prove these results were
indirect, however, and consequently Vaught's work gave no clue as to what a
complete set of axioms for L(Q K l ) might be. This shortcoming was remedied
spectacularly by the work of Keisler [6] in 1970, wherein he proved that a sim-
ple finite collection of schemata sufficed to axiomatize L(Qχ{). Moreover, his
direct methods yielded important model-theoretic tools for the study of

At the other end of this spectrum are various "abstract" completeness the-
orems. These are results which, as in Vaught's work, [13], on L ( Q K l ) , estab-
lish that a logic has a recursive set of axioms by indirect means and do not

* Support from the United States-Israel Binational Science Foundation is gratefully
acknowledged.

Received November 3, 1983; revised June 21, 1984



2 SAHARON SHELAH and CHARLES STEINHORN

explicitly exhibit such a set of axioms. Notable among such results are those of
Helling [4] and Keisler [5]. Helling proved that L(QK), for K a weakly compact
cardinal, is recursively axiomatizable and also that for any two weakly compact
cardinals K and λ, the valid sentences for L(QK) and L(Qλ) are identical. Keisler
proved analogous results in the case that K and λ are singular strong limit cardi-
nals. In particular, observe that Keisler's work shows that L{Q^J is recur-
sively axiomatizable.

Falling somewhere between these two extremes is the work that has been
done on the set of valid first-order sentences of the class of (Qω, Ko) two-
cardinal models. In 1964, Vaught [12] proved an "abstract" completeness the-
orem. The problem of finding an explicit set of axioms remained open until 1975
when Barwise [1] and Schmerl [9], independently, exhibited different complete
sets of axioms. However, both solutions, consisting of infinitely many axiom
schemata, lacked the perspicuity of Keisler's axioms for L{Q^X).

A fresh approach is taken in this paper to establish that at least to some
extent the lack of success for the logics mentioned in the preceding two para-
graphs is not accidental. It will be shown that neither the class of (Qω, Ko)-
models nor logic with the quantifier "there exist at least K many", for any strong
limit cardinal K, can have as nice a set of axioms as does L(Q^{) in the sense
that none of these can be axiomatized by finitely many schemata.ι

In Section 2 the formal definition of a schema that is used throughout this
paper is given. The principal result, Theorem 3.1, which asserts that the class
of (Qω, Ko) two-cardinal models cannot be axiomatized by finitely many sche-
mata, is proved in Section 3. In the last section, Section 4, modifications are
given of the proof of Theorem 3.1 that are needed to yield the further result that
logics with the quantifier "there exist at least K many", for any strong limit cardi-
nal K, also cannot be axiomatized by finitely many schemata. Finally, some ques-
tions motivated by the results are raised.

The notation used in this paper is standard. The only possible exception
is tfqf)(a, A) for a logic £, an ^-structure 311, and a G "ΐftl, A^ΐftl. This sim-
ply refers to the (quantifier-free) £-type of a with parameters from A.

2 The first and perhaps most important step in carrying out the program
of this paper consists in the definition of an axiom schema for a logic £ . Let
^o(^o, > f/2o-i)> >Rn-ι(vo~\ . . . , v^'Li) be ra,-ary relation variables for
each / < n.

Definition 2.1 A schema is an £(Rθ9..., /?Λ_i)-formula Φ(i?o> » Rn-ι)
in which each of the variables vj, for / < n andy < ra, is bound to a quantifier
of £ .

A set {</>,: / G /} of ^-formulas indexed by / is schematized by the
£(/?o> >^/2-i)-formula Φ(R0,... ,Rn-i) if {Φi- i Ξ /} is the set of £-
formulas obtained from Φ by replacing each Rj by any £-formula ψj(vJ; pj)
where the variables in pj are not among {vj: i < n &j < mi}.

We remark that the y/s appearing in the preceding definition are to be
thought of as parameters. That is, an axiom schema usually involves all universal
closures of formulas of a certain type, and the inclusion of the y/s is intended
to reflect this.
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Via examples, let us see how this definition covers various schemata with
which logicians ordinarily deal.

Example 2.2: The replacement schema in set theory. Let Φ(R(x, y)) be

(vx G u)(ily)R(x, y) - (az)(vx e u)(iy e z)R(x, y) .

Example 2.3: Keisler's axioms for L(Q). We indicate how the axiom schema
from [6], essentially stating that "the union of a countable collection of
countable sets is countable", may be realized within our framework. Just let
Φ(R(x,y))bt

Qx3yR(x, y) -* 3yQxR(x, y) v Qy3xR(x, y) .

3 This section is given to the proof of the principal result of this paper,
Theorem 3.1. The theorem actually establishes more than that the class of
(Qω, Ko) two-cardinal models cannot be axiomatized by finitely many schemas.
That is, no collection of schemas in which there is a uniform finite bound on
the number of distinct variables v], i < n andy < mh appearing in the new re-
lation symbols ROi..., Rn-ι could suffice to axiomatize the class of (Qω, Ko)-
models.

Theorem 3.1 Let k < ω. The class of (Qω, Ko) two-cardinal models is
not axiomatized by any collection of schemas any one of which has the property
that the number of distinct variables υj, i < n and j < mh in the sequence
(Ro,..., Rn-ι) of relation variables as in Definition 2.1 does not exceed k.

Let us outline the idea of the argument before embarking upon the series
of lemmas that lead to the proof of the theorem. For any given k, we construct
a model 911, whose complete first-order theory, by the Erdos-Rado theorem, [2],
does not have a (Qω, K0)-model. On the other hand, we also demonstrate that
any schema satisfying the condition for k in the statement of the theorem which
also is an axiom for (Qω, K0)-models must be true in 9TI. The theorem then
follows.

Definition 3.2 A set "U c (P(ω) is said to be strongly independent if

(a) for any distinct £/0,. ., Um_u Um,..., Um+n-\ G 01,

ΓlUiΠ Π ω\Uj = K 0

i<m m<j<n

(b) for any d0,..., dp-U » dp+q_{ E ω, there are |0l|-many U E 01 so that
\dθ9..., dp_x} c u and {dp,..., dp+q-ι) c ω\ U.

The next result is well-known.

Theorem 3.3 (Hausdorff) There exists a strongly independent set of power
2*°.

For the remainder of this section let us fix a strongly independent set 01 as
guaranteed by Theorem 3.3.

Definition 3.4 A k-degenerate model ΐftl = (MU ω, P, R) is an L-structure,
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where the nonlogical symbols of L are a predicate symbol P(x) and a k + 1
place relation symbol R(x; y0,... 9yk_ι), satisfying:

(i) P(9ϊl) = ω and M Π ω = 0 ;

(ii) for a, bθ9..., &*_! E OH, if 9K \= R(a; bθ9...9 6*_i) then 3K t= P(a) Λ

Λ - P(&/) Λ Λ 6/ * b/9

j<k iΦj

(iii) if σ is a permutation of {0,..., k — 1}, a9 bθ9..., 6/t-i E 911 and 311 f=
/?(#; Z?o,.. , &*-i), then 9K |= R(a; bσ(0)9..., &σ(*_i));

(iv) for any distinct bθ9..., 6*-i Ξ M {# ̂  ω : 9K N R{a\ bθ9...9 6AΓ-I)} G "U;

(v) there is no sequence bθ9. . . , bk+ϊ E M so that for all biQ9. . . , Z?/A:_1,

^/o' ' *!/*-i G i*o> , bk+1}9 911 N (V*) (/?(*; 6 / o,. . . , 6/^j) - Λ(x;

*/Ό» » 6 A - i ) )

Intuitively, /? partitions ^-element subsets of M via elements of Λi so that there
is no set of power k + 2 that is homogeneous for the partition. It is apparent
that there are many ^-degenerate structures. We also note that the Erdos-Rado
theorem, [2], implies that there is no ̂ -degenerate structure 31! of power greater
than 1k.

Lemma 3.5
(a) Let ω <Ξ STlo ̂  3^1 and 911! be k-degenerate. Then 9H0 βfao is k-degenerate.
(b) Lβ^ <9Hj8: β < a) be an increasing chain of k-degenerate models. Then
( J 911/3 w k-degenerate.

β<a

Proof: Clear.

Lemma 3.6 Le^ 9H0, 9111, and 9H2 6β countable k-degenerate structures so
that 9Ko £ 9Ki, 9H2 a«rf 9Hi Π 9H2 = 9H0. ΓΛe« we can amalgamate Mx and 9H2

into a k-degenerate structure with universe ΐfϊί{ U 9H2 without introducing any
new equalities.

Proof: Obviously V = {X^ω: (3y0.. .yk-X E ΐttl^X = R(ΐHlu y0,... ,Λ- i ) v
( 3 j 0 . . .j^_i E 9 H 2 ) ^ = Λ(9R2; Jo» >Λ-i)} i s countable. Thus, for any
distinct b0,..., fc^-i E M j U M 2 not all in either M t or M 2 , we have consider-
able freedom to choose Y E "UW and set Y = R{MX U M 2 ; 60» » ̂ - i ) so
that any two new Y's are distinct. This suffices to establish the lemma.

To simplify the presentation, we shall assume CH for the remainder of this
section. This does not affect our results, as Theorem 3.1 is quite clearly absolute.

Lemma 3.7 There exists a universal k-degenerate model of power Kj that
is homogeneous over ω. Moreover, such a model can be constructed so that it
admits the elimination of quantifiers down to Boolean combinations of atomic
formulas and formulas of the form i(\/x)(R(x9 y) <-> R(x9 z))\ and hence
actually is homogeneous for complete quantifier-free types.

Proof: List all countable /r-degenerate structures in type ωi as 91$, ξ <ωχ. Also
fix an ordering p of ωx X ωx in type ωi so that for each a < ω\, we have
β(a9β) >ct.

We shall construct a chain of countable ^-degenerate models, 9H^(£ < ωi),
whose union, 9H, will be the desired model. Furthermore, at each stage £ < ωi,
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we fix a list /?J, a < ωu of all quantifier-free types over all countable A c gκξ>

ω Q A, that must be realized in 3TC to ensure the homogeneity of the desired
structure. That is, iff: Ao ~^*AU ω ς ^ c 3 % / = 0, 1,/fω = identity,/
preserves the truth of quantifier-free formulas and a E 311̂ , then p = {</>(x,
/ ( α 0 ) , . . . ,/(αm_i)): φ(x, α 0 , . . . , tfm_i) E tgf(a, Ao)} appears on the list. Also,
9lξ c 3ϊlξ and if p(α, 0) = ξ, then /?£ will be realized in 3Rξ.

Assume the construction has been carried out for all v < ξ. We indicate
how to build 311$. First, let 31Γ = (J 311,,. It is evident that 31Γ is A:-degenerate.

We suppose that 311' Π 91$ = ω. By Lemma 3.6 we may amalgamate 311' U 91$
into a ^-degenerate structure, 311", whose universe is 91Z' U 91^, without
introducing any new equalities. Next, we must realize/?^, where p(α, β) = £.
Let # be the quantifier-free type, which, as in the preceding paragraph, forced
the inclusion of p$ in the list. Thus, q is realized by some a E 3Hα. By
Lemma 3.5, both Ma\dom(q) and cΰϊίa\dom(q) U {a} are /r-degenerate
models. Also, 3H \dom(q) = 311 \dom(p$). Let 6 name a new element, and let
us define a ^-degenerate model 91Γ" with universe dom(pβ) U {b} so that
^/(6, dom(p$)) =p$. By Lemma 3.6 we may amalgamate 3ΐl"and 3H"'. We
let the resulting structure be 3Hξ.

Finally, we must verify that 3H = (J 31^ has the asserted properties.
£<ωi

That 3H is /^degenerate follows from Lemma 3.5(b). Also, since 91$ c 3H ,̂ it
follows that 3H is universal.

The tedium involved in verifying that 3H admits elimination of quantifiers
we leave to the reader. We remark, though, that it is Ίl having the property of
strong independence that enables the proof to work. That is, the sets P(a0,...,
#A:-i) = {A: E ω: 3H (= R(x; aθ9..., ίfy-i)} E ^ look very much alike relative
to each other and each other's complement in ω by virtue of % being strongly
independent.

It remains only to verify the homogeneity of 3ΪZ. Since 3ΐl admits the elimi-
nation of quantifiers, we know that for any ά E 3H and Ao <Ξ 31Z, t(a, Ao) is
equivalent to tgf(a9 Ao). Thus we need only concern ourselves with homo-
geneity relative to quantifier-free types. Consequently, it suffices to prove that
if ω c Af c 3H, \Aj\ = Ko, for i = 0, 1, /: Ao ~^^^\ preserves quantifier-
free formulas, f\ω = identity, and a E 31Z, then there is some b E 3TC so that

tgfφ.Aγ) = {φ(X,/(tfO),. .,/(tfm-l)) * «0, > <*m-\ & Aγ
Λ φ(x, aθ9...9 am-χ) E tgf(a, Ao)} .

But Ao, Ai, and a are included in some 3Hξ, so it is obvious from the construc-
tion (i.e., the realization of them's) that there exists such a b E 3ΪI. This com-
pletes the proof of Lemma 3.7.

Definition 3.8 Let 31 be an L-structure and c E 91. For k E ω, Lj? will
denote the language that includes an m-place relation symbol Rφ(yo, ,y m -\)
for each relation defined in <3l, c) by an L(c)-formula φ(y0, - ,ym-u c)>
where m<k.

Also, for 31 as above, by 9l£ we denote the L? structure with universe
iVUcoso that
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9l£ N Rφ(aOi..., am_x) iff 91 V Φ(a0,..., am_u c) .

Observe that R(x, y0,... ,ym-\) does not have an equivalent relation sym-
bol in Lk, precisely because it contains too many places.

Lemma 3.9 Let 911 be the model constructed in Lemma 3.7 and c E 911.

Then 911 and c have the following property: Let ω <ΞΞ Ah for i = 0, 1, be count-

able subsets ofΐί\l§ and f: Ao o n t o> Aι be a mapping so that f\ω = id and

for any a0,..., ak_x E Ao,

(3.9.1) φ ( α 0 ~ . . . ~ **-i, c) = t£f(f(a0) ~ . . . ~ / ( α * - i ) , c).

77*e«, /or α^y # E 911, //zere « Z? E 911 so Âα/' we can extend f to / ' : ^40 U {6}
with f (a) = b preserving the property expressed in (3.9.1), above.

Corollary 3.10 For any c, 9ϊl£ is ωrhomogeneous over ω.

Proof: Recall all relations in L§ have no more than /:-places. Then it is evident
that the back-and-forth property given by Lemma 3.9 enables the construction
of an automorphism of 9H^ starting from any countable Ao, A{^ ω with ele-
mentary/: AQ o n t o>y41, with/fω = id.

Proof of Lemma 3.9: We go back to 9TC itself. First set

P W = U tfr(a; BU{C}) .
BcA0

\B\<k-l

By the universality and homogeneity of 9H over ω, it suffices to produce a
^-degenerate structure TV 5 A\ U {c} with some d E 91 satisfying f(p) = {φ(x9

f(b0),... ,f(bm), c): φ(x9 b0,..., bm, c) E p}. That is, it will be enough to
adjoin a new element d to 9H \AX U {c} which satisfies/(p).

The only difficulty in establishing this assertion lies in showing that we may
add such an element d in such a way as to preserve /:-degeneracy. Let V =
{{yeω:R(y;aθ9...,ak-ι)}: a0,..., ff*-i ^Λx U {c}}. For (b0,..., bk.x) E
(^! U {c, d}Ϋk)\(Aλ U {c} ) w , choose t / G OLW and set ί / = { j G ( o : Λ(^;
bθ9..., Z?£_i)}, except if { j E ω: R(y; bθ9..., ώ^.i)} is already specified by
/(/?). Also, we insist that distinct sets in ILW be chosen for distinct ^-tuples
from (^! U {c, d})(k)\(Aι U {c})(A:).

We must show that the structure so obtained is Ar-degenerate. Suppose it

is not. Then, there is {bθ9..., bk+{} ^ Ax U {c, d} so that for any biQ9...,
bik-v bJo> » bJk-\ G {*o, , ^ + i } ,

{y E ω: i?(^; fez 0 , . . . , bik_{)} = {y E ω: Λ(^; 6/ 0 > . . . , ftA_,)} .

Clearly, since 9H Γ>4X U {c} is A:-degenerate, it cannot be that {6,: / < k + 2} c
A\ U {c}. Without loss, we therefore may assume that bk+{ = d, and {Z?o,...,
bk} <Ξ:AιU {c}. Moreover, since 9TC \A0 U {c, α} is ^-degenerate, it must be true
that \{bθ9..., bk}\{c}\ > k - 1. Suppose, then, that Z?o,. ., bk_2 are distinct
elements of {b0,..., ^}\{c}. It would follow that

{x E ω: R(x; b0,..., bk_λ)} = {x E ω: i?(x; d, bOi..., Z^_2)}

This cannot be possible by the construction of 91. Hence, 91 is Ar-degenerate,
as desired.
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Lemma 3.11 Let 9l ξ, ζ < a, be models for L§ satisfying:

(i) 91^5 ωU {c}, for all ξ <a
(ii) each 91 ̂  realizes only those quantifier-free types with parameters from ω

that are realized in ΐftl§
(iii) for any ξu ξ2 < α, 9 l ξ l f3l€l Π 9I ξ 2 = ^I^ΓDI^ Π 9I^2.

Γλeπ ί/zere is an 91* 2 31$, Vξ < α, adding no new equalities, so that the
quantifier-free types with parameters from ω that are realized in 31 § are only
those realized in 911*, |9l* | < \a\ + Σ l ^ d + **o> and 91* is ^^-homogeneous

for quantifier-free types.

Proof We induct on cardinals K = \a\ + Σ l ^ d

κ = κ 0 . We proceed in a manner similar to that used in the proof of
Lemma 3.9. Without loss of generality it may be assumed that a = ω. Consider

thezi U Nm) -theory
\m<ω I

τ*= U U tfaB, C)UΔ(|J Λ^)
m<ω BQNm \m<ω /

\B\<k

where Δl ( J ^ m ) is the appropriate equality diagram. By Lemma 3.7 and
\m<ω I

Corollary 3.10, it suffices to show that T* can be completed to the diagram of
a ^-degenerate structure with universe TV = (J Nm.

As before, the only obstacle to this lies in the preservation of A:-degeneracy.
Unless specified by Γ*, distinct ^-tuples (aOi..., ak-\) from A^are, as usual,
assigned distinct elements from %, to serve as {y E ω : R(y; aOi..., #AΓ-I)}
With this done, suppose now that there is some {a0,..., ak+i} c A^that violates
/:-degeneracy. From the definition of T* and by the construction of 91, there
can be at most k — 1 elements in {a0,..., ^+ 1}\{c}, which we may assume are
a0,..., ak-2- Similarly, it must be the case that for some m, {a0,..., ak_2) ^
Nm, as otherwise T* could not force {a0,..., ak+ί} to violate Λ>degeneracy. But
then 31 m would realize a quantifier-free type over ω that is not realized in 3ϊί§9

which contradicts hypothesis (ii).
K > Ko. Without loss of generality, we may assume that a = K. Write

U 3lξ\ω U {c} as {aβ: β < *}, and let Ay = {aβ: ( 3 < 7 } U ω U {c}.

For 7 < K and a e -4^ω, let ξ^ be the least ordinal ξ < K SO that ί? G 9l ξ

if such an ordinal exists, and otherwise let ζπ = 0. Then, let 0 7 = {ξ :̂ ^ G
A<ω}. Observe that | 0 7 | = |γ | < K.

By induction on y < κ9 we construct /^-structures 3ly satisfying

(a) Ay e 9iτ ? but 9 l 7 Π 9 I ^ \ ^ 7 = 0 for ξ < K,
(b) <9l 7: γ < κ> is an increasing chain,
(c) 9 1 7 satisfies the conclusion of the lemma for the collection of L§-

structures ί I J 91 <M U {9lξ \Ay Π 3lξ : ξ G Θ7}.
C/3<7 J
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Supposing, then, that <9l^ : β < γ> has been constructed, we indicate how to
build 917.

Since for any β < γ, |9l^| < κ9 and for any ξ < K, |9l$ Π Ay\ < κ9 in order
to apply induction hypothesis (on K) we only have to verify that the collection
of structures in (c) satisfies the hypothesis of the lemma for γ. Only the verifi-
cation that (iii) holds needs any argument. Observe first that for any ξ E ©7,

(91$ \ΐflξ Π ΛΊ) Π ( U 91^) has universe £ = AΊ Π 9lξ. Thus, we must show
\β<y I

that ΐilξ\B= (\Jdlβ)\B as /^-structures, for ξ E 0 7. Let ξ E 0 7 be fixed

and aθ9...,ak-ι E 9lξ f B. We prove that the same L^-relations hold of

(a0,..., ak-χ) in both 91 ξ \B and ( | J 91*3) \B. For some ]8 < γ, tfo> >
\/J<7 /

ur̂ _i E 91 P. Consequently, there exists some ξ' E 6^ so that α 0 , . . . , ak-\ E 91^.
But by hypothesis (iii) on the set {ΐflf. ξ < κ}9 (a0,..., α^-i) satisfies the same
relations in both 91$ and 91^, and, by induction (on 7), in 91^ and 91 ̂  There-
fore, <α 0 , . . . , ak-\) satisfies the same relations in 91 ξ and 91^, completing the
proof of the lemma.

We now have all the facts necessary for the proof of Theorem 3.1.

Proof of Theorem 3.1: Let k < ω be given. It is clear by the Erdos-Rado theorem
that the theory of the model ΐfϊί built in Lemma 3.7 does not have a (Qω, Ko)
model. We will show that if Vxφ is an instance of a schema that holds in all
(Πω, Ko) models for which \{υj: i < n &j < rΠi}\ < k, then OH N Vxφ.

Let us suppose the contrary, and work for a contradiction. So ΐftl |=
ax-iφ, that is, for some c G 9K, 9H N - Φ(c). We have φ(c) s Φ ( ^ o , . . . , ψn_x)
as in Definition 2.1, where the number of free variables in any ψj is no greater
than k. Consequently, to each ψi(vo,..., v'm., c) there corresponds a rela-
tion symbol R^iυ^ . . . , vι

m.) in L§. Let φ* denote the L^-sentence Φ ( ^ ^ o , . . . ,
Rφn_γ). We see that ΐίK§ N -iφ*.

By Lemma 3.11, we may build an L^ model, 9l£, of power Qω satisfying
exactly those quantifier-free types that ΐftl§ does and ω-homogeneous for
quantifier-free types. In particular, 9l£ is a (Qω, Ko)-model, since the interpre-
tation of P( ) remains just ω. Since 2ftl̂  and 9l£ realize exactly the same
quantifier-free types, and are ω-homogeneous for the same, the familiar back-
and-forth criterion for elementary equivalence is satisfied, whence ΐftljϊ = 9l£.

We then have that 91^ |= -iφ*. But φ* is an instance of a schema that is
to hold in all (Qω, Ko) models, and so it should be the case that 9l£ N Φ*.
Having reached a contradiction, we cannot escape the conclusion that 3H t=
VJcφ, completing the proof of Theorem 3.1.

4 We now indicate how the proofs of the results in Section 3 can be
modified to decide further questions. The first theorem of this section is:

Theorem 4.1 No finite collection ofschemas suffices to axiomatize the logic
L(Qzω), i>e., logic with the quantifier "there exist at least Qω many". In fact,
the stronger result analogous to the statement of Theorem 3.1 is true also.
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In the paper in which Keisler proved that the set of validities for L(Q^ω)
is recursively enumerable [5], he also showed that for any two singular strong
limit cardinals K and λ, the set of validities for L(QK) is identical to that for
L(Qχ). As an immediate consequence of this and Theorem 4.1 we obtain:

Corollary 4.2 No finite collection of schemas suffices to axiomatize the logic
L{Qκ),for any singular strong limit cardinal K.

It only remains to indicate how the proofs of the various lemmas in
Section 3 must be adapted to yield a proof of Theorem 4.1.

Sketch of the proof of Theorem 4.1: Let Q be the new quantifier symbol. We
deal with exactly the same notion of ^-degenerate model as in Section 3. As
before, let ΐttl be the universal, homogeneous Ar-degenerate model constructed
in the proof of Lemma 3.7. We interpret Q for ΐftl as "there exist uncountably
many".

As before, the Erdόs-Rado theorem, [2], implies that the L(β)-theory of
Oil has no model in which Q is interpreted as "there exist Qω many". Notice,
though, that the L(Q)-theory of ΐίϊί only can force the cardinality of P( ) to be
less than Qω. It also is not difficult to see that OT admits elimination of quan-
tifiers for formulas of L(Q) also.

We let L§(Q) be the language that includes m-place relation symbols for
each formula φ(y0, . ,ym-u x) of L(Q) where lh(x) = lh(c) and m<k, and
(311*)* be the resulting L§(Q)-structure.

The only care that must be exercised in the final proof of Theorem 4.1 is
in the construction of the model (91*)* of power Qω. There we must insist that
whenever there are Ki elements in (9TI*)* of a certain type over ω, that (91*)*
contains Qω many elements of the same type. It is apparent that Lemma 3.11
affords us enough freedom to realize this end. Lastly, as in the original
argument, one easily sees that (91*)* Ξ (311*)*, completing the proof of
Theorem 4.1.

The attentive reader already may have observed that Qω being a singular
strong limit cardinal had little bearing on the proof of Theorem 4.1. Conse-
quently, the proof of Theorem 4.1 can be modified with little trouble to yield:

Theorem 4.3 Let K be any strong limit cardinal. Then the set of valid
sentences of L(QK) is not given by finitely many schemata. Moreover, the
stronger result analogous to the statement of Theorem 3.1 holds also.

Before drawing a final corollary, we make one remark. In [10], Schmerl
and Shelah extend the result of Helling [4] mentioned in the introduction by
proving that if K is a strongly ω-inaccessible cardinal (strong α-inaccessibility is
defined similarly to weak α-Mahloness by starting at the base level with strongly
inaccessible cardinals instead of weakly inaccessible cardinals) and λ is a weakly
compact cardinal, then the valid sentences of L(QK) and L(Qχ) are the same.
We then have

Corollary 4.4 Let K be a strongly ω-inaccessible cardinal (or in particular let
K be weakly compact). Then, although the set of valid sentences of L(QK) is
recursively enumerable, it cannot be given by finitely many schemas.
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We close by raising a few questions. The strong forms of Theorems 3.1,
4,1, and 4.3 demonstrate not only that the sets of sentences mentioned cannot
be given by finitely many schemas, but also that schemas with arbitrarily long
quantifier prefixes are necessary. Yet one might ask if the notion of a schema
can be liberalized so as to allow arbitrarily long quantifier prefixes and so fall
beyond the scope of the theorems of this paper, but also so as to allow any of
the logics discussed here to be axiomatized by finitely many liberalized schemas.
For example, one might limit the alternation of quantifiers in the prefix but
allow arbitrarily long blocks of each quantifier type. We do not have any results
in this setting. We note, though, that both Barwise's and SchmerPs axioms for
the class of (Hω, K0)-models have arbitrarily long quantifier alternations, and
thus do not settle the question in this case. Lastly, our suggestion for a liber-
alized notion of schema is not intended to pass as the final word. For example,
one also can ask if there are natural and important notions between binding no
more than k variables and merely limiting the quantifier prefix, and if any such
applies to a logic discussed here.

NOTE

1. More recently, the first author also proved that the same result holds for logic with
the two-place Magidor-Malitz quantifier in £ι-interpretation (see [7] for definitions).
This result will appear in the forthcoming [11].
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