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Finite Kripke Models of HA are Locally PA

D. van DALEN, H. MULDER, E. C. W. KRABBE, and A. VISSER

Introduction In a Kripke model of Heyting's Arithmetic, HA, the nodes,
when viewed as classical structures, are models of classical arithmetic with (at
least) Δ0!-induction. In general, it is an open problem which form of induction
holds in the classical structures at the nodes of Kripke models. However, in the
case of finite Kripke models (i.e., those containing a finite number of nodes) one
can show that all these structures satisfy full induction, and consequently are
models of full Peano Arithmetic, PA. It can also be shown that any Kripke
model with an underlying model structure of type ω must contain an infinite
number of such Peano models. These results were established in a workshop in
Utrecht (1983).

/ Preliminaries Let L be a first-order language with logical constants: ±,
Λ, v, ->, V, 3, =. Let -•</> be short for φ -+ _L and let φ ~ ψ be short for (φ -*
φ) Λ (ψ -> φ). An extension LD of L is obtained by adding an individual con-
stant c for each element c of D. In practice, D shall always be the local domain
Da of some node a in a Kripke model, and we shall write La instead of LD(χ.

A Kripke model K = (K9 <, D, I) consists of a nonempty set K of nodes,
partially ordered by <, a function D that assigns a nonempty local domain of
individuals to each a E AT, and a function / that assigns an interpretation func-
tion Ia to each a G K. Each Ia assigns values to the individual constants, the
function symbols, and the predicate symbols of La, so as to provide for a local
model Ma = (Da, Ia). The different Ia agree on the values assigned to individ-
ual constants that belong to L. Moreover, D and / are to be cumulative in the
following sense: if a < β then Da^Dβ9 and, for each function symbol or predi-
cate symbol X, Ia(X) g Iβ(X). K is called finite if K is finite.

Since we are interested in a theory with decidable equality it is no restric-
tion to assume that ' = ' is interpreted by the actual identity in each node (cf. [1],
p. 184).

Semantic evaluations proceed as usual. We write a f= φ if φ is true in the
(classical) model Ma, and a \\- φ if a forces </>. Further, we write a |(- Γ if for
each φ e Γ, a \\- φ. The symbol 'K shall denote derivability on the strength of
intuitionistic logic.
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It is well-known that Ih is cumulative, i.e., if a Ih φ then, for all β such
that a < β, β Ih φ.

Deletion of some (but not all) nodes from a Kripke model K again yields
a Kripke model. It suffices to restrict <, D, and /to the remaining set of nodes.
U OLELK then the model obtained by deleting all β such that not a < β will be
denoted as Ka (= (Ka, < α , Da

y Ia)), its relation of forcing as |hα. Obviously,
for all β G Ka and for all φ G Lβ : β \\-a φ iff β Ih φ.

A classical node in a Kripke model K is to be a node α of AT that forces all
sentences VX] . . . VxΛ(φ v -ιφ) G Lα. We note the following properties of clas-
sical nodes:

(1) The following conditions are equivalent:
(i) a is a classical node

(ii) a forces all sentences V^ . . . Vxn{φ v -«φ) G L
(iii) For all φ G La α |= φ iff α Ih φ.

(2) All final nodes (i.e., nodes such that for no 0 Φ a : a < β) are clas-
sical.

(3) If a is classical, so are all β such that a < β.
(4) Let L be the language of arithmetic. If a is classical and a Ih HA then

a Ih PA. Moreover Mα will be a Peano model.

Let p be any sentence of L. For each formula φ of L we can construct
another formula, φp, by substituting Φo v p for each atomic component φ0 of
φ. The result, φp, is called the Friedman translation of φ by p in L. We write
Γp for {φp|φ G Γ}. We shall exploit the following facts about Friedman trans-
lations (cf. [2]):

(A) p h Φp.
(B) If Γ h Φ then Γp h Φp.
(C) Let L be the language of arithmetic: if HA h Φ then HA h Φp.
(D) Let L be the language of arithmetic, Φ GΣ^, then HA h Φp «- (Φ v

P).

2 Pruning

Definition 1 Let K be a Kripke model, p a sentence such that, for at least
one node a G K9 p G La and a \\f p. Then the model obtained by pruning p-
nodes from K shall be the model obtained from K by deleting all nodes that
force p. This model will be denoted as K p (= (Kp, < p , Dp, Ip)), its forcing rela-
tion by lhp.

First Pruning Lemma IfβeKp and φ, p G Lβ then: β h φp iff β lhp Φ

Proof: This is proved by induction on φ, the two relatively complex cases being
*-»' and V .

Case φ = φγ -• φ 2 . (=>:) Assume 0 ||/p φ! -+ φ 2 . Then, for some βf such
that j8 < p /?', /3r |hp Φi and β' ψ φ2. Obviously, β < β' and Z^ c Lβ>, so φi,
φ2, p E: Lβ>. By the induction hypothesis 0 ' Ih Φf and jS' 11/ φξ, whence it fol-
lows that β' 11/ φf -> φ§, i.e., β' ||/ (φ! -• φ 2 ) p .

(«= : ) Assume β ||/ (φ! -* φ 2 ) p , i.e., βVΦi-* Φ§. Then, for some /?' such
that /3 < jS', jS7 Ih Φf and β' \\f φ§. Since pVΦΪ (fact A, Section 1), it follows
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that β' \\f p. Hence β' E Kp and β <p β'. Obviously φu φ 2, peLβ>, so we can
apply the induction hypothesis to obtain β' PΦi and β'\\fp φ 2, whence it fol-
lows that β' \\fp Φι^>φ2.

Case φ = Vxφi. (=>:) Assume β \\fp Vxφι(x) (writing 'ΦI(ΛΓ)' for 'φj').
Then, for some β' such that β <p β\ and for some cGDf}>, β' \\fp φx (c).
Obviously, β < β' and Lβ Q Lβ>, so Vxφγ, p E Lβ>. Moreover D$* = Dp, so c E
Dβ' and Φi(c) E L^. By the induction hypothesis β' \\f (φ\(c))p. Since p is a
sentence, (Φι(c)V = (Φί) [V*]. It follows that 0 11/ Vx(φ?), i.e., 0 11/ (Vxφi)p.

(«= :) Assume |8 11/ (VJCΦOP, i.e., β \\f Vx(φf). Then, for some 0' such that
18 < 0', and for some c E Z ^ , 0' ¥ (Φί)lδ/x]> i.e., β' 11/ (Φi(c))<\ Since p h
(φ!(c))p (fact A), it follows that β' 11/ p. Hence jβ' E # p and j8 < p β'. Obvi-
ously, (Φi(c))> P E Z/|3', so we can apply the induction hypothesis to obtain
βf ¥p φx(c). Since c E Dβ>(=Df}>)9 it follows that 0 ||/p Vjcφi

Second Pruning Lemma Let L be the language of arithmetic. If β E Kp

and pELβ and β Ih HA then β \VP HA.

Proof: Assume β E Kp, p E Lβ, β \\- HA. Let φ be any theorem of HA. Since
HA h φp (fact C), it follows that β \\- φp. According to the first pruning lemma
and φ E L c L^, β P φ. Hence j8 P HA.

3 Spotting Peano models From now on we shall assume that L is (any suit-
able variant or extension of) the language of arithmetic.

Theorem 1 The local models in finite Kripke models of Hey ting arithmetic
are Peano models.

Proof: Let K be a finite Kripke model, a E K, a \\- HA. Avoiding a, we shall
apply several prunings to K. Construct a sequence of models K ( 0 ),... ,K(n) as
follows. Let K(0) be K. Let AΓ(i) be given and assume a E K(l). If there is a sen-
tence p E L^ such that a ll/(l)p whereas some β E K{ι) can be found such that
β lh(l) p, take any such p and let K ( i + 1 ) be the model obtained by pruning p-
nodes from K(l). Otherwise, if there is no such p, the construction will halt. Let
n be the stage where the process halts.

Claim a is a classical node in K(n). For, let p be any sentence Vxi... Vxrt(φ v
-ιφ) E L^n). Let β be some final node such that a < β. β is classical (fact 2,
Section 1) and L^n) c Z^n). Hence β lh(n) P, and by definition of n a lh(n) p.
Further, it follows from α Ih HA, by the second pruning lemma, that a lh(l)

HA (for all 1 < / < n). Hence M^n) will be a Peano model (fact 4). But M^n) =
Mα.
Corollary Let a be a node in a Kripke model K such that a. Ih HA. Let Kα

be finite. Then Ma is a Peano model.

There seem to be no straightforward extensions of this result to infinite
Kripke models. However, if the underlying structure is of type ω, we have:

Theorem 2 A Kripke model of HA over ω (with its natural order) contains
infinitely many local Peano models.

Proof: Let K = <ω, <, D9 I) be a Kripke model of HA (i.e., for each n E ω,
n Ih HA), where < is the natural ordering on ω.
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Case 1. Let K contain a classical node n. Then all m > n will be classical
as well (fact 3, Section 1). For each such m, since m Ih HA, Mn will be a Peano
model (fact 4).

Case 2. Let K contain no classical nodes. Consider the set A = {n\n G ω
and for all φELn: if n + 1 Ih Φ then /i Ih Φ}. We shall first show that

(i) ω ~ A is infinite.

Suppose ω ~A were finite. Let n be such that, for d\\m>n,mEA. Since
n is not classical, there is a sentence Vxi... Vxr(φ v ->φ) £ £„ such that n \\f
VXi... Vxr(φ v -ιφ). Hence, for some m> n and for certain c l 5 . . . ,crE Dmy

m ||/ φ(cλ.. .cΓ) v -^(C! c r). Let φ' = φ ( c i , . . . ,c r). Then mVΦ'v ->Φ', so
m ||/ φ' and m \\f -ιφ'. Hence, for some A: > ra, k \\- φ'. Let A:* be minimal with
the property: k* > m, k* Ih φ\ Then A:* - 1 11/ φ' and A:* - 1 > m > Λ. Since
φf G LΛ _i, it follows that Γ - l G ω ~>1, contradicting the choice of n. There-
fore (i) holds.

Let K~(= (K~9 < " , D~, /">) be the model obtained from K by deleting
all nodes in A. Forcing in K~ will be denoted by ||-~. It can be shown, by a
simultaneous induction on φ for all n E! K~, that the following holds:

(ii) For all n G K~y φELn,n\\-φ iff n Ih" φ.

We consider the case of the implication.
φ = φι~+φ2. C=>':) Assume /7 11/~ Φi -• φ 2 . Then, for some #z such that

n <~ m, m\\- φλ and m ||/~ φ 2 . Obviously Λ < m and Φi, Φ2 € Xm. According
to the induction hypothesis m Ih Φi and m \\f φ2. Hence n \\t φx -> φ 2 .

(*«=':) Assume « ||/ φ! -> φ 2 . Then, for some m, such that n < m, m\\- φ{

and m \\f φ2. Suppose first that m E K~. Since φ ^ 2 G L m , it follows by the
induction hypothesis that m \-~ φx and m 11/~ φ 2 . Obviously « <~ m, so «||/~
Φ\-+Φ2- Now suppose that m^K~. Since (i) holds there is a A: > m such that
£ G AΓ~. Let &* be minimal with that property: k* > m, k* G AΓ~. Then, for
all & such that m<k<k*,kEA and also φ2ELk. By definition of .4 the fol-
lowing holds: if k \\f φ2 then k + 1 ||/ φ 2 . Hence, since m\\f φ2, k* \\f φ 2 . On the
other hand A:* If- φj (cumulation). Since Φu Φ2E Lk*, it follows by the induc-
tion hypothesis that k* \\-~ φx and k* \\f~ φ 2 . Since obviously « <~ A:* we
may conclude that « \\f ~~ Φ\-+ φ2. The case φ = Vxφ! can be treated similarly,
whereas the other cases are even simpler. So (ii) holds.

An immediate consequence of (ii) is that for each node n G K~ n \-~~
HA. We shall now show that Mn is a Peano model. Since n φ. A, there is a sen-
tence p G L~(=Ln) such that n V p and /? + 1 fr- p. According to (ii) n \\f p,
hence the model K~p exists and contains n. By the second pruning lemma it fol-
lows that n \\-~p HA. Moreover n is a final node of K~p. For if n <~ m, it fol-
lows that n + 1 < m, therefore m\\- p (cumulation) and by (ii) m \\-~p. Hence
m will be pruned away. Since n is final it is classical in K~p (fact 2, Section 1)
and so M~p is a Peano model (fact 4). But Mn = M~p, hence each of the infi-
nitely many Mn such that n G K~ is a Peano model.

4 Other applications of pruning Friedman's proof of Markov's rule (MR)
(cf. Friedman, [2]) has a model theoretic version.
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MR Let φ E Σ?. Then HA h VΛά . . . Vxn -ι-ιφ->HA |-v*i.. .Vxnφ.

PAΌO/ Assume φ0 E Σ?, HA h VΛΓJ . . . VΛ:,, -I-ιφ 0, but HA 1/ Vx{... VxΛφ0. By
the completeness theorem there is a Kripke model K of HA with a node a such
that a \\f VΛΓI . . . VxnΦo Therefore, K contains a node β such that, for certain
<?!,... ,cw E £>£, 0 11/ φo(Ci,... ,cΛ). Put φ = ΦoC^i,... ,cΛ), then 0 E Lβ and
/3 11/ φ. Hence Kφ exists and β EKΦ. According to the second pruning lemma,
β \\-φ HA, so β \\-φ -ι-iφ. Consequently /3 \\fφ^φ and there is some yEKφ such
that 7 Ih0 φ. By the first pruning lemma y Ih φ*. Since φ E Σ?, φ 0 is equivalent
to φ v φ in HA (fact D, Section 1). Since y \\- HA, y Ih φ v φ. Therefore 7 Ih φ.
This means that 7 must have been pruned away, contradicting 7 E Λ^.

In the same way we can formulate a model-theoretic version of Visser's
proof of the following (cf. [4]):

VR Let φ E Σ?. Then HA h Vx{... VΛΓΛ(->-iφ -> φ) //wp/fes1 HA h
V^. . V ^ ί φ v i φ ) .

Proo/: Assume φ0 E Σ?, HA h VXj... VjcΛ(i-ιφ0 -* φ 0), but HA \f Vxx...
VxΛ(φ0 v -iφo). By the completeness theorem there is a Kripke model K of HA
with a node a such that a \\f V*i... VJCΛ(Φ0 v ->Φo). Therefore, K contains a
node β such that for certain cu... ,cΛ E Z)^, β \\f φv -iφ, where φ = ΦoίQ,
. . . ,cΛ). Certainly, -»φ E L^ and j8 ||/ -iφ, hence K"1^ exists and β E K"10. Ac-
cording to the second pruning lemma β Ih"1^ HA, so β \\-^φ -ι-ιφ -• φ. Con-
sider any 7 E K~"φ such that β <^φ y. For such 7: 7 11/ -iφ, whereas -iφ E LΎ,
therefore there is some y' such that 7 < 7' and 7' Ih φ. Since 7' 11/ -iφ it follows
that y' EK^Φ and 7 < " 0 7'. Obviously, 7' Ih φ v -iφ. Since φ G Σ?, φ v i φ is
equivalent to φ"10 in HA (fact D). By the first pruning lemma y' Ih"1^ φ. There-
fore 7 ||/""^ -iφ. Since this holds for any 7 such that β <~^ 7 we can conclude
that |8 Ih"10 τ i φ and therefore β \-^φ φ. Applying the first pruning lemma
once more we get β Ih φ"10, and, again by fact D, β Ih φ v -iφ, a contradiction.
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