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Pointwise Definable Substructures

of Models of Peano Arithmetic

ROMAN MURAWSKI*

Let PA be Peano arithmetic formalized in a first-order language L(PA)
with 0, S, 4-, as nonlogical symbols and based on the usual Peano axioms with
the axiom scheme of induction. Let M be a model of PA. Since we have in PA
definable Skolem functions, Def(M) < M where Def(M) is the substructure of
M with the universe consisting of elements definable in M without parameters.
If Mis a nonstandard model, then we have in Mnonstandard formulas. There-
fore we can consider substructures of M analogous to Def(M) with universes
consisting of points definable by certain nonstandard formulas and initial seg-
ments of M generated by such pointwise definable substructures.

After recalling some basic information on satisfaction classes we give the
precise definition of pointwise definable substructures. We distinguish two cases:
(a) definability without parameters bigger than the defining formulas and (b)
definability with a parameter bigger than the defining formulas. We consider
properties of such substructures and of their families.

/ Introduction A serious approach to the possibility of nonabsoluteness of
the finite (and so of the logical syntax too) was realized first by Robinson in [15]
where he has also shown that nonstandard languages have no uniquely deter-
mined semantics. Krajewski (in [11]) has explicitly introduced and has studied
the notion of a satisfaction class.

Recall that if M is a nonstandard model of PA and Fm is a formula of
L(PA) strongly representing in PA the recursive set of Gόdel numbers of for-
mulas of L(PA) (cf., e.g., [1] and [16]) then we have in Mnonstandard objects
a such that MY Fm[a]. We call them nonstandard formulas. They determine
a nonstandard language which we denote by Form(M). To speak about its
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semantics we need the notion of a satisfaction class. For the convenience of the
reader recall here Krajewski's definition (cf. [11], see also [5]).

To avoid notational complexity we shall resign being pedantic and we shall
not distinguish between logical connectives and quantifiers on the one hand and
their counterparts in the arithmetization of the language on the other. Hence we
shall write for example -ιφ, φ & φ, (Exk)φ (where φ is a (possibly nonstan-
dard) formula in the sense of the model M) instead of negM(φ), conM(φ,φ),
qM(k,φ) where neg, con, and q are terms of L(PA) strongly representing in
PA the recursive functions neg, con, q, respectively, such that:

neg(rφ~1) = Γ - φ π

con(ΓφΊ

9

Γφ'Ί) = Γφ&φn

q{k,Γφ~λ) = Γ(Exk)φn

( Γ φ π denotes here the Godel number of the formula φ).
We say that Φ c Form(M) is closed under immediate subformulas iff

whenever any of the formulas ~ιφ, (Exk)φ is in Φ then φ is in Φ and whenever
φ & φ is in Φ then so are φ and φ.

Satisfaction classes on Mare certain sets of pairs of the form (φ,a) where
φ E Form(M) and a is a valuation for φ; i.e., a is a sequence of elements of M
with domain corresponding to the set of free variables of φ. Using a coding of
finite sequences we can treat satisfaction classes as subsets of M.

Definition 1.1 If M is a model of PA then a subset S of M is said to be a
satisfaction class on M iff:

(a) if x G S then x = (φ,a) for some φ E Form(M) and some valuation
a for φ

(b) the class Φ(S) = [φGForm(M): (Ea)((φ,a) G S) w (a) [a is a valu-
ation for φ -> <~iφ,α> E S] is closed under immediate subformulas

(c) if M\=φ[a] then <Γφπ,tf> E S
(d) if -ιφ E Φ(S) and α is a valuation for φ then <~ιφ,α> E S = <φ,α> £ 5
(e) if φ & ^ E Φ(S) and a is a valuation for φ & 0 then (φ & φ9a) G S

= (φ,a') G S & (φ,a") G S where α' and #" are suitable valuations for
φ and i/s respectively, obtained from a

(f) if (Exk)φ E Φ(5) then ((Exk)φ,a) E 5 = [(** is a free variable of
φ and (Eb)((φ,a~b) E £)) or (xk is not a free variable of φ and
(φ,a) E S)] where # ~ b is a suitable valuation for φ obtained from #
and b.

We shall often write simply S(φ a) or S(φ(a)) instead of <φ,#> E *S.

Definition 1.2 A satisfaction class 5 on M is called full iff for every φ E
Form(M) and every valuation # for φ we have that (φ,a) G S or <-iφ,α>E 5.

Let Z 5 be the language L(PA) with an additional predicate symbol 5 and
let P/4(S) be the theory in the language Ls based on the following axioms: the
axioms of PA, the induction schema for all formulas of Ls, and a set of Ls

sentences stating that S is a satisfaction class.

Definition 1.3 (cf. [13], [4]) A satisfaction class S on a model M is said to
be substitutable iff (M,S) \=PA(S).
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There are a number of interesting results on satisfaction classes. They have
been used for example to characterize the resplendency of models of PA (cf. [10]
and [12]) or the recursive saturation of them (cf. [13] and [4]).

From now on we make the following general assumption:

Assumption M is a countable model of PA and S is a fixed full substitut-
able satisfaction class on M.

In fact in many results which will follow we do not need such strong
assumptions (in particular in many cases we shall not need the full substitutiv-
ity of 5), but to avoid the complications in formulating theorems it is conve-
nient to assume that S is full and substitutable.

To define pointwise definable structures we shall need the following notion:

Definition 1.4 An initial segment / ^e M is said to be closed under logical
operations (shortly: closed) iff for any φ,ψ G /, k G / if MY Fm{φ) & Fm(ψ)
then -ιφ G /, φ & ψ G /, (Exk)φ G /.

It can easily be seen that the following proposition holds (IΣι denotes
here the subtheory of PA with the axiom scheme of induction restricted to Σ{

formulas only, similarly 7Δ0, cf. [14]).

Proposition 1.5
(<x)IfIYIΣι then I is closed.
(b) If I N 7Δ0 and I is closed under exponentiation then I is closed.
(c) If I is closed under + and or if I is closed under exponentiation and 2 G
/ then I is closed.

Theorem 1.6 The family of all initial segments I ^eM such that I is closed
is of the order type of the Cantor set 2ω with its lexicographical ordering:

bι<b2^ (En)M =0&bϊ = l& {m)<n{bl

m = b2

m)).

In the proof of this theorem we shall use the following lemma.

Lemma 1.7 (cf. [9]) Let (X,<) be a complete linear ordering. Then X is iso-
morphic to the Cantor set if X has a subset W such that
(a) the order type of W is 1 + η (η being the order type of rationals)
(b) {x)x_wx = sup{w G W\ w < x]
(c) {x)w x > sup{w G W\ w < x]
(in (b) and (c) suprema are in the sense of X rather than W).

Proof of Theorem 1.6: For an a E M define

J(a) = sup{x G M: (En)ω(Ey) {seq(y) & lh(y) = n

& {iUnl(Ez)<a((y)i = z)y {Zj,k)<i(!ίy)i = neg((y)j)
v (y)i = con((y)j,(y)k) v (y)t = q(jΛy)k))]
&x=(y)n)}},

where for X c M we have

supX= {y<EM: {Ex)x(y<x)}.

Hence J(a) is the supremum of all (truly) finite iterations of logical operations
applied to formulas (whose Gόdel numbers are) < a.
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We claim now that the family {J{a): a E M] has the smallest element, has
no greatest element, and is densely ordered by inclusion. In fact, the smallest
element is the set ω of standard natural numbers. There is no greatest element
because for any a E M, J(a) Φ M, which follows from the fact that M is the
model of PA and J(a) # IΣχ because in J(a) we can define ω by the following
Σγ formula:

n E ω - (Ex)(Eγ) {seq(γ) & lh(y) = n & (i)^nl(Ez)<a((y)i = z)
y(Ej9k)<i((y)i = neg((γ)j)
v (y)i = con((y)j,(y)k)
v(y)i = q(j,(y)k))] &x=(y)n)}.

To prove the density assume that J(a) < J(b). For any n E ω we have

(Ec)[aeJn(c)<b],

where Jn(c) is the supremum of all fl-fold iterations of logical operations
applied to formulas (whose Godel numbers are) < c. By overspill there exists a
nonstandard u > ω such that

(Ec)[aeJu(c)<b].

Hence in particular there exists a c such that

a E J(c) < b.

Now we use Lemma 1.7. So take as Xthe family {I ̂ e M: /is closed),
and as Wthe family {J(a): a E M}. It can be easily seen that conditions (a)-(c)
of the lemma are satisfied. Hence the family of initial segments of M which are
closed is of the order type of the Cantor set 2ω.

Corollary 1.8 The cardinality of the family {I <^e M: I is closed] is 2*°.

2 Pointwise definability without parameters

Definition 2.1 Let / ς . M b e a closed initial segment. We define substruc-
tures of M with the following universes:

D(I) = {xtΞM: (Eφ)τ(Ea)τ(M9S) N [Fm(φ)
&S((Elx)φ;ά) &S(φ;x9ά)]}>

MD{I) =supD(I) = {xeM: (Ey)D(I)(x < y)}.

Remarks:
1. Being pedantic we ought to write D{M,S,I) and MD{MySiI) but since M

and S are fixed we simplify the notation.
2. The structure D(I) is simply a submodel of M consisting of elements

definable by nonstandard formulas belonging to / with parameters from
/ and MD{I) is an initial segment of M generated by D(I).

Proposition 2.2
(z)D(I) < M
(b)MD(I) <eM.

Proof: Case (a) follows from the fact that S is substitutable and hence we have
definable Skolem functions for Ls. For the proof of case (b) assume that M H
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(Ex)φ(x9a) where a E M j D ( / ) and φ is a standard formula. It suffices to show
that there is a b E MD(I) such that M N φ ( M ) . So let Λ:0 E £>(/) be such that
a < x0 and let ψ E / be the definition of x0. Consider the formula:

χ(y)=seq(y) & lh(y) = x0 & (i)<ιh{y)lΦ((y)»i) & (z)<iy)rΦ(z,i)].

One can eliminate here x0 by substituting its definition φ. Hence χ E /. Observe
that (M,S) \= (Ey)S(χ,y). Hence there is a j>0 £ D(I) such that (M,S) t=
S(χ,y0). We have /Λ(j0) = *o ̂  β and

(M,S)hφ((jo)*,tf)

and (yo)a E M D ( / ) since (yo)a < y0.

Proposition 2.3 The following inclusions hold:

No c Def(M) c Z)(/) £ D(M) = M and I ^ D(I)

where No is the standard model of PA and No <=e / <^e M and I is closed.

Proof: It is obvious. We shall show only that D(I) Φ D(M) for / c e M. Con-
sider the following function

f{u) = μx: "x is not definable by formulas <w";

i.e.,

f(u) =μx: (φ)^ulFm(φ) & S(φ x)-+(Ez)<xS(φ;z)].

Since S is substitutable (in fact it is enough to have here only {M,S) NLΣ0(S);
cf. [14]) hence (M,S) f= "/is a function". Let now a E M - /. Then/(α) E
D(M) - D ( 7 ) .

Proposition 2.4 If I Φ M then I^D(I).

Proof: Assume I = D(I). Then since D{I) < M w e would have I = M which
contradicts the assumption.

Proposition 2.5 Let f be the following function (defined in (M,S)):

(μy S{x;y), ifFm(x) & S((Ely)x; 0 ) ,

f(x) = i
(^0, otherwise.

Then
(a) /// iy c/o^rf under f then D(I) = I and MD{I) = I,
(b) // (I,S Π /) <3 (M,S) ίΛβAi D(/) =IandMDσ) = /, w/zere 81 < 3 S3 meα«5
/Aί?/ 21 is an elementary substructure of 33 with respect to Σ% formulas.

Proof: (a) is obvious, (b) follows from the fact that the formula "f(x) — y" is
Σ°2(S).

Remark: Observe that if (7,5 Π /) <x (M,S) then / < M and similarly if / is
closed under/then I < M. This follows from the fact that in both cases S Π I
is a satisfaction class on / and if S Π / is a satisfaction class on / then for any
standard formula φ and any sequence a E / we have

Mϊφ[a] = S(φ a) = (SΠI)(φ;a) =-l\=φ[a].

Hence I < M.
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We can ask if D(I) can be an initial segment of M. We have only the fol-
lowing negative result.

Proposition 2.6 If M is such that No £ Def(M) and No is strong in M then
there are I such that D(I) is not an initial segment of M.

Proof: Let b G Def(M) be nonstandard and let a G M be a nonstandard ele-
ment such that a £ Def(M) and a < b (such an a exists since No is strong in M\
cf. [3]). Hence

(n)ω(M,S) \= -i (Eφ)<n [φ is a formula & 0 is a definition
of a with parameters <n].

By overspill

(EnQ)>ω(M,S) t= -i (Eφ)<no [φ is a formula & φ is a definition
of # with parameters <n0].

Take /: = maximum of such no's. Now let / be a closed initial segment of M
such that JVoc / < k. Such segments exist since for example initial segments
being models of PA lie arbitrarily low in M; cf. [4], [13]. We have now that
a £ D(I) but b G D(I). Hence D(I) is not an initial segment of M.

Remark: Observe that if 7V0 Ψ M then 7V0 5 Def(M) and vice versa.

Before proving the next theorem recall the following definition:

Definition 2.7 Let / <Ξe M. We say that ω codes I in M iff there exists a
function/G M (i.e., coded in M) such that all standard natural numbers are
in dom(f) and

(jt)m(*e/= (£*)ωAfh *</(/!)).

Theorem 2.8 If ω noncodes I in M then D(I) and MD{I) are recursively
saturated.

Proof: Let Φ(x,b) be a consistent recursive type in D(I) with a parameter b G
D(I). Let </>o G / be a definition of Z?. We have

(/ι)ω(M,S)t=(βc)(0)<Λ[Φ(φ)-^S(φ;6,α:)]

and

(Λ)ω(Af,S) N (Ex)(0)<JΦ(φ) - (£z)(S(Φo;*) & S(φ;z,x))]

where Φ is a formula of L(PA) strongly representing in PA the recursive set Φ.
By overspill there exists a nonstandard n0 > ω such that

(M,S) N (£κ)(Φ)<Πo[Φ(Φ) - (£fc)(S(0o;z) & S(Φ;z,*))]

Hence the type Φ(x,b) is realized in M. It is enough to show that the realizing
element can be found already in D(I). So let θ be a recursive function enumer-
ating Φ and θ its representation in L(PA). Let

δ'(x,k) = (y)<k(Ez)[S(φ0;z) & S(θ(y);z,x)]9

δ(x,k) = δ'(x,k) & (v)[δ'(v,k)-+x<: v],
f(k) = Γδ(x,kΓ.
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The function/is coded in (M,S) and hence in M and (k)ω[f{k) E / ] . By
overspill there exists n0 > ω such that/(«0) E /. Indeed, otherwise /"(ω) would
be cofinal with /and ω would code /via/, which contradicts the assumption.
But/(«0) is the (Gόdel number of) the definition of an element realizing Φ.
Hence Φ is realized in D(I).

The recursive saturation of MZ ) ( / ) follows from the recursive saturation of
D(I) and the fact that D(I) g c / M

D{I) (cf. [7], [17]).

Observe that we used in the proof only the fact that ω noncodes / in M via
a particular function/ Hence it follows that our condition, though sufficient,
is not necessary.

Observe also that card {I ̂ e M: ω codes /} = Ko and hence card{I <^e M\
-i (ω codes /)} = 2K°. By cardinality argument we have:

Proposition 2.9 There are 2*° closed initial segments I c=e M such that
-i(ω codes I).

Recall the following definition:

Definition 2.10 ([2], [3]) Let Qx and Q2 be two families of initial segments
of the model M. We say that Qx is symbiotic with Q2 iff for any a,b E M, a <
b we have

(El)Qι(aeKb) iff (EJ)Q2(aGJ<b).

Proposition 2.11 The family [I c=e M\ I closed and -• (ω codes I)} is sym-
biotic with {I <Ξ,eM\ I closed].

Proof: Let a9b E M, a < b and assume that there is a closed initial segment /
such that a E / < b. Since we can construct an indicator for this family (cf. [2]
and [3] for the definition of an indicator), using standard tricks one can show
that there are 2K° such segments between a and b. But there are only countably
many segments / such that ω codes /. Hence between a and b there must be at
least one (in fact 2K°) segments /such that /is closed and -ι(ω codes /) .

Theorem 2.12 Let I <^e J <^e M be closed. Then D(I) £ D(J).

Proof: For n E ω let Trn be the natural truth definition for Σn formulas. We
define the following functions Fn in PA (cf. [8]):

Fn(0) = rv2 = vι + r,
Fn{x+ l) = μw: (Φ)^Fn(x)(u)^Fn{x)[φeΣn

& Trn((Ez)Φ;u) -+ (Ez)<wTrn{Φ;uiZ)].

The formula "y = Fn (x)" is of the class Σn+Ϊ. Let j E / - /. We can arithme-
tize the syntax in such a way that Tη E /. Hence ry = Fj(x)n E /. Consider
the formula

φ = «χ = Fj(j)".

One can see that φ E J and φ E Σ y + 1 . Hence the element x0 defined by φ is in
D(J). We claim that xQ£D(I). Indeed if x0 E D(I) then there would be a for-
mula φ e l defining xQ. Hence ψ<j.Soψe Σj. But PA h (x)(x < Fa(x)) for

any a. Hence ψ < j < Fj(j) and x0 < xθ9 a contradiction. Hence x0 £ D(I).
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It follows from the proof that x0 > D(I) and hence x0 > MDU). So we
have MD{J) 2 D(J) 3 MD{I) and the following corollary (of the proof) holds:

Corollary 2.13 Let I <^eJ<^eM be closed. Then MD{I) c e MDiJ).

Corollary 2.14 If I £ e J £ e M are closed then D(I) is not a cofinal sub-
structure of D(J).

Remark: In the proof of Theorem 2.12 it suffices to assume that S is Δ0-sub-
stitutable. Hence to have the situation that D(I) = D(J) for closed I ^e J ^e

M we should take a rather pathological satisfaction class S on M; i.e., being even
not Δ0-substitutable.

Definition 2.15
a = {D(I): I^eM, /closed),
(B = {MDiI): lQeM, /closed).

We ask now how big the families β, and (8 are. We shall answer this ques-
tion using various types of measures.

Theorem 2.16 The families d and <B are of the order type of the Cantor set
2ω with its lexicographical ordering. Hence card CE = card (B = 2K°.

Proof: It follows from Theorem 1.6, Theorem 2.12, and Corollary 2.13.

Following [6] we shall denote

Y= {NQeM: N< M],
Y\ = {N <Ξ:e M: N < M & N is not recursively saturated).

Kotlarski has shown in [6] that

(1) card Yx = Ko,
(2) Y is symbiotic with Yx and Y\ is symbiotic with Y — Yγ.

We can ask now if the family (B is symbiotic with Y. The answer gives the
following

Theorem 2.17 The family (B is not symbiotic with Y.

Proof: Let α G M b e any nonstandard element and let e > ω. We shall find an
element b eM such that (EN)γ(a e TV < b) but -. (EN)®(a GiV<6) .We
have

(n)ω(M,S) N (k)^n(Eφ)>k(Fm(φ) &φ<e& S((E\x)φ;a)

& (φ)<φ(Fm(φ) &S((Elz)φ;a)
- (x)(z)(S(φ;x,a) & S(ψ;z,a) -+xΦ z))).

By overspill there is an no> ω, n0 < a such that this same holds in (M,5) for
every k <n0. Let now b be the maximum of elements of M which are defined
by formulas <n0 with the parameter a. First we show that b itself is defined by
a formula <n0. In fact let Γ(0) be a formula

Fm(φ) & (Ey)S([(E\x)φ(x,a) & φ(y,a)]
v [^(E\x)φ(xia)&y = 0]).
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The formula Γ is of the form (Ey)A(φ9y) where Δ is a bounded formula of the
language Ls> We have

(M,S) N (φ)<no(Fm(φ) -* (Ey)A(φ9y)).

Hence by collection (cf. [14])

(*) (M9S) N (Ez)(Φ)<no(Ey)^z(Fm(φ) - A(φ9y)).

Let Zo be the smallest z with this property. Of course z0 ^ 0. We claim that
(M9S) f= (Eφ)<noA(φ9Zo)- If not then ZQ - 1 would also have the property (*)
contradicting the choice of zo It can be easily seen that Zo is our b and that the
smallest formula φ < n0 such that (M9S) N A(φ9zo) is the definition of b.

By the construction there exists an initial segment N E Y such that a E
N< b.

Let now / Qe Mbe a closed initial segment such that a GD(J). Let i/Έ /
be the definition of # and φ the definition of b. Consider the formula

x(v) = (z)[ψ(z)-+Φ(v,z)].

Of course χ E /and defines Zλ Hence b E D(J). Consequently we have shown
that there are a9b E M, a < b such that

(1) (EN)Y(a<ΞN<b).

(2) for every closed / c β M if a E £)(/) then bGD(J).

From this it follows also that

(3) for every closed / ^e M if a E M ^ ( J ) then 6 E MD{J).

Hence -. (EN)^(a E Λ^< 6).

Corollary 2.18 The family (B w symbiotic neither with Yx nor with Y — Yx.

Proposition 2.19 The family Y - (R is of the cardinality 2K°.
PAΌO/: By Theorem 2.17 there are α,ft EM, a < b such that (EN)Y(a GN<b)
but -\(EN)®(a E TV < 6). Since we can construct an indicator (in the lan-
guage Ls) for the family Y (cf. [13], [4]) by standard tricks we get that between
a and b there are 2*° initial segments belonging to Y. Consequently card(Y- <B)
= 2K°.

Proposition 2.20 The family (R Π {ΛfD(/): I <^e M9 I closed, IΨ M] con-
tains no semiregular initial segment.

Proof: It follows from the easy observation that for any TV from our family
cf(N) = I < N and for a semiregular TV we have cf(N) = N.

To formulate the next theorem recall the following definition.

Definition 2.21
(a) A function F: M->M is normal iff F is definable in (M9S) and is strictly

increasing.
(b) A set A c Y is normal iff for some normal function F

A = {NGY: (x)N[F(x)GN]).

(c) A set B c Y is stationary iff for all normal sets A^Y9AΠBΦ0.
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Theorem 2.22
(a) Let X^zY be stationary. Then X contains arbitrarily large initial segments.
(b) The family (A is not stationary.

The theorem will follow from the more general Theorem 3.15.

3 Pointwise definability with a parameter

Definition 3.1 Let / c e M b e closed, a E Mand a > I. We define substruc-
tures of M with the following universes:

D(I,a) = {x£M: (EφhiEβhiM.S) h [Fjn(φ)
& S((E\x)φ;a,B) & S(φ;x9a9b)]),

MDU,a) =supD{l9a) = ixeM: (Ey)D^a)(x<y)}.

As before we ought to write D(M,S,I,a) and MD(M'StI>a) but since Mand
5 are fixed we simplify the notation.

Proposition 3.2
(a)/>(/,*) <M,

Proposition 3.3

(a) If I ζie M is closed and a > I then the following inclusions hold:

No c D(ω,a) £ D(I,a) £ D(M,a) = M

and aeD(ω,a), lGD(I,a).

(b) /// ψ M then I £ D(I9a).
Theorem 3.4 Ifω noncodes I in M then D(I,a) and MD{I'a) are recursively
saturated.

Proof: Is similar to the proof of Theorem 2.8.

Theorem 3.5 (Kotlarski [6]) If N <e M and N is not recursively saturated
then there exists a e M such that N = MD{ω>a).

Corollary 3.6
(a) If N = MDU) for some closed I ^e M and N is not recursively saturated
then there exists an a G M such that N = MD(ω*a).
(b) IfN = MD^a) for some closed I QeM and a> I is not recursively saturated
then there exists a b E M such that N = MD(ω>b).

This corollary indicates the fact that in the case of initial segments which
are not recursively saturated we can replace the definability with the help of non-
standard formulas by definability with the help of standard formulas with an
additional parameter (greater than the defining formulas). It shows the role of
parameters and proves that they are more important in definability than the
usage of nonstandard formulas. Compare it with the fact that Yx is symbiotic
with Y but (B is not symbiotic with Y. Hence there are a, b E M, a < b such that
between them there exist structures of the form M D ( ω ' c ) for c E Mbut there is
no structure of the type MD{I) for a closed / <Ξ:e M.



MODELS OF PEANO ARITHMETIC 305

Theorem 3.7 Let I <^e J <^e M be closed, a E M. Then D(I,a) £ D(J,a)
andMD^a) ^MD{J>a)

Proof: We consider three cases:
(p)I$eJ<a
(b)Ka<ΞJ
(c) a E / ζe J.

Case (a). We prove the theorem similarly to the proof of Theorem 2.12,
but now in the definition of functions Fn we must add the parameter a.

Case (b). In this case D{J,a) = D(J). We follow the proof of Theorem
2.12, but now we takey E J — I such that a < Fj(j). Suchy exists since the fol-
lowing claim holds:

Claim For every a G J there exists j E J such that a < Fj(j).

This follows from the fact that if t is a Σn term then there exists a b such that
PA h (c)>b(t(c) < Fn(c)) (cf. Lemma 3.4(iii) of [8]) and the fact that PA h
(a)(Fn(a) < Fn(a + 1)) (cf. Lemma 3.4(i) of [8]).

Case (c). In this case D(Iya) = D(I) and D(J,a) = D(J) and we apply
Theorem 2.12.

Definition 3.8

af = {D(I,a): I <^e M, /closed, a> /},
(B' = [MDV'a): I ^e M, /closed, a>I).

Theorem 3.9 The family (Bx is symbiotic with Y.

Proof: It follows immediately from the fact that Y\ is equal to [MD{ω'a): a E
M} and that Yx is symbiotic with Y (cf. [6]).

Proposition 3.10 The family (Br contains no semiregular initial segments.

Hence no interesting (from the point of view of combinatorial properties,
cf. [2], [3]) initial segments are generated by pointwise definable (even by non-
standard formulas with big parameters) substructures.

Consider now projections of the family (Br.

Definition 3.11 For a fixed closed I <^e M let

(B} = {MD{I'a): a EM, a> I } .

Similarly for a fixed a E M:

(B;= [AfDiI a): I^eM, /closed}.
In contrast with Theorem 3.9 we have the following theorem.

Theorem 3.12
(a) For every I <^eM closed, I > ω, (Άj is not symbiotic with Y (nor with Yx).
(b) For any a E M, (&'a is not symbiotic with Y (nor with Y\).

Proof: (a) Fix a closed initial segment I0^eM, Io> ω. Take k such that ω <
k E IQ and take an initial segment J QeM such that / > ω, / is closed and J <k
(it can be done since in M there are arbitrarily small initial segments being mod-
els of PA). Let ω < / E /, let a be any element of M such that a > Io and let
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u = supremum of elements definable by formulas </ with the parameter a
w = supremum of elements definable by formulas <k with the parameter a.

There exists an initial segment N < M such that u G N < w. Indeed, take N =

Assume that there is a b such that u G MD(I°'b) < w. Then b < a. Indeed
if b > a then we would take

c/ = maxx: (Ez)<b[S(φ0;z,x) & (t)<x^S(φo;z,t)]

where φ0 is the definition of w. Hence d > w and is defined by the formula
from 70. So w G M D ( / ° ' 6 ) which gives a contradiction. Hence b < a.

Let now ψ G 70 be a formula defining some y0 > w from the parameter 6;
i.e., such that (M9S) h S((£ !z)^;z ,6) & S(φ;yo,b). Consider the formula

χ(z) s (£»{S(^;6,^) & (O^[S((£!x)φo;ί,^)
-> (jc)(S(φo;^Jc)-*^<«)]J.

Let zo = μzχ(z). The definition of Zo belongs to 70. Hence Zo is an element of
j^D(io,b) k u t Z o > w which is a contradiction.

Consequently there is no initial segment of the type MZ>(/°'Z7) between u
and w. Hence (B/o is not symbiotic with Y (nor with Yλ).

(b) We prove it in a way similar to the proof of Theorem 2.17.

Theorem 3.12 could suggest that the crucial role is played here by defin-
ability by standard formulas with parameters. But this is not true since we have
the following theorem.

Theorem 3.13 The family (Br - Yx is symbiotic with Y{ (and hence with
Y- Yι and Y).

Proof: Let a,b G M, a < Z? be such that there exists an N E Yx such that α G
TV < 6. We have then

(n)ωM\=(t)<n[Term(t) -> t(α) < b]

where Term is the formula of L(PA) strongly representing in PA the set of
(Gδdel numbers of) terms of L(PA). By overspill there is an n0 > ω such that

(Af,S) 1= (t)<no[Term(t) -> S(t(α) < b\ 0 ) ] .

Take a closed initial segment 70 <Ξ:e M such that No^ Io < n0 and ω noncodes
70. Then α G MD(I°>α) < b. Hence there exists a segment N' G (Br - Yi such that
α G N' < b.

Theorem 3.14
(a) For any closed initial segment I Qe M, the family (B/ is of the order type η.
(b) For any a G M, the family ($>f

a is of the order type of the Cantor set 2ω.

Proof: (a) It is enough to show that (B}0 is densely ordered for a given closed
initial segment 70 ^e M. So let a and b be such that M D ( / ° ' β ) < MD{I°>b). Take
any j G 70. We have

(M,5) H (^c)(0)< y{ [Fm(</>) & S((£!jc)0;α) -> (Λr)(S(0;x,α) - x < c)]
& [Fm(φ) & S((£!x)</>;c) -> (x)(S(φ;jc,c) - x < b)]).
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Indeed we can find such an element c in MD(I°ya). By overspill there is a k > /0

such that

(M9S) f= (EcHφ)<k[[Fm(φ) & S((Elx)φ;a) -> (x)(S(φ;x,a) -+x < c)]
& [Fm(φ) & S((Elx)φ;c) -> (x)(S(φ;x,c)-+x< b)]}.

Take such an element c. Then MD(I°>a) < ΛfD(I°-c) < MD(I°>bK
(b) Follows by Theorems 1.6 and 3.7.

Remark: The only dense subsets of the Cantor set 2ω which can be distin-
guished by inner properties of it are sets E and D where

E={bE2»: (Em)(n)>m(bn = 0)},
D={be2«: (Em){n)>m{bn = l)}.

Hence it is impossible to answer the following question: To which branches of
the set of 2ω are CB',®/,®*, respectively, isomorphic?

Remark: The family (B' is not of the order type of the Cantor set 2ω.

Theorem 3.15 The family (B' is not stationary.

Proof (cf. [8]): We define in (Af,S) the following function F(a,i):

F(a,0) = the value of the term t0 on a, where /0 is the smallest term,
F(a9i + 1) = μx: (j)^M[Term{j) - S(sub(j,F(a9i)) < x; 0 ) ] .

(For the definition of the function sub see e.g. [16].) Define further

(>(*,/), if x = (a,i),

1̂ 0, otherwise

and

H(0) = G(0),
H(i+ l) = max(l +H(i),G(i+ 1)).

The function H is normal but no initial segment N G CB' is closed under it. In
fact let N = MD{I>a) for some l£eM,I closed and α > /. Then F(a, i) £ N for
i > /, i E TV. Hence //«α, i» ί N.

Corollary 3.16 The families (B, (B/, α r̂f (B^ (/or <my c/05 e<i / c e M and any
a E M^ are not stationary.
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