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Nonstandard Connectives of
Intuitionistic Propositional Logic

MICHAEL KAMINSKI*

1 Introduction In [7] McCullough examined the question of adding new
connectives to the intuitionistic propositional logic. He showed that the connec-
tives called regular and defined in terms of Kripke models were expressible in
the usual intuitionistic propositional calculus.

Three new propositional connectives ¢ (converse nonimplication), | (not
both), and | (neither-nor) were introduced by Bowen in [1]. He described them
by their introduction rules in a Gentzen system. Because of the importance of
his approach for what follows (cf. Section 4) we consider one of the above con-
nectives, say |:

| has the following introduction rules:

I'-A,T'->B

—-IA
| A|BT —

and
A, ' > BT -
' - A|B > A|B
Let LJ| denote the propositional portion of Gentzen’s LJ (cf. [4], Section III)
added with | and the above introduction rules. Using an external symmetry of

| —IA and |—IS Bowen proved that the Cut-rule is redundant in LJ;. However
LJ| suffers a serious lack: a sequent

A=A, Bi=B,, A|B,~ A;|B,

| 1S

that must be valid in any reasonable semantics is not provable in LJ;! (4 =B
denotes (A D B) A (B D A)). Moreover, it is not hard to show that the follow-
ing natural rule of inference does not hold in LJ|:

*Based on the M.Sc thesis of the author, written at Moscow State University in 1973-
1974.
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- A, =A4,, - B =B,
- A|By = Ay | B,

¢ and | have the same lack.

In Section 4 we show how to avoid this problem by a marginal modifica-
tion of LJ. Of course, this modification decreases the number of new connec-
tives which can be defined by introduction rules in a Gentzen system.

The above consideration naturally suggests the following definition.

Definition 1 Let I be the first-order intuitionistic propositional calculus in
the language with —, A, v, and D. Consider a symbol # for a new n-ary connec-
tives. Let I” be the logical system in the language of I added with # obtained by
taking all the axioms and rules of inference of I together with the axioms and
rules of inference for #. # is said to be extensional if

I"+A, =B, A...ANA, =B, .D. #(A,,...,A,) =#(By,...,B,).

# is said to be weakly extensional if I* + A, = B, A...A A, = B, implies
I F#(Ay,...,A,) = #(By,...,B,).

Extensionality seems to be a natural necessary condition for accepting a
new connective as an intuitionistic connective. In Sections 3 and 4 we give suffi-
cient semantical and syntactical conditions for a connective to be (weakly) exten-
sional.

Some other conditions for accepting a new connective # as an intuitionis-
tic connective were suggested by Gabbay in [2]:

(1) I* is a conservative extension of I.

(2) # is not expressible by the ordinary connectives, i.e., for all formulas
V(pi,...,pn) of I such that the propositional variables of  are
Dise 3D ¥(Ay,...,A,) = #(A4,,...,A,) is not provable in I,
(Y (Ay,...,A,) denotes the result of the substitution of A; for p;, i =
L...,n, in¥(p1,...,00).

(3) I has the disjunction property.

(4) # is nonclassical in 1*, i.e., if we add to I the axiom schema = —¢ D
¢, then # becomes expressible by -, A, v, and D.

(5) The axioms and rules of inference for # determine “the meaning” of #
uniquely, i.e., if we look at a language with two additional connectives
#, and #, which have the “same” axioms and rules of inference as #,
and define the system I" with the axioms and rules of inference for #,
and #, in addition to the axioms and rules of inference of I, then I*
#I(Ala [N ,A,,) = #2(A1, SN ’An)-

(6) The connective # is expressible in the second-order intuitionistic proposi-
tional calculus.

In the same paper he introduced a new connective that satisfies the Conditions
(1)-(6) above.

Conditions (2) and (4) are exactly what we want from a new intuitionistic
connective and require no motivation.

Condition (3) is a natural property of an intuitionistic system, e.g., I has
the disjunction property.

In his book ([3]) Gabbay motivates Conditions (1) and (5) by the follow-
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ing example: The intuitionistic propositional calculus I is a conservative extension
of the calculus I~ obtained by taking out connective v from I. Also v is
uniquely determined in I by its axiom schemas:

$DOYVo, YDoVY
(dDpP)A(¥YDp).D.0VY Dop.

Whereas Condition (1) is quite natural and can be accepted without the above
motivation, Condition (5) seems to be too strong: modal connectives (cf. [3],
[81, [9], and [10]) are not uniquely determined by their axioms and rules of infer-
ence. Of course, one can argue that modal connectives are not new intuitionistic
connectives, since they violate Condition (4), but modal connectives are not
uniquely determined by their axioms and rules of inference in the classic proposi-
tional calculus either. However modal connectives are considered as nonstan-
dard connectives of both intuitionistic and classic logics.

Condition (6) seems to be at least arguable: why a new intuitionistic con-
nective has to be expressible in the second-order intuitionistic propositional cal-
culus? And indeed, this condition is omitted in [3].

Also, it seems to be desirable for a new intuitionistic connective to be exten-
sional (cf. Definition 1 above) and interpretable in Kripke models, and for the
extended logic to be decidable and to have a Gentzen system with Cut-free
deductions which have the subformula property.

Whereas the question: “What is an intuitionistic propositional connective?”
is very general and not precise, one can still attempt to answer the question of
accepting a given connective as a new intuitionistic connective. And this is what
we are going to do in this paper.

The paper is organized as follows: In Section 2 we introduce a new proposi-
tional connective that satisfies Gabbay’s Conditions (1)-(4) above and is not
expressible in the second-order intuitionistic propositional calculus. This con-
nective is extensional and interpretable in Kripke models. The extended logic has
a Gentzen system with the subformula property and Cut-free deductions. (It is
easy to see that the logic extended with the connective introduced by Gabbay
(cf. [2]) cannot have a Gentzen system with the subformula property.)

In Section 3 we study a possibility of introducing new connectives by their
interpretation in Kripke models. We prove that for any n-ary connective # there
exists a formula ¢ (A,,...,A,) with the ordinary connectives only, such that
I1+y(A,,...,A,) implies I? F #(A,,...,A4,), and I F #(4,,...,A4,) implies
IF-—y(A4,,...,4,). Moreover, we show that if certain conditions on the
interpretation of # are satisfied, then # satisfies Gabbay’s Condition (4) above.

In Section 4 we consider some extensions I of I such that # can be
described by rules of inference in a Gentzen system. Under natural and not
strong restrictions on rules of inference we prove that I* can be interpreted
either in I" (where ¢ is a new connective introduced in Section 2) or in proposi-
tional intuitionistic modal logic S4 (cf. [3], [8], and [10]).

2 A new connective Let I° be the logical system in the language of I
extended with a new unary connective - obtained by taking all the axioms and
rules of inference of I together with the following axiom schemas:
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Al ¢ D9
A2 op D ¢
A3 oo¢ D) o¢

Ad (¢ DY) D (¢ D oY).
Remark 1: It is easy to verify that the deduction theorem holds for I".

Theorem 1 Let p be an atomic formula. There is no formula A in the lan-
guage of 1 such that I' - op = A.

Proof: Let A be a formula in the language of I°. By induction on the number
of connectives in 4 we define two translations, A" and A~, of A4 into the for-
mulas of I as follows:

1. If A is an atomic formula, then A* = A.
2. (A ® Ay)* = AT ® A5, where ® is A, v, or D; (nA)* = 4=,
3. (c!A)T = A", and (cA)” = A",

Obviously, if I' F A4, then I F A%, since both of the translations — and +
of schemas A1-A4 are provable in I. Consequently, if for some formula 4 of
ILLI'Fep=A,thenlItF—--p=AandI | p= A4, since (4)* is A. Hence I
p = ——p, but this is impossible.

Remark 2: Exactly the same argument holds for the second-order intuitionistic
propositional calculus I,. However we don’t know whether 1° is interpretable in
I,. By an interpretation of I° in I, we mean the following:

For a formula ¢ (p) in the language of I, with only one free variable p
define a franslation t, of formulas of I" into formulas of I, by:

1. If 4 is an atomic formula (i.e., A is a propositional variable), then

t¢,(A) =A.

2.1,(A; ® Ay) = 1,(A)) ® t,(Ay), where ® is v, A, or D; £, (7A) =

—lt‘p(A)

3. 1y (eA) = Y (1, (A)).

We say that I° is inferpretable in 1, if there exists a translation 7, such that for
all formulas 4 of I',I' F A iff I, |- ¢, (A4).

Let G° denote the Gentzen system in the language of I° obtained from the
propositional portion of Gentzen’s LJ (cf. [4], Section III) by extending the
axiom schema to all the formulas of I’ and adding the following introduction
rules for o:

A,T- AT —-B
sAT— oA - B

Theorem 2 G FL->AiffT - A.

The proof is similar to the proof of the corresponding theorem in [4], Section
V, and is omitted.



NONSTANDARD INTUITIONISTIC CONNECTIVES 313

In Section 4 (Theorem 11) we prove that the Cut-rule is superfluous in G°.
This immediately gives an alternative proof of Theorem 1 and easily implies the
following corollaries:

Corollary 1 I is consistent.

Corollary 2 I’ is decidable.

Corollary 3 I° is a conservative extension of 1.
Corollary 4 I has the disjunction property.
Corollary 5 If ' Fogp, then I' - ¢.

Now we move on to the interpretation of o in Kripke models.

Definition 2 Let S be a partially ordered set, x S S. x is said to be a path
in S if x is a maximal linearly ordered subset of S. The set of all paths of S is
denoted by =S:

wS = {x|x is a path in S}.

Definition 3 A Kripke model for I° is a quadruple M = (S,<,s, V), where
S is a nonempty set, < is a partial order on S, s is the least element of S: s <
t, for any ¢t € S, and V'is a function from S into sets of propositional variables
such that V(¢r) c V() ift<t’.

Let t € S. We can define a relation ¢ F A for an arbitrary formula 4 in
the language of I° by induction on the number of connectives of A:

(a) If A has no connectives, then it is a propositional variable, and ¢ F 4 iff
A e V().

(b) tEAABifftEAand tEB.

(c) tFAvBifftFAortFEB.

(d) tEADBiffforallt’ € Ssuchthat ' =, ' #FAort EB.

(e) tE-Aiff forall ¢’ € Ssuchthat ¢’ = ¢, t' ¥ A.

(f) t EoA iff for all x € «S such that ¢ € x, there exists a ¢’ € x such that
' EA.

A formula A in the language I° is said to be valid in M (denoted by M F
A)ifforallre S, tEA.

Proposition 1 (a) If t EA, and t' = t, then t' EA. (b) < S, <, s, VY FA iff
sEA.

Proof: (a) Induction on the number of connectives of 4 using the fact that
V(t)yc V(t') for t = t’. (b) follows from (a).

An intuitive interpretation for Kripke models can be found in [6]. We use
this interpretation in Section 3 to motivate some conditions imposed on new con-
nectives.

Next we prove consistency and completeness of I° with respect to the
above semantics.

Theorem 3 (Consistency) If T + A, then for all Kripke models M such that
MEBforall BET, ME A.

Proof: It is easy to verify that all axioms of I are valid in any Kripke model.
A straightforward induction on the length of a deduction of A from I' completes
the proof.
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It is more convenient to state the contraposition of completeness theorem:

Theorem 4 (Completeness) If T ¥ A, then there exists a Kripke model M
such that M EB forall BET and M It A.

For the proof we need some preliminaries.

Definition 4 Let T be a set of formulas in the language of I". T is said to be
saturated if it satisfies the conditions below:

(a) I' is consistent
(b) I is deductively closed, i.e., if ' F A, then A €T
(c)if AvB €T, then either A €T, or BET.

Lemma 1 If T Yt A, then there exists a saturated set A such thatT' € A, and
AFA.

Proof: We claim that any maximal deductively closed set A satisfying I' € A,
and A € A is saturated. Suppose, by contradiction, that there exist B, and B,
such that B, v B, € A, B, & A, B, & A. Since A is maximal, AU {B,} } 4, and
AU {B,} FA. But then AU {B, vB,} FA. Since B, v B, € A, A} A, but
this is impossible. The existence of such maximal deductively closed sets is
obvious.

Lemma 2 If T is saturated, then:

(WAABEeTiffA€eTl,and BET

Q) If A&, then A¢T

(3) If A D B ¢T, then there exists a saturated set A such that ' U {A} € A, and
B¢ A.

Proof: (1) and (2) are obvious. To prove (3) notice that I' U {4} ¥ B and use
Lemma 1.

Definition 5 Let T be a set of formulas in the language of I°. The closure
of T' (is denoted by [I'] and) is defined by

[T]=TU{Al-A€T]}.
Lemma 3 T FeA iff [T'] F<A.

Proof: Since I < [T'], part “only if” is obvious. Let [T'] | -A. By Theorem 2
G ‘+Ay,...,A,, B|,...,By—> A, where c4; €T, i=1,...,n,and B;€T, i =
1,...,k. Applying rule «—AI n times results G* F°A,,...,°4,, By,...,By—
°4. By Theorem 2, T FeA.

Proof of Theorem 4: If T is inconsistent, there is nothing to prove. Otherwise,
in view of Lemma 1, we may assume that I is saturated. Define a Kripke model
M =<(S,=,s, V) by

S = {(A,0,m)|T € A is saturated, m = 0,1,...} U {(A,n,m)|[T'] € Ais
saturated, n = 1,2,..., m =0,1,...,}.

A,n,m) < (A',n’,m’) iff (A,n,m) = (A',n’,m’); or n < n’,and [A] S
A;orn=n',m=<m'’,and A € A'.
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s = (I',0,0)
V(A,m,n)) = {p € A|p is a propositional variable}.

Obviously, < is a partial order on S; s is the least element of S; and if
(A,n,m) < (A',n’,m’), then V((A,n,m)) € V((A',n’,m’)). This shows that M
is well defined.

Let (A,n,m) € S, and let C be an arbitrary formula. We claim that
(A,n,m) ECiff Ce A. Since A €T, and I' € A for all (A,n,m) € S, the
claim together with Proposition 1 implies Theorem 4.

We prove the claim by induction on the number of connectives of C: For
an atomic formula C (i.e., C is a propositional variable) the claim holds by def-
inition. The cases of A and v present no difficulties. The case of — follows from
the case of D.

Case of D. Assume that C; D C, € A. If for some (A',n’,m’) = (A,n,m),
(A’,n’,m’) E C, then, by the inductive hypothesis, C; € A’. Since A’ is deduc-
tively closed and C; D C, € A € A’, C, € A’. Applying the inductive hypothe-
sis once more we obtain that (A’,n’,m’) E C,. Hence (A,n,m) F C; D C,.

Assume that C; D C, &€ A. By (3) of Lemma 2 there exists a saturated set
A’ such that A U {C,} € A, and C, ¢ A’. Consider (A’,n,m + 1). By the
inductive hypothesis (A’,n,m + 1) F C; and (A’,n,m + 1) ¥ C,. Since
(A,n,m) < (A',n,m+ 1), (A,n,m) ¥ C; D C,.

Case of ». Assume that «C; € A. Let x be a path in S containing (A, n,m).
First, we contend that there exists (A’,n’,m’) € x, with n’ > n. Suppose, by con-
tradiction, that for all (A’,n’,m’) € x, n’ < n. Since the first components of the
elements of x are linearly ordered by <, their union (call it ©) is consistent. Let
©’ be a saturated set such that [6] € ©’. (6’,n + 1,0) exceeds all the elements
of x, but does not belong to x. This contradicts the maximality of x and proves
our contention.

Now, let (A’,n’,m’) be an element of x such that n” > m. By definition
of =, [A] € A’. Hence C, € A’. By the inductive hypothesis (A’,n’,m’) E C;.
Consequently, (A,n,m) E <C;.

Assume that «C; & A. We contend that it is sufficient to prove that there
exists a path x in S such that (A,n,m) € x, and for all (A",n’,m’) € x, -C, &
A’. Indeed, since «C; & A’ and A’ is deductively closed, C ¢ A’. By the induc-
tive hypothesis (A’,n’,m’) ¥ C;. Hence (A, n,m) ¥ -C,, which proves our con-
tention.

To prove that such a path x exists we define a sequence Ay, A;,... of
saturated sets not containing C; such that [A;_;] €S A;, i=12,....

Let AO = A.

Assume that A; has been defined. By Lemma 3, [A;] I °C;. Using Lemma 1
we can extend [A;] to a saturated set A, | not containing C;. Obviously, the set

y={A,nm)m zm}U {(A;,n+ i,m)|i=12,...,m =0,1,2,...}

is a maximal linearly ordered subset of S for which (A, n,m) is the least ele-
ment. Let x be any path in S such that y S x. By the above construction, for all
(A',n’,m’") € x, «C; ¢ A’. This completes the proof of Theorem 4.

We conclude this section with the following problem: Is it possible to
“embed” I" into intuitionistic arithmetic (cf. [S], [11], and [12])?
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3 Semantical analysis of new connectives In this section we consider two
broad classes of potential intuitionistic propositional connectives and establish
some of their properties. To proceed we need the following definitions and nota-
tions.

Definition 6 Let M =<(S,<,s, V) be a Kripke model, and let € S. Define
two subsets S, and S’ of S by

S;={ueSluztiand S'={uecSlu=t oru#t}.

Define two Kripke models M; and M’ by M, = (S,,</S,,t,V/S;) and
M' = (S',</S%,s,V/S"y, where /S,(S’) denotes the restriction of a function
(relation) to S,(S’).

t is said to be a maximal element of M iff for all u = ¢, V(u) = V(t).

Definition 7 Let I? denote an extension of I with a new n-ary propositional
connective #, its axioms and rules of inference. An interpretation of # in Kripke
models for which I” is complete and consistent is said to be weakly invariant if
it satisfies the following conditions:

(1) For all Kripke models (S,<,s, V), for all formulas 4,,...,A4, of I
for all ¢,¢’ € S, such that t =< ¢/, if t F #(A,,...,A,), then ¢’ F
#(Ay,...,A,).

(2) If ¢ is a maximal element of a Kripke model M, then for all formulas
A, .., A, of M E#(A,,...,A,) iff M E#(A,,...,A,).

(3)Let M = (S,=<,s,V) and N = (S§,=<,s,U) be Kripke models. Let
Ay,...,A,and By,...,B, be formulas of I? such that for all € S,
temAifft ENB;,i=1,...,n. Then forallt € S, t by #(A4,...,A4,)
iff ¢t Fx #(By,...,B,;). (We use Fy and Fy to refer to M and N
respectively.)

Weakly invariant interpretations which satisfy Condition (4) below are
called invariant.

(4) If M, and N, are isomorphic Kripke models, then for all formulas
Ay, .. A of T#

t FM #(Al,. . .,An) lfoFN #(Al,. . -sAn)-

(Kripke models M; = (S;=<y,s;, V1) and M, =(S,,=<,,s,, V,) are said to be iso-
morphic iff there exists an order preserving bijection f from S; to S, such that
forall t € S, Vi(t) = Va(f(1)).)

We call a connective (weakly) invariant if it has a (weakly) invariant inter-
pretation.

Connectives —, A, v, D, cand # from [2] are invariant, modal connectives
(cf. [3], [8], [9], and [10]) are weakly invariant, but not invariant.

Our intuitive explanation of Definition 7 is based on that of [6] and is as
follows:

Let M = (S, <,s, V) be a Kripke model. We can consider S as a collection
of points in time (which is not necessarily linearly ordered), and ¢, < ¢, means
that time ¢, comes after time ¢;. At any point in time we may have various
pieces of information which are, roughly speaking, given by function V. If, at
a particular point ¢ in time, we have enough information to prove a formula A4,
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we say that ¢ F A; if we lack such information we say that ¢ ¥ A. However, ¢ ¥
A does not mean that A has been proved false at ¢. It simply is not (yet) proved
at ¢, but may be established at a time ¢’ = ¢.

Condition (1) of Definition 7 means that if we already have a proof of a
formula A at time ¢, then we can accept A as proved at any later time ¢/, i.e.,
we don’t forget.

Condition (2) of Definition 7 reflects the notion that if the information
acquisition stops at time ¢ (i.e., ¢ is a maximal element of M), we can prove
nothing new.

Condition (3) of Definition 7 is rather technical: it demands that the ver-
ification of #(A4,,...,A,) depends only on the verification of A;,...,A, (and
can be thought as the “subformula property” for I¥).

Condition (4) of Definition 7 means that the validity of a formula at time
t depends on its validity at the points of time comparable with ¢.

Remark 3. In view of the above intuitive interpretation of Kripke models -4 can
be thought as “eventually A will be true”.

It seems to be reasonable and desirable for a new connective to be (weakly)
invariant. Some properties of such connectives are given by Theorems 5-7 below.
For the sake of continuity we first state these theorems and prove them after-
wards.

Theorem S If a connective is (weakly) invariant then it is (weakly) extensional
(cf. Definition 1).

Theorem 6
(a) If connective # is weakly invariant, then there exists a formula y(p,. ..,DPn)
in the language of 1 such that the propositional variables of ¥ are p,, . . .,p, and
) ifTFY(Ay,...,A,), then T F#(A,,...,A,), and
Qifl F#(Ay,...,A,), thenTF ==y (Ay,...,Ap).
(b) If connective # is invariant, then there exists a formula Y (pi,...,by) in the
language of 1 such that
M) I FY(Ay,. .., Ay) DH#(AL,. .., Ay), and
QY F#(A;,...,A,) D W (A4y,...,4,).
(i.e., invariant connectives satisfy Gabbay’s “nonclassical” Condition (4); cf.
Introduction.)

The following theorem gives a syntactical condition for a connective to be
invariant. (It can be considered as a “converse” of Theorem 6.)

Theorem 7 Let 1" denote an extension of 1 with a new n-ary propositional
connective #, its axioms and rules of inference. Let # have an interpretation
in Kripke models satisfying Conditions (1), (3), and (4) of Definition 7 for
which 1% is complete and consistent. If there exists a formula V(py,. . .,Dn)
in the language of 1 such that 1* F y(A,,...,A,) D #(A,,...,A,) and I +
#(Ay,...,A4,) D W(Ay,...,A,), then # satisfies Condition (2) of Defini-
tion 7.

Proof of Theorem 5: Let 1* + A; = B;, i = 1,...,n. Since I is complete and
consistent for Kripke models, it suffices to prove that #(A4,,...,A4,) =
#(B,,...,B,) is valid in all Kripke models. Let M = (S,<,s, V) be a Kripke
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model and for some t € S, t F#(A,,...,A4,).Since I 4, =B;,i=1,...,n,
forallue S, ukA;iffuEB;, i =1,...,n. Therefore by Condition (3) of Def-
inition 7 (letting U = V') we conclude that ¢ F #(B,,...,B,). Since 4; and B;,
i=1,...n, appear symmetrically in the statement of Theorem 35, this completes
the proof of the case of weakly invariant connectives.

If # is invariant, it suffices to prove that for all Kripke models M =
(S,=,s,Vyand forallt€ SiftEA =B, A...ANA, =B, A#(A,,...,A4,),
then ¢ F #(By,...,B,). In view of Condition (4) of Definition 7 and Proposi-
tion 1 we may assume that ¢ is the least element of S. Now, by Proposition 1
for all formulas C, M k C iff ¢t F C, and we can proceed as in the case of a
weakly invariant connective.

To prove Theorem 6 we need some preliminaries.

Definition 8 Let {p;|i = 1,2,...} be a fixed set of propositional variables.
A Kripke model M = (S, <,s, V) is said to belong to class K,,, if for all t € S,
V(t) S {p1,D2s- s Pm}-

Lemma 4 Let M =(8§,<,s, V) be a Kripke model. If for some m,M €K,,,
then for all t € S there exists a maximal element u of M such that u = t.

Proof: We prove the lemma by induction on m:

Basis. m = 1. If there exists a ¥ = ¢ such that V(u) = p;, then this u is
maximal, otherwise ¢ is maximal.

Inductive step. Let M = (S,<,s, V) € K,,,,;. Define a Kripke model N =
(S,<,5,U) by u(t) = V(t) — {pps+1}, for t € S. Obviously, N € K,,,. By the
inductive hypothesis, there exists a maximal element (of N) u = ¢. If there exists
a v = u such that p,,; € V(v), then this v is a maximal element of M and v =
t, otherwise u is a maximal element of M and u = ¢.

Proof of Theorem 6: Consider a set

P = {V(¢)]| there exists a Kripke model M = (S,=<,s, V) such that M € K,,,
M E#(p;,...,p,) and ¢ is a maximal element of M}.

Since elements of P are subsets of {p;,...,p,}, P is finite. Let P =
{E\,...,E,}. For j=1,...,m define a formula y;(p,,...,p,) by

n -1if p: cE:
¥; = N\ bi, where p; = {p' Pr= s
i=1

—p;if p; & Ej~
Define ¢ by

<3

Il
—

Y= Y, (if m = 0, then ¥ is “false” by definition).

J
We claim that  satisfies the conditions of Theorem 6. To prove this suppose,
by contradiction, that I  ¢/(4,,...,4,), but I ¥ #(A4,,...,A4,). Since I
is complete with respect to Kripke models, there exists a Kripke model M =
{S,<,s, V) such that M ¥ #(A,,...,A,). Let N = (§,=<,s,U) be a Kripke
model defined by U(¢) = {p;|t EMm A;, i =1,...,n}, t € S. Since # is weakly
invariant, Condition (3) of Definition 7 implies that N ¥ #(p;,...,p,).
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By consistency of I* with respect to Kripke models, since I* Fy/(4,,...,
A,), MEY(Ay,...,A,). Hence for some j=1,...,m, M Ey;(Ay,...,A,).
Thus by Condition (3) of Definition 7, N F y;(pi,...,p,). Therefore s is a
maximal element of N (by construction of y;(py,...,p,)). Condition (2) of
Definition 7 implies that N is equivalent to a Kripke model L = ({s},=,s, V/{s});
i.e., for all formulas 4, L A iff N F 4. Thus L F¢;(py,...,p,) and

(1) LE#p,-...pn).

In view of definition of ¥;,¥;(p1,...,pn) ¥ ~#(py,...,pn). Let L =«(R,=,
r, W) be a Kripke model such that L FEv(p1,...,0n) and L ¥ ~#(py,. .. sDn)-
Obviously, we may assume that L € K,,. Thus r is a maximal element of L.
Consequently, L” is equivalent to L. Since L” is a “one point” model, L” ¥
-#(py,...,p,) implies that L” E#(py, . . ., p,). This contradicts (1) and proves
part (a)(1) of Theorem 6.

To prove part (a)(2) suppose that I” F#(A4,,...,A4,), but I ¥ ==y (4,,
...,A,). Let M =<(8S,<,s, V) be a Kripke model such that M ¥ = —y¢/(A4,,...,
A,). Let N be as in the proof of (1). Then N F #(p;,...,p,) and

(@ NF¥=29(pi,...,00)-

By Lemma 4, for all ¢ € S there exists a ¥ = ¢ such that u is a maximal ele-
ment of M. Then for some j = 1,...,m, u Fy;(pi,...,p,). This contradicts

(2) and proves part (a)(2). (We remind the reader that y = \/ 1//j.)

=1
For part (b) of Theorem 6, let ¢ be as above. It sufficesj to show that for
all Kripke models M = (S,<,s,V) and for all t € S, t E¢y(A4,,...,4,) D
#(A,,...,A)and tE#(A;,...,A,) D " (A,..., A,).
In view of Condition (4) of Definition 7, we may assume that ¢ is the least
element of S. Then we can proceed as in part (a).

Proof of Theorem 7: By Condition (3) of Definition 7, similarly to the proof
of Theorem 6, we can assume that 4; = p;, i = 1,...,n and that any model
under the consideration below belongs to class K,,. Moreover, by Condition (4)
of Definition 7 it suffices to consider the case in which the least point is maximal.

Now let M = (S,s,<, V) be such a model; i.e., for all t € S, V(¢) =
V(s) € {p1,...,p,}. We have to prove that M* F #(p;,...,p,) Iff M E
#(pi1s...,Pn). Assume that M* E#(p;,...,p,). Then M* E ==y(py,...,p,).
Since M* is a “one point” model and ¥ does not contain #, MSEY (py,...,D0.).
Therefore M F ¢ (pi,...,p,), because s is a maximal element of M (and ¢
does not contain #). Consequently, M F #(p;,...,p,). Part “only if” can be
proved in a similar fashion.

The following example shows that we cannot drop out Condition (4) of
Definition 7 from the statement of Theorem 7.

Example. Consider a new intuitionistic propositional constant # with the follow-
ing interpretation in Kripke models: Let M = (S, s,<, V') be a Kripke model,
t € S. t E#iff any path in S; (cf. Definition 2) is infinite. (This is the interpre-
tation of the second-order intuitionistic propositional logic formula ~vp(p v
—1p).) Let I* consist of all formulas that are valid in every Kripke model with
the above interpretation for #. Let y be “false”. We see that # fulfills all of the
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conditions of Theorem 7 but (4), and the conclusion of Theorem 7 does not
hold.

Remark 4. We don’t know whether there exists a weakly extensional connective
which is not extensional, nor whether every weakly invariant connective is exten-
sional.

4 New connectives and Gentzen systems We assume that all Gentzen sys-
tems below are consistent.

In this section we consider some extensions I¥ of I, where # can be de-
scribed by introduction rules in a Gentzen system. We prove that under certain
conditions imposed on a Gentzen system, I is interpretable either in I° (cf. Sec-
tion 2) or in intuitionistic propositional modal logic S4 (cf. [3], [10]), where an
interpretation in I° and S4 is defined similarly to that in I, (cf. Remark 2).

To state the results of this section we need some notations and definitions.

Definition 9 Let # be a new n-ary connective.
Let G* denote a Gentzen system in the language of I added with # that
results from Gentzen’s LJ (cf. [4], Section III) as follows:

1. A “formula” means a formula in the language of I added with #.

2. Structural rules and introduction rules for v, A, D, and — are those of
LJ.

3. G has finitely many introduction rules for #, and each of them has a
finite number of premises.

4. The rules for introducing # into an antecedent have the following form:

a set of sequents of the form A,I' - ©
#(A,...,A4,), T > B

where A consists of some of 4;’s, i =1,...,n, O is B, or one of A;’s
i=1,...,n, or empty.
S. The rules of introducing # into a succedent have the following form:

#—1A

a set of sequences of the form A,I' - ©
I'-#(Ay,...,4,) ’

where A consists of some of 4;’s, i = 1,...,n, O is one of A;’s i =
1,...,n, or empty.

#-IS

(With a given Gentzen system G* one can associate a Hilbert system I*
such that G* FT - A iff T' by A.)

Let RG" denote the system with results from G* by imposing the follow-
ing restrictions on the set of axioms:

6. Axioms of RG* are sequents of the form A — A, where A4 is an atomic
formula.

G* is said to be regular iff for any sequent I' » © such that G* F ' — ©,
RG* FT' - 0, i.e., RG' F 4 — A for all formulas A.

The idea behind the definition of G* is quite obvious: we want G* to look
exactly like LJ. Specifically, Conditions (3)-(5) are required to ensure the sub-
formula property for G*.
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Remark 5. Whereas rule D—1A4 of LJ does not satisfy Condition (4) of Defi-
nition 9, one can easily show that it can be changed to

r-4 BI' -0
ADBT—-06

without affecting the set of provable sequents. It is also easy to prove that the
Cut-rule is superfluous in the resulting system.

One might have the impression that the regularity is a very strong restric-
tion imposed on a Gentzen system. Indeed, it implicitly affects the introduction
rules for #. However we shall see later (Theorem 15) that if # is weakly exten-
sional (cf. Section 1, Definition 1), then G* is regular, and vice versa: if G* is
regular, then # is weakly extensional (and even extensional, Corollary to The-
orems 8-14). For instance, systems LJ¢, LJ,, and LJ| (cf. [1]) are not regular,
but LJ (cf. [4], Section III) and G*° (cf. Section 2) are.

The following theorem (surprisingly?) shows that no new connectives can
be introduced by regular Gentzen systems.

e |

Theorem 8 Let G* be a regular Gentzen system. Then there exists a formula
Y(p1,...,Pn) in the language of 1 such that the propositional variables of  are
Dis. .. Pnand

G# 'h_) l//(Al’- .. 9An) = #(Aly' . ’An)’
i.e., # is expressible by the ordinary connectives.

Theorem 9 Let G* be a Gentzen system. Then the Cut-rule is superfluous in
G*.

As in the previous section, we postpone all the proofs and proceed with the
discussion.

It follows from Theorem 8 that to obtain essentially new connectives Con-
ditions (3)-(5) of Definition 9 need to be changed. If we want a Gentzen sys-
tem to be “conventional” we cannot give up the finiteness (Condition 3 of
Definition 9) nor impose any restrictions on the formulas 4,,...,A4, in (4) and
(5). By analogy with Gentzen systems for I° and S4 we can restrict the introduc-
tion rules for # by imposing one of the following conditions:

1. In (4) of Definition 9 either all of the formulas of I are of the form
#(Cy,...,C,) or I is empty.

2. In (5) of Definition 9 either © is of the form #(C;,...,C,) or O is
empty.

(Of course, there are other possibilities; cf. [8], say.)

Definition 10 A Gentzen system satisfying Definition 9 and Condition 1(2)
above is said to be A (S)-restricted.

The theorems below show that the connectives which can be defined by
means of restricted Gentzen systems are already known to us.

Theorem 10 Let G* be an S-restricted regular Gentzen system. Then there
exist a formula Yy (p,,...,p,) in the language of 1 such that the propositional
variables of Y are p,,...,p, and
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G'Fy(A,,...,A,) > #(A,,...,A,) and
G F#(A,,...,A,) = Y (Ay,...,A,).

Theorem 11 Let G be an S-restricted Gentzen system. Then the Cut-rule is
superfluous in G*.

Theorem 12 Let G* be an A-restricted Gentzen system. Then the Cut-rule
is superfluous in G*.

Theorem 13 Let G* be an A-restricted regular Gentzen system. Then G* is
interpretable in S4.

Theorem 14 Let G* be an S-restricted regular Gentzen system. Then G is
interpretable in G°.

A common corollary to Theorems 8-14 is as follows.

Corollary Let G* be a(A or S-) restricted Gentzen system. Then
(a) G" is decidable

(b) G* has the subformula property

(c) G" has the disjunction property

(d) G* is a conservative extension of LJ

(e) if G* is regular, then # is extensional.

Proof of Corollary: (a)-(d) follow from the superfluity of the Cut-rule for G*.
(e) follows from the fact that # is either expressible by the ordinary connectives
(cf. Theorem 8), or G* is interpretable either in G° or in S4 (cf. Theorems 13
and 14) and - and O are extensional.

To prove Theorem 8 we need one more notation:

Definition 11 Let a sequent I' - O be at a node of some deduction in G*,
and let a formula B occur either in T' or in ©. Such an occurrence is said to be
final, if B is not a side formula (cf. [4], 2.511) in any rule of inference applied
after I' > O; i.e., B does not explicitly take a part in any rule of inference applied
after I' > O. Also we say “Bis final in I' > ©” or “B is final”, if it is understood
to which sequent we refer.

Proof of Theorem 8: Let #—IS; be a rule for introducing # into a succedent
(i=1,...,k), and let {A},I' > ©y,}s=y,. .. be all its premises. Let O, be
nonempty for 2 = 1,...,h; and be empty for A = h; + 1,...,1.

Define
/\ Ds D Drs eh,«=At,h=1,...,hi
. AsEAY
1)Ht(pl,---:pn) =
_|< /\‘ps),h=h[+1,...,l,’
AEA,

A )
‘l‘/l(pl" . "pn) = h/\l ‘[’Ig(pls . "pn);

k
¢(p1s' . ‘,pn) = \_/1 ‘V(pl,- . -’pn)-
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(Recall that k is the number of rules for introducing # into a succedent, and /;
is the number of premises of the ith rule #-IS;.)

We claim that (p;,...,p,) satisfies the condition of Theorem 8.

To prove that G* F y(A4,,...,4,) = #(A,,...,A,), it suffices to show
that G* F y/(A,,...,A,) > #(4,,...,A,) for each i=1,...,k. First we
observe that all the sequents of (A}, V4 (Ay,...,A4,) = Oy}4o,. .., are deriv-
able in LJ, and therefore they are derlvable in G# (This fact easily follows from
the definition of y/.) Hence the sequents {A}, ' (A4,,...,4, n) = Onln=1,... 4
are derivable in LJ(G"). Applying the rule #-IS; to {AL, ¢’ (Al,.‘. A, -
Op3n=1,.. ., L we obtain Y/(A;,...,A4,) = #(Ay,...,A4,).

To prove that G* + #(A,,...,4,) > Y(A,,...,A,) we consider a der-
ivation of #(p1,...,pn) = #(D1,...,pn) in RG* (cf. (6) of Definition 9), where
Pi,- - . ,Dn are propositional variables. We change this derivation in the follow-
ing manner: in the nodes where #(p,,...,p,) has been introduced into a succe-
dent and its occurrence in the succedent is final, we introduce ¥ (py,...,Pn)
instead of #(p,...,p,) (using, possibly, a few logical rules and interchanges)
and continue with “the previous” derivation. Thus a derivation of #(py,...,
Dn) = ¥ (Dy,...,p,) results. To obtain a derivation of #(A4,...,A4,) > ¥ (A,

A,) in G* we substitute an axiom A4; - A4; for p; - p; and A; for p;,i =
1,...,n.

To prove Theorem 9 we need some preliminaries.

Let #-IA; be a rule for introducing # into an antecedent (j = 1,...,m),
and let {A}, I‘ - Gh}h 1,...,g b€ all of its premises. Let 6/ =Bfor h= 1
hj and let 9’ be one of the "’ for h = h/ +1,...,h; and be empty for h =
h +1,...,g;. Define

[ N ps,h=1,...,h
AsEAY,

' PsDOPs Ol =A,h=hi +1,...,k
Oh (D1 D) = ‘AS/G\Z{, s 1 p X ;

_|<A/\ ‘ps>,h=hj+l,...,gj
"

s€4%

. 8j
¢/ (D1s- )= N\ ShP1....Pn) D V ®I(P1,- - Pn)-
h=hi+1

¢(P1s. -3 Dn) = /\1¢j(111,~--,pn)-
J=

As in the proof of Theorem 8 one can show that G* - #(A4,,...,4,) —
&(Ay,...,A,) and G* Fo(Ay,...,A,) > #(Ay, ..., Ap).

To prove Theorem 9 we first show that LJ F ¥(py,...,p.) = ¢ (P15 . .,
Dn), wherei=1,...,k,j=1,...,mand py,...,p, are propositional variables.
We do this in a few steps.

Lemma 5 ViDL, . Pn) D & (Dy,...,Dyn) is provable in the classic proposi-
tional calculus.
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Proof: Were V' (py,...,pn) O ¢(p1,...,p,) not provable in the classic
propositional calculus we could find a substitution of “true” and “false” for
D1, .. ,P, which makes the implication false. This contradicts the consistency
of G*, since

V(A ..., Ay) > #(Ay,...,Ay) and #(Ay,. .., A )—>¢>(A1,.. yAR)

are derivable in G* for all formulas A4,,...,A4, <and V= V Vi o= /\ d)f)
Recall that we did not use the regularity of G* to derive the above sequents

Lemma 6 LI VY (py,....0n) = &/(Dys...,0n), Where py,...,p, are
propositional variables.

Proof: It follows from the definition of ¥/ and ¢/ that Lemma 6 is equivalent
to

(3) LJ}—‘//f(pl’“'9pn)’---ﬂl/li,-(pl’”~’pn)9¢£j+l(pl7--~’pn)9~-~:¢éj(ply
hi
~-»pn)—’ V ¢{1(p1y--"pn)
h=1

Rewriting the succedent into the conjunction normal form one can see that (3)
is equivalent to the following assertion: the sequent

(4) 1A[/I(I)l,-’- '9pn),- . -,1//1’;-(171,- . ~’pn)a ¢{zj’+l(pl9- . -’pn)x' . -,¢£j(p1,- L]
Pn) = V p",

where p" € A}, h = 1,...,h;, is derivable in LJ.

Lemma 5 implies that (4) is derivable in LK, where LK is a Gentzen sys-
tem for the classic logic (cf. [4], Section III).

Let IT denote the antecedent of (4). If II is inconsistent, then, definitely,
(4) is derivable in LJ. Suppose that II is consistent. We contend that for each
formula of II the result of the substitution of “true” for those of py,...,pn
which are classically derivable from II and “false” for the others is “true”.

Indeed, for no formula of II of the form — < A\ p) the result of the substitu-
PEA
tion cannot be “false”, since II is consistent. If for some formula of IT of the

form A p D q all elements of A have been replaced by “true”, then LK +1I —
DPEA
g, and g has been replaced by “true”. This proves our contention.

Since LK F11 - V p", for some h =1,. . hi, p" must be substituted by

“true”. Hence, for such an h, LK F 11 - p”.

We claim that LJ - II — p”. Obviously, this claim implies that (4) is deriv-
able in LJ, and hence proves Lemma 6.

To prove that LJ F II — p” it is sufficient to show that for all Kripke
models M = (S, s,<, V), for all ¢t € S such that all the formulas of II are valid
at t,p" € V(¢). It easily follows from the structure of the formulas of II: N\ p,

pEA

= ( A\ p) or A\ pD g, thatif a formula of IL is valid at ¢, then it is valid in a

pEA PEA
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model for the classic propositional logic that assigns “true” for p iff p € V(¢).
Since LK FII - p”, p" € V(¢). This proves the claim and completes the proof
of Lemma 6.

Since G* is an “extension” of LJ and the Cut-rule is superfluous in LJ (cf.
[4]), we immediately obtain the following corollary:

Corollary For all formulas A, . ..,Ay in the language of 1 added with #,
there is Cut-free derivation of V'(Ay,...,A,) = &/(4,,...,A,) in G, i =
L..,k,j=1,...,m.

Proof of Theorem 9: As in the case of LJ we prove the Cut-elimination the-
orem not by showing directly that the Cut-rule is redundant, but that an equiv-
alent rule Mix (cf. [4], Section III, §3) can be eliminated. The structure of the
proof is the same as that for LJ (cf. [4]) with the following modification:
whereas the proof for LJ consists of inductions on the rank p and degree v of
the given derivation, we use the induction on p, v, and », the number of occur-
rences of # in the mix-formula. (Here v is the number of connectives occurring
in the mix-formula, and p is the sum of the left and right ranks. These two terms
are defined as follows: The left (right) rank is the largest number of consecu-
tive sequents in a path so that the lowest of these sequents is the left (right) hand
upper sequent of the mix and each of the sequents contains the mix-formula in
the succedent (antecedent).)

Most of the argument is unaltered; we need only consider the cases in which
the last introduction rules before the Mix to be eliminated are #—1S and #—1A.
The case of p > 2 can be treated similarly to the cases of the ordinary connec-
tives (cf. [4], Section III, §3, 3.121.23, and 3.122).

Suppose that p = 2 and the inference is of the form:

AT > 05 et o VS V< VA
{Ay,I - h,}h~1 ..... /'#—IS,-{ hsd2 hih=1,...,g #—IAj
Fl—*#(Ala-*-’An) #(Als~~'aAn)9F2_’B .
Mix.
FI,FZ—*B

This is replaced.by Derivation 1, shown on p. 326. (Notice that I'; — y//(A4;,
...,A4,) and ¢/(A4,,... ,A,,)~, I, - l_i: are derivable without Mix-rules from
(AR, Ty = O Yp=y,.. .1, and (A}, T2 > 0]}s=), .. ¢ respectively.)

The above replacement reduces » by 1. The case of » = 0 is exactly that of
[4]. This completes the proof of Theorem 9.

,,,,,

Remark 6. A more detailed analysis of the proof shows that if G* is regular,
then G* without the Cut-rule is also regular. Indeed, the axioms of the form
A;—> A;, i=1,...,n, required to derive y'(A4y,...,A4,) > ¢/(4,,...,A,), are
eliminated in the subcase of p = 2 in which the left-hand upper sequent of the
Mix is an axiom (cf. [4], Section III, §3, 3.111).

Proof of Theorem 10: Let ¢ (p;,...,p,) be the same as in the proof of The-
orem 8. Exactly the same argument shows that G* F y(A4,,...,4,) —
#(Aj,...,A,). In order to prove that G* I (4,,...,4,) = "~y (A,,...,A4,)
we proceed as follows.
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Consider a derivation of #(py,...,p,) = #(p1,...,0n), Where py,...,p,
are propositional variables (such a derivation exists because G* is regular) and
change it in the following manner:

The derivation of #(py,...,pn) = #(P1,. .- sDPn):

(AT =0 dne1, .
L 2 #— IS (final)
r'- #(pla~ .. apn)

#(pb' . "pn) _’#(pl" . '9pn)-

The derivation of #(p,...,Pn) = 7 (Diy. .. Pn):

P—)w(pl9- --,pn)
ﬁ‘#(pl,' . -’pn)sr -

—IA

Y (P15 Pn)s #(P1s - P0) 2
#(pla' . -’pn) - _"11//(171:- . ’pn)

If we substitute an axiom A4; - A; for p; > p;, i = 1,...,n in the above deriva-
tion, the derivation of #(A,,...,A,) > "y (Ay,...,A,) results.

—-1I8S.

Proof of Theorem 11: Similarly to the proof of Theorem 10 one can show that
G"F¢(A4,,...,A4,) > #(A,,...,A,) and G* + #(A4,,...,A4,) > "—¢(A4,,
...,A,) where ¢ is as in the proof of Theorem 9. Hence G* F Y (4,,...,A4,)
—-¢(A4,;,...,A,) and by Lemmas 5and 6 L/ F ¢y (A,,...,4,) > o(Ay,...,
A,). Thus to prove that the Mix-rule can be eliminated in G* we can proceed
exactly as in the proof of Theorem 9 for the case of p = 2. However we must
also consider the case p > 2, since the following situation may occur:

A§, Ty > 6f3n= .

{ hst 1 h]h L..., &) 4—I4

#(Al,...,An), Pl—)#(Bl,""Bn) Fz"CMi
#(Ala'-"An)aFl’P;_’C

X.

Here we cannot first apply the Mix-rule and then after that introduce
#(A;,...,A,) into the antecedent, because C is not necessarily of the form #.
But we don’t have to do this because we actually apply the Mix-rule when p =
2; i.e., at the node where #(B,...,B,) is introduced into an antecedent (cf.
[4], Section III, §3, 3.12). At this node the succedent is either of the form # or
empty, and it is possible to introduce #(A4;,...,A4,) into the antecedent.

Proof of Theorem 12: Let ¢ and ¢ be as above. If we can prove that LJ
Vv(A4q,...,4,) = ¢(A4,,...,4,), then we proceed exactly as in the proof of
Theorem 11. Since G* is consistent, in view of Lemmas 5 and 6 it is enough to
show that for each substitution of “true” and “false” for A,,...,A4,, G' Fy —
¢, where p denotes the result of such a substitution into a formula p.

If ¥ is “false”, then, definitely, G* FJ — 6.
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Otherwise, for some i = 1,...,k, ¥/ must be “true”. Since ¥’ has no dis-
junctions, all the premises of #—1IS; with the same substitution for 4,,...,4,
and empty I' are derivable in LJ (and hence in G*). Therefore G | — #. Sim-
ilarly to the proof of Theorem 8, one can show that G* |- #(A4,,...,4,) »
¢(Ay,...,A,). Hence G* F— ¢. This completes the proof.

To prove that A (S)-restricted Gentzen systems are interpretable in S4(G°)
we need one more definition.

Definition 12 Let G* be a (A or S-restricted) regular Gentzen system, and
let D be some fixed derivation of #(p;,...,p,) = #(py,...,p,) in RG*, where
D1, - .,Dn are propositional variables. All rules of inference for # used in D
(and only them) are called essential.

Lemma 7 Let formulas ¥’ and ¢’ be defined as formulas y and ¢, but only
from essential rules of inference. If G* is a (A or S-restricted) regular Gentzen
system, then G* F >y =y’ A ¢ = ¢'.

Proof: (i) If G* is a regular Gentzen system, then, as in the proof of Theorem
8, one can show that G - y’(4,,...,4,) = #(A4,,...,A4,) and G* | —
o' (Ay,...,A,) =#(A,...,A,). An application of the Cut-rule completes the
proof of this case.

(i) If G* is an A or S-restricted regular Gentzen system, consider a Gentzen
system G* obtained from G* by removing A or S-restrictions, respectively.
Since the Cut-rule is superfluous in G*,G* is consistent, and the proof follows
from (i).

Corollary 1 Let G* be an S-restricted regular Gentzen system. If a sequent
is derivable in G", then there exists a derivation of this sequent in which every
rule for introducing # into a succedent is essential.

Proof: Given a derivation in G* we change it as follows: in all nodes where #
has been introduced into the succedent by a nonessential rule of inference:

{ALT = Op nat,  a

.....

T > #(A;,..., Ay

we replace a derivation of the sequents at these nodes by Derivation 2 (shown
on p. 326).

- #—1IS;

Corollary 2 Let G* be an A-restricted regular Gentzen system. Then either
G' - —#(A,,...,A,) or there is only one essential rule for introducing #
into a succedent, and if a sequent is derivable in G*, then there exists a deriva-
tion of this sequent in which every rule for introducing # into a succedent is
essential.

Proof: Let D be as in Definition 12. Then either G* + #(p1,...,p,) —, and
#(p1s... 0n) = #(p1,...,p,) has been obtained by Thinning, or the last oper-
ational rule of D is #—1IS.

In the first case G* F— —#(A4,,...,A4,), and in the second case there is
only one essential rule for introducing # into a succedent, and we have to show
that if all the sequents of {A),,T — Op,}n=1,...,;, are derivable in G*, then T -

,,,,,
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#(A;,...,A,) is derivable when the only rule for introducing # into a succedent
is the essential rule.

As in the proof of Corollary 1 one can show that G* FT' — ¢/ (A,,. ..,
A,). Since there is only one essential rule, ' does not contain v. Hence all the
premises of this rule are derivable in G and we can apply this rule to derive
I'-#(A4,,...,A,).

Proof of Theorem 13: We claim that G* is interpretable in S4 with the follow-
ing translation:

1. t(A) = A, if A is an atomic formula
2.1(A; ® Ay) =t(A;) ® t(A,), where ® is A, v or D; t(—A) = —t(A)
3.t(#(Ay, .. AY) = TY (1(AY), ..., 1(Ap)).

If G* F > —#(A,,...,A,), there is nothing to prove, otherwise let I' - ©
be a sequent in the language of G*. We shall prove by induction on the num-
ber of steps in derivations in G* and S4 that G* F I' — O iff S4 |- (") — #(0).

Part “only if” is obvious, since given any introduction rule for #, we can
first introduce y and then, by Lemma 7 (using the Cut-rule), obtain y’. After
that we can introduce [J.

To prove part “if” it suffices to show that the following two rules of infer-
ence are admissible in G* (i.e., do not affect the set of derivable sequents):

F_»‘//I(Aly' . ~,An)
I'->#(Ay,...,A4))

, where all the formulas of I" are of the form #,

and

1///(141,- .. ’An)sF -0
#(A,,...,A), [ >0

The admissibility of the first rule easily follows from the proof of Corollary 2
to Lemma 7.

To prove that the second rule is admissible, assume that G* F ¢’ (A,,.. .,
A,),I' > ©. Then, by Lemma 7, G* F y(4,,...,4,),T - 0,i=1,...,k.
Now in a derivation of ¥/(A4,,...,A4,), I' = 0O, in the nodes where y/(A4,,...,
A,) has been finally introduced into the antecedent, we can use the same
premises to derive all the premises of #—1A;, and introduce #(A44,...,A4,) in-
stead of y/(A;,...,A,). Then we can proceed with the “previous” derivation.

Proof of Theorem 14: If none of the essential rules of inference for introduc-
ing # into an antecedent results in a sequent with a nonempty succedent, then,
obviously,

G'F—¢'(A,...,A,) = 779" (Ay,. .., A4p)

and, by Theorem 10 and Lemma 7, # is expressible by the ordinary connectives.
Assume now that there exist essential rules of inference for introducing #
into an antecedent which result in a sequent with a nonempty succedent (that
must be of the form #).
We contend that the following rule for introducing # into an antecedent is
admissible in G*:
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{Ai,...,A;,,'>0|inD some#—ISresults p;,...,p;, = #(p1,...,Pn)}
#(Ay,...,A,), -0 ’

where O is either of the form # or empty.
Indeed, #—IA can be obtained by the following transformation of D:

#—IA

1. For each axiom p; » p;, i = 1,...,n take A; > A; and introduce T into
the antecedent of A; - A; by thinnings and interchanges. After that
substitute 4;,I' = A4; for the axiom p; - p;, i=1,...,n.

2. “Cut off” all the branches of D which end with introducing # into a
succedent and substitute there an appropriate premise of #—IA. (Since
D is cut-free and it is impossible to introduce # into an antecedent before
introducing it into the succedent, there exists such a premise.)

3. Proceed further as in D substituting 4; for p;, i =1,...,n.

Obviously, a derivation of #(A4,,...,4,), I' > O results.
Let ¢(py,...,p,) be defined as ¢(py,...,p,), but only from the premises of
#—IA. Similarly to the proof of Lemma 7 it can be shown that

5) G'F-¢(Ay,...,A,) =¢(Ay,...,A,).

We claim that G is interpretable in G° under the following transforma-
tion #:

1. 1(A) = A, if A is an atomic formula
2.1(A; ® Az) = 1(A)) ® 1(Az), where ® is A, v, or D; t(—A) = 0t (A)
3Lt (A, .., AR) = 0d(E(AY), ..., 1(AR)).

Using (5) we can proceed as in the proof of Theorem 13. Obviously, if
G"FT - 0, then G° F £(T') - (0). To prove the converse we use induction
on the number of steps in a derivation in G°. The only nontrivial step of this
induction is to show that the following rule of inference is admissible in G*:

&(Al’- .. ’An),F -0
#(A,,...,A,),I -0’

where O is gf the form # or empty. _
Since ¢ contains neither D nor =, if G* F ¢(A4,,...,4,), I' = O, then all
the premises of #—IA are derivable in G*. Hence G* F #(A,,...,4,), - 0.

Finally, we establish one more property of weakly extensional connectives.

Theorem 15 Let G be an (A- or S-restricted) Gentzen system. If # is weakly
extensional, then G" is regular.

Proof: We shall prove by induction on the number of connectives of a formula
A that A - A is derivable in G* from the axioms {p — p|p is a propositional
variable}. The only interesting case is that in which A is of the form #(A,,
...,A,). Obviously, we may assume that 4, ...,A, are atomic formulas; i.e.,
A, =pi,..., A, = p, (cf. the end of the proof of Theorem 8).

Since # is weakly extensional and G*  p; = p; A p;,

G# i—#(pl ADi1s P2, .- ~:pn) _’#(pla- . -,pn)-
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By Theorems 9, 11, and 12 there is a Cut-free derivation of #(p; A py, D2, - - -,
Dn) = #(D1sDas - .., py) in G*. This Cut-free derivation can be transformed to
a derivation of #(py,...,pn) = #(p1,...,b,) by ignoring introducing p; A p;
in the appropriate nodes. Obviously, each axiom in the last derivation is of the
formp;,—»p;,i=1,...,n.
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