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Concerning Some Cylindric Algebra Versions of

the Downward Lόwenheim-Skolem Theorem

ILDIKO SAIN*

/ Introduction The theory of cylindric algebras (CA's) is the algebraic theory
of first-order logics. Several ideas about logic are easier to formulate in the
frame of CA theory. Examples are some concepts of Abstract Model Theory (cf.
[l]-[4], [8], [11]—[13], [22], and [24]), as well as considerations about relation-
ships between several axiomatic theories of different similarity types (cf. [5]-[7],
[9], [14], and [22]). (This second topic is sometimes mentioned under the name
"Theory Morphisms", "the category of theories and theory morphisms", or
"interpretations".) For these reasons, certain branches of theoretical computer
science are based on algebraic logic instead of pure logic (cf. e.g. [9], [14]). For
applications of CA theory in computer science, see e.g. [9], [10], [15], [20], and
[21].

The connection between logic and CA theory is elaborated in [1], [3], [11],
[12], [16], [19], and [22]. The connection between model theory and CA theory
is elaborated in [19], [22], [23]. For example, it is proved in [23] that the sim-
ple algebraic property of a class K of CA's that all epimorphisms in K are sur-
jective is equivalent to a definability theoretic property of first-order logics (more
precisely, model theories) associated to K.

It was found that in general it is the classes Crsa and Gs™g of cylindric set
algebras that provide the fundamental link between model theory and CA the-
ory. The CA-theoretic counterparts of the model theoretic notions are usually
the fundamental notions of Crsa (and Gs™g) theory. (It is shown in [22] that
Crsa

9s which are not Gs^g's arise from nonclassical and unusual model theories
when the usual process of algebraization is applied to them.) CA theory is much
more "algebraic abstract model theory" than "algebraic classical first-order
logic". This helps to explain the fact that frequently CA counterparts of clas-
sical results are harder to prove than those results: the CA counterparts say that
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a certain property holds for a wide class of logics, not just classical logic. For
example, by 1.3.18 of [18] we know that the finitary logic CVF of infinitary struc-
tures as elaborated in Section VI on p. 36 of [1] (first introduced by L. Henkin
in 1955) enjoys the Lowenheim-Skolem-Tarski property and by II.7.14 (p. 254),
1.7.25, and II.7.12 of [18] it has this property in the upward direction also.

2 The results Here we extensively use the notation and terminology of the
fundamental textbook [18], or equivalently [19], of cylindric set algebras and
their generalizations. Because [18] consists of two parts, the Second Part begin-
ning at p. 131, we shall refer to item n in the First Part of [18] by "I.n" and to
item n in the Second Part by "II.n". For example, "1.3.18 of [18]" means item
3.18 in the First Part of [18] (on p. 47) and "II.8.17 of [18]" means item 8.17
in the Second Part of [18] (on p. 289).

Theorem 1 and Proposition 4 below give an exhaustive answer to Problem
5 on p. 310 of [18]. Hence they improve: (I) the algebraic downward
Lowenheim-Skolem-Tarski theorem (Theorem 1.3.18 of [18], p. 47) and (II) the
discussion of this theorem which is item 1.3.19 of [IS], pp. 50-54. The problems
raised in 3 of II.7.13 and in 3 and 5 of II.7.16 of [18] also receive a partial
answer in the present paper. Conjecture II.3.9 of [18], p. 175, turns out to be
true for Cs^eg and false for Wsa, by Theorem 1 below.

Before stating our theorem, we recall Theorem 1.3.18 of [18] (or equiva-
lently, Theorem 3.1.45 of [19]) as Theorem 0.

Theorem 0 (Andreka-Monk-Nemeti) Let %be a Crsa with unit element V
and base U. Let K be an infinite cardinal such that \A | < K and K < \U\. Assume
S^U and \ S\ < K. Then there is a W with S^W^ U such that \W\=κ and:

(i) Each of the following conditions (a)-(c) implies that (X Πa W: X E A) is
a strong ext-isomorphism of 2ί onto a Crsa ©.*

(a) %isa Wsa;
(b) K = κ | α | ; then if% is a Csa it follows that S is a Csa with base W\
(c) 21 is a regular Gsa9 and K = Σμ<λκ

μ where λ is the least infinite cardi-
nal such that I AX\ < λ for all X £ A then S is a regular Gsa with
base W, and is a Csa if 21 is a Csa.

(ii) If % is a Gwsa, then 2ί is ext-isomorphic to a Gws^ with base W.
(iii) If \cx\ < K, then 21 is ext-isomorphic to a Crsa with base W. •

Consider the following two properties (*) and (**) of a Crsa 21 and a
cardinal K.

(*) (1G<^A)[A =SgG and \G\ < κ ] .
( * * ) (1G£A)[A = Sg G and \G\ < K a n d ( V x e / l ) κ | Δ x | = K).

Note that (*) says that 21 can be generated by <κ elements. Theorem 1, together
with Remark 1 below, says that:

(***) The condition \A\ < K can be replaced with (*) in Theorem 0 iff we omit
statements (i)(a) and (ii) from the conclusion of Theorem 0.

This cannot be improved by using (**) instead of (*), because the quoted two
conclusions also remain false under the stronger assumption (**).
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Theorem 1
(I) Let 21 E Gs™g and let K be an infinite cardinal such that K < | base(%)\. Let

S Q base(%) with \S\ < K. Assume (**)• Then there is a W with S^W^
base{%) such that \W\ = K and rl(aW): 21 ~»© E Gs£g for some 6.

(II) Let a > ω + . Then there are 2ί E Wsa Π M«α αwrf K = \κ\ > ω satisfying
both (*) #«c/ (**) swcA that for allWif\W\<K then the conclusions (i)(a)
wid (ii) o/ Theorem 0 fail.

Remark 1: Before proving Theorem 1, we indicate here how statement (***)
above follows from Theorem 1: Conclusion (i)(c) of Theorem 0 trivially follows
from Theorem 1(1). Cases (i)(b) and (iii) are easy, since in these cases K = K^'
is assumed and hence K > a which by (*) and by K > ω implies K > \A\. Then,
by Theorem 0, we are finished.

Proof of Theorem 1: In the proof we shall need the following notation and
Lemmas 2, 3:

Notation: (Recalled from [17]) x c I E y <=* 3z(x Q z and zEy).
df

Lemma 2 (Algebraic version of the Vaught criterion for elementary submod-
els) Let a > 2, 2ί E G C g flvirf ϊ^ c Z?α5β(2I). Zeί F = I21. ΓλeΛ r/(αίΓ) E
//om(2l,@ί)(FΠ aW)) iff the following Condition (V) Ao/ds.
Condition (V) (V* E >1)(V/ E ΔJC)(V(7 E ((2UΔx)~{/])^ [̂  c | e x =̂  ̂ r c |
E ( J C Π α ^ ) ] .

To prove Lemma 2, we shall use the following more general lemmas:

Lemma 2.1 (Generalized Vaught criterion) Let a and 21 E Os α be arbitrary.
Let Z c l 5 1 . 77*e« (i) and (ii) te/ow are equivalent.
(i) rlzGHom (21, ©bZ)

(ii) (Vg E Z)(Vx E Λ)(Vι E Δx) [3a(gi E x) => 3a(gi G Z Π x ) ] .

Proo/: Let V = I51. Note that (ii) is equivalent to Z Π C/x c QK(Z Π JC) which
is the same as rlz{Cfx) <Ξ Cfrlz{x) for all x and / E Δx Hence (i) => (ii) is
obvious. Assume (ii). Let / E ΔJC. Then rlz(C^x) QZΠ C\rlz{x) = Cfrlz{x).
Thus rlz(CYχ) c Cfrlz{x) is proved for / E Δx. If / £ Δx then rlz{CYx) =
r/z(*) c Cfrlz{x). Thus (V/ E a)rlz(CYχ) c Cfrlz(x) is proved. The other
inclusion (Ξ2) always holds obviously. We proved that A7Z preserves c, for all
/ E α. It is known from BA-theory that rlz preserves all the other operations.

•

Lemma 2.2 Let a > 2, 21 E (Gw5^ m ) r ^, JΓ c baseW), and V = 1H.
Assume that Condition (V) of Lemma 2 holds for 21 <wtf Ĥ . ΓΛέw rl(aW) E
//om(2ί,©b(FΠ aH^)).

PAΌO/; Assume the hypotheses. Let Z = VC) aW. Ύo prove that condition (ii)
of Lemma 2.1 holds, let x E A, i E ΔJC, and g G Z with &j E x. Let Z> = (2 U
Δx) - {/) and q = D 1 g. Then (7 G DWznd q c | G X, hence by Condition (V),
q c / e x Π Z for some/. Let 6 =/(/) . Then g£ E Fsince Kis a Gw^orw-unit
and/Π g^qψO. Hence g},Ex since x is regular in Fand 1 U Δ c 1 gi^qU
{</,6» c / G x B y f i G JFand g G Z, g^G Z proving condition (ii) of Lemma
2.1. Then Lemma 2.1 completes the proof. •
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Proof of Lemma 2: Lemma 2.2 proves the "if" part of Lemma 2 (since Gsa <Ξ
Gws"orm). To prove the "only-if" part, assume the hypotheses of Lemma 2, let
Z= VΠaWand assumexlz G Hom(%<&bZ). To prove Condition (V), let x G
A, i G Δx, £> = (2 U Ax) ~ [i}9 q G DW, and q <^p G x. Let g = # U <^0:7 G
α - Z>>. Then g G αJF. By Rg(g) g Rg(p) and p G F, we have g G F since F
is a Gsα-unit. Thus g G Z. By Δ(C/x) g D and p G C/x, we have g G C/x by
regularity of A. By Lemma 2.1 then gι

b G Z Π x = x Π αW for some b. Since
/ ̂  £>, we conclude q = D 1 ^ C ^ G X Π T proving the conclusion of Con-
dition (V), as desired. •
Lemma 3 Let 2t G Gs™8 with base U and let K be an infinite cardinal such
that K < \U\. Assume (i) and (ii) below.
( i ) ( 3 G c ^ ) [ / l = Sg G a n d \G\ < K].

(ii) /c = Σ{Acμ:μ<λ} w/zβre λ is the least infinite cardinal such that |Δx| < λfor
allxeA.

Then for every S g ί/w/YA |S | < K there is a W^ U such that S g PΓ, |FF| =
K α/irf r/(°W): 21 ̂  © G G 5 ^ /or 5ome 6.

Proof: Assume the hypotheses of Lemma 3. Then (Vx G ̂ 4)|Δx| < /c follows
from(ii). L e t i / = U {ΔxrxGG}. Then |//| < /c by |G | < /c.

To see that we may assume H g /c, let p: α «> α such that p~ι*Hg K. For
any 7G,4 le t/y= {jop ^ e Γ}. Then by 1.8.1 and 1.8.4 of [18],/: 3ft)(p)2ί~>
33 G Gs^s. Then/*G generates 93, and for anyxEA, Amfx = p"^ ( H ) x. Hence
U {Amfx: xG G] g /c. Assume that we have established our result for 93. Then

g = r/(aPF): 93 ~» 6 G Gs£g. Let / ' 7 = (^ G αPF: ̂  o p G 7} for all 7 G C.
Then again by 1.8.1 and 1.8.4 of [18],/': S to^-^e^S) G GC*. It is routine
to check that g: 2ί >» 35 and/' ° ( 5 1 g) °/ = yl 1 g. Hence our result follows.
This means that we may indeed assume H g /c (without loss of generality).

If | a | < Ac then | G \ < K implies \A \ < K and hence we are finished by (the
original) Theorem 0.

Assume therefore \a\ > K. Then β = K + ω G α. Let 9Ϊ = SRr^a. Then
G g TVby / / c /c g β. Let 3ϊί = @gO TG. Then \M\ < /c by \β\ = K. Let r ^ =
<{β 1 <7: g G x ) : x G Af>. By II.8.17 of [18] (p. 289) then rsβ G /5 (2R,S8) for
some 93 G Gsf*. Clearly, | B \ < K and base(93) = C/. By Theorem 0 then r/^JF) G
/s (93,9ί) for some 9ί G G ^ and H^with 5 g WQ Uand \ W\ = K. Then we have

(1) rl(βW) G /5m(93,©b(l® Π βW)).

We show that r/(aPF) G /5m(2I,©b(lSί Π αPF)).
Let x G ̂ 4 be arbitrary. Since x G 5g ( 5 ί )G, there exists a finite L <Ξ α such

that

(2) Δx g 0 U L and x G Sg(*D(/3 U L)%)G.

There exists a permutation £: α ~> α of a such that £*β = βU L and K 1 ζ^Id.
Then

(3) x G S g ( ^ * D % ) G .

Let A: = </<>£:/G αC/>. Let F = 1H. Then k: aU>» aUand k*V= F b y 2 l G
Gsa. Let h = fc*. Then A: 5Z?F-^ 5Z?Fand especially h: A-+ SbV. By 1.8.1 of
[18] we have:

(4) Ae/s/π(9to*a,@bK).
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Clearly, G 1 h ^ Id since if y E G then Δj> 1 ξ £ /rf and j is regular in a Gsα.
By (3) and (4) then h(x) E Sg{^®hV)G = Sgim^A)G = SgmG = M. Let y =
rsβh(x). Ύheny E 5 and Δ®j = (ξ"1)*Δ2ίx, by (4).

To prove that Condition (V) of Lemma 2 is satisfied, let / E Δx, D =
(2UΔx) - {/}, q(ΞDW, and p E x such that q g p. Lety = ξ - 1 ( 0 and £ =
(£- !)*iλ Theny E Δ*>> and £ = (2 U Δj) ~ {y}. Further,

(5) qoξeEWandqoξ:cz (β 1 (/?•£)) G/^A (*) =j>.

Since 23 E Gs1^, by (1) we can apply Lemma 2 to derive from (5) that (3/E
yΠβW)qoξ c / T h e n / c ^ e A(x) for some g, by .y = ^ A ( x ) . Let t=fU
</0: / E α ~ β). Then / G K Π "JF because Fis a Gs^-unit. Since 1 U Ah(x)
1 t^fQgeh(x) Sindh(x) is regular in Λ*(3h>*Sl) (by 1.8.4 of [18]), we have
teh{x)naWby te V. Then ί = c/oξ for some d E x Π "^F. By <? o ξ c / c
/ = d o ξ and Z)og c α = Z>orf = i?gξ, we conclude (7 c <i G x Π aW. By this we
proved (V) of Lemma 2. Hence by the choice of x, we conclude that Condition
(V) of Lemma 2 is satisfied by 21 and W (for all x). Hence by Lemma 2 we have
that rirW) E Hom(tί9®i(VΠ aW)).

To prove that rl{aW) is one-one on A, assume that x Φ 0. Thus rsβh(x) Φ
0. By (1) then ^PFΠ rsβh(x) Φ 0. Hence there exists a (7 E rsβh{x) Π ̂ JF. Let
t = q U (q0: / G α ~ j3>. Then ί E αJF. Since F is a Gs^-unit and q QfG
h(x) c Ffor some/, we have t<ΞVΠaW. Since 1 U ΔΛ(x) c 0 (by (2)) and
/z(x) is regular in Fand 01 t = q ^ / E A(x), we conclude that tGh(x). Then
/ = g o ξ for some g G x. Since ί E aW9 also g E αίF, hence g E x ί l ^ . W e
have proved that rl(aW) x Φ 0.

So far we have proved r/(°W) E /ί/w(8,gb(KΠ α^F)). Then there is 6 g
@b(FΠ αPF) such that rl(aW) E Δ(8ί,e). By 1.3.16 of [18] we have 6 E Gs^*.

•

We turn to the proof of Theorem 1: (I) is proved as Lemma 3.

Proof of (II): Let a > ω + . Letp = a 1 Id. Let V= aa{p). Let 21 = 5ΪWn(@bK).
Then 2ί E PF α̂ Π M«α and y4 = 5g{0). Let K = ω. Then 2ί and /c satisfy both (*)
and (**) above the formulation of Theorem 1. Let Wbe arbitrary but such that
\W\ <κ. Then VΠaW=0 since (V/E K)|Λg/| > |Λg/7| = | α | > K > \W\.
By F̂ fc 0 then we conclude r/(αJF) ί Js(2ί), moreover (vj g αίF) rlγ £ /s(2ί).
By 2ί E ^F5α, the assumptions of (i)(a) and (ii) are satisfied. Hence (i)(a) and (ii)
fail as was desired. •

Proposition 4 below completes the discussion (1.3.19 in [18]) of the con-
ditions of Theorem 0. It says, roughly, that statement (iii) cannot be improved.

Proposition 4 The condition \a\ < K is needed in (iii). In fact: Let K =
IKI > ω and assume \a\ φ K. Then there is 21 E Crs£8 such that (vW)[rlwe
/5(2ί) => \base{W)\ > K] and \A\ < K < \base{%)\ and (VxEv4) Δx = 0.

Proof: Let ω < \κ\ = κ< \a\ and V = {a ] Id}. Let 21 = @ί)F. Then |̂ 41 =
2 < K and 2ί E Crs*g. By A = [0, F}, we have (Vί fc K) [rlw E Zs(2I) => F =
W]. Hence α g base{ W) if r/^ E ft(81). •
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Problem 5 What are the necessary conditions for Theorem 0 to remain true
if we replace the word "ext-isomorphic" with the word "ext-homomorphic"?
That is: Let 2ί G Crsai K = \ K| > ω, and S ^ baseW) with |S | < K < | base(%)\.
What are the necessary conditions for (I) or (II) below?
(I) (3 W^ V)[\base(W)\ = K and rlw G Hom(%,<&bW)}

(II) (3W)[\W\ = K and rl(aW) e Hom(%,(Bb[VΠ aW})}.

In this connection we note that in the counterexample on pp. 517-52 of
[18], the 21 G Gwsr

a

eg Π Lfa with \A\ < | α | < \base(%)\ is such that [ V ^ c
base{%)} (V33 G Crsa) [\W\ = a => r/(αPF) ^ /fo/w(8l,55)]. This might suggest
that perhaps the only improvement will be that the condition \A\ < K can be
replaced with a < κ +.

3 Discussion Lemmas 2.1, 2.2, and 2 are algebraic versions of the well-
known model theoretic Vaught criterion for elementary submodels. Since one
of the main motivations for CA theory and Crsa theory is to do algebraic logic
for first-order logics, it might be worth reflecting upon these results briefly.

We consider whether the conditions of these three lemmas are needed.

Proposition 6 For a > 3, Lemma 2.2 becomes false if we replace Gws"orm

by Crsa in it. That is, there are 21 G Crs™8 and WQl% satisfying Condition (V)
of Lemma 2 such that rl(aW) £ //o/w(3l,@b(KΠ aW)).

Proof: Let a > 3. Let n = </: i G a) for all n. Let V = {ϊ§, ϊ^,3§,3§i) (see
Figure 1). Let x = {ϊ%,3%} and W= 4. Let 33 = ©bFand 21 = <&Qm{x}- Then
A = {0,x, F ^ x , F) and Δ [ F ] (JC) = {1}. Further, (vy GΛ)ΔO>) C {1}. It is
easy to check that Condition (V) is satisfied by 21 and W. But rl(aW) £
Hom(Uy®b(Vn aW)) since Cftx) = F b u t x l Ί aW = {ϊ%} and CΊ{Ϊ§£} =
ί Ϊ2J20) Φ VΠ^W. Clearly, 2ί is r^w/ar by 1 G Δx and by |Λ| = 4. Hence
2ί G Cr5^ . •

Problem 7 Does Lemma 2.2 remain true if we replace Gws"orm with Gwsa in
it?

U

3 > ^ ^ 3 /
2 V 2 \

W \ \ \ \

Ol J^— > α 0' ^ ~ >
0 1 2 0 1 2

Figure 1.
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Proposition 8 Lemma 2.2 becomes false if we replace {Gws"orm)rβ8 by Csa Π
Lfa in it. Thus regularity is needed in 2.2 even if we restrict ourselves to the Csa-
case.

Proof: Let a > ω and U = ω + ω. Let n = {n: i G a) for all n. Let Qn = aU{n)

for a l l f lGω. Let E = {2-n: n G ω] U (ω + (2-n): nGω}. ( V « G ω - \)Yn =

{q GQn:n<q0GE}.Y0={qG Qo: ω<qQGE}.Qω± («£/) ~ U [Qn: n G

ωj. Yω = {g G Q ω : ? 0 e £ } . x = U { ^ : i G ω + 1). Let 93 = @b(α£/) and 21 =

&$m[x}. ThenSίG CsaΠLfa. Let W = ω, Z = aW<md V= aU.

Claim 1 rlz £ Hom{%,@bZ).

Proof: Clearly, 0 G C 0(x) by 0° <£ 7q ^ x. Hence 0 G rlz(Cox). But 0 ί
C^(Z Π x) since (Vπ G PΓ)0^ ί x, by 0^ ̂  Q o for all n G ω.

Claim 2 21 ύwd W satisfy Condition (V).

Proof: Let j G ̂ 4 be arbitrary. Then |Δj>| < ω. Let / G Ay and D = (2 U
Δ^) ~ {/} as in the formulation of Condition (V). Then | D | < ω. Let q G ^W
and ^ c p G jμ be arbitrary. Then (3n G ω)q E Dnby \D\ < ω. Let this n be
fixed. Let L = 2 U Δ j and k = L 1 /?.

C α ^ 7. Assume p G Qm for some m G ω + 1 with m > 0. Now Q m G Zt/33, so
r^Qm: ^ "^^^Qm^ ̂ s a homomorphism. Now 9ίί(2w2l is generated by {x Π Qm} =
{YZ} and r m 7s regular with ΔΓ m = 1, so by [18] 1.4.1, 3ίίβw2ί is regular. Let
t = (m: K G α - L). S i n c e / ? G β m Π . y and A(Qm Γ\ y) ^ Ay with Δ j 1 / ? c
^ U / G Q w , we infer that kU tGQmΠy. Note that (k U /)y Ξ FF for all j Φ
i. If (k U t)ie W, we have q^kUtGyΠaWas desired. So suppose (k U
0/ ί ^ . Thus (k U 0 ' = ki > ω. If m < ω, let 5 = max{m,n) and let g be the
permutation (ki,s) of ω + ω. Then the base-authomorphism g of @bβm fixes
Ym and hence pointwise fixes 3UQW2I. We have g c ^ u / G j Π αίf, as
desired. The case m = ω is similar, but one has to distinguish whether ki is in
E or not.

Case 2. Assume p G Qo. Let / = A: U <0: i G a ~ L). Then / G j> since r/βo:
21 - 3fίQo2l G JFsα = F F J ^ . Let 9ίm = 9fίβw2I for all m G ω. Then (v/w G
ω)9ίw = @g{ Γw j c @b(Qm) G H^α. There is a base-isomorphism 5: % ~> 9ίΛ

induced by some b: U>»U such that B(Y0) = Yn and (Λ - 1) 1 6 g Id (hint:
δ * ( r e £ : θ α ) | = {rG£':r>A7},Z?o = «, bn = 0, (Λ7 ~ 1) 1 b^Id,b*({rG
U~ E: n < r] U {r G E: n < r <^ ω}) = {r G U~ E: n < r}). Then the diagram

(Figure 2) commutes since b(rlQo(x)) = δ( ίo) = ^2 = r^QnM- Hence δ(j^ Π

a
r / (δo)/ Xr/ίQ,)

9ίo> * » 3 ί Λ

Figure 2.
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δ o ) = y Π Qn. By f e y Π QOi then b ofe yΠQncy. Thus (b*k)Ό <n: i E

a ~ L) = 6 °/G j Π <?„ c j . Let F: Rn >-> Sb(aU) be defined such that (\fz E
Rn)F{z) = {h E αC/: n[Az/h] E z}. Since $»„ e 0 ΐ α Π Lfa9 there is 6 G
C s ^ Π Lfa such that F G /$($»„,(£) and l e = α(7, by Π.3.14(iii) of [18] (p. 182).
Then 6 = ®q{F(Yn)} and F(Yn) = {ΛG α (/ : /ι < h0 e E}. Let rf: [/>» (/be
such that ( [ / ~ ( 0 , Λ ) ) U c / ( ί , r f o = /ι, and rfπ = 0. Then 3(FYn) = FYn.
Hence Cϊ dQld. Thus rf(F(j> Π QΛ)) = F(y Π β π ) . By (b ° A:) U </ι: / G α ~
L) G j Π β w c F(j; Π β n ) we conclude that for some ι/G(/we have f*u =
K U <0: i(Ea~L) = (do[(bo/c)U (n: i G α - L}]) G F ( j Π Qn) and thus by
Δ(^ Π a j c A j c L we have n[L/kί\ = n[L/fu] e y Π Qn. Then ^ U <n:
i E a ~ L) = ήlL/klt] E y Π Qn ^ γ. Since « > 0, exactly as it was proved in
Case 1, we conclude that (3a G W) [kj, U <Λ: / G a - L)] E (y D Qn) Π aW.

Since one of Cases 1 and 2 above always holds (by p G U {Qm: m E ω +
1}) we conclude from q^kι

a that q^fEyC\aW for some/. By the choice of
y, /, and ^, then Condition (V) is proved to hold.

Claims 1 and 2 together complete the proof of Proposition 8. •

Proposition 9 Lemma 2 becomes false (in the only-if direction) if we replace
Gsa by GwSaOmp or by Wsa. Regularity is also needed, even for the Csa case. In
more detail: Let V = 1H and let a > ω. Then (i)-(iii) below hold.

(i) [21 G Wsr

a

eg and rl(aW) E Hom(%®b(VΠ aW))] £ Condition (V)
(ii) [21 G (Gws™mP)reg and rl(aW) E /5m(2ί,®b(FΠ aW))} £ Condition (V)

(iii) [21 G Csa and rl(aW) E Ism(%®b(aW))] fi Condition (V).

Proof: Proof of (i): Let a > ω and let K = aa(Id). Let 21 = 9Dΐn(©bF). Then
2ίG Wsanifa.Let W^a be such that \W\ > ω < | α - W\ and 0 G FF. Then
A /(αίF) G /fo(2l,@6O), since F Π Q;PF= 0. Let x = K Then Condition (V) of
Lemma 2 does not hold for this 21, W> and x because of the following. Let / =
1 and D =(2 U Δa(x)) - {/}. Then D = 1. Let p = a 1 /rf and q = {<0,0>}.
Then (7 c /? G Λ and q E DW. Hence χΠaW=0 proves that Condition (V) is
not satisfied.

Proof of (ii): Let a > ω + ω. Let h = <1: / G ω> U <0: ω < / G α> and
t = < 2 : / 6 ω ) U < l : ω < / € α > . Let V= aω(h) Uaω(k). Let W=ω~ 1. Let
a5 = @bK L e t x = ( ^ G F : ( ω 1 ^ c / ί ) O r (ω 1 g ^ ^ ) } , 21 = &§m{x}. Then

Δx = ω. Let / = 0. Let ΰ = ( 2 U ΔM(x)) - {/}. Let q = <1: / G ω - 1>. Then
q <Ξ: h E x and # G ^W as in the hypothesis part of Condition (V) but (V/G
x Π αtf0<? 5έ/since xΠaWQ aω(k). Hence Condition (V) fails. By II.4.6 of
[18], p. 190, 21 is regular. Hence 2t G (Gwsc

a

omp)reg. Let K = aω{k).
We show rlκ E Ism($l,®bK) as follows. Let H = α ω { Λ ) . Let Z?: ω >̂  ω be

such that boh-k. Then δ(//) = K, hence by 1.3.1 of [18], p. 33, we have b:
&bH-+(&bK. Now

(6) rlκ(x)=b{rlH(x))

is easy to see. Let %k = rlχ% and 2lΛ = rl%%. Since x generates 21, from (6) we
obtain that the diagram (Figure 3) commutes; that is,

(7) A\rlκ = A\ (borlH).
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a

rlH/ ^\rlκ

21* > »«*

Figure 3.

Assume that rlκ £ Is%. Then K Π y = 0 for some 0 * .y G A. Then // Π j> Φ 0
(since 1H = H U # ) . But then B(rlH(y)) Φ 0 = rlκy, contradicting (7). This
proves rlκ G Is% which by K G Zd@b Vimplies rlκ\ 2ί >-> @bϋΓ. We have proved

r^G/sm(2l,@bϋO.
Let 6 = r/£8l. Then what we proved is rlκ\ 21 ~> g c @b# where C =

S g e [ j c n * ] .
Next we prove

(8) r/(°W): e ~ ( S b ( # n aW).

Let2<n<ωandletpn = {<0,Λ>,<Λ,0» U (ω ~ {0,n}) 1 Ttf. Then by pnK = K
and by Theorem 1.3.1 of [18] we have pn\ &bK >» <S*bK. If n > 2 then pn(x Π
K) =xΠK. Therefore

(9) C 1 pn c /rf if A2 > 2.

Let Z = ^ Π αPΓ (= aWw). We show that (ii) of Lemma 2.1 is satisfied for
this Z and β. To see this, let g G Z, j G C, / G Δj> be arbitrary but fixed. Assume
that a G ω is such that gι

a G j>. If # G JΓthen we are done. Assume a £ W. Then
go G .y. Let /i G ^ ~ (3 U Rg g). Then by (9) C i ^ c /rf. Thus pn(y) = j ; .
Therefore pn ° gb E y. Thus gi = /?Λ ° ^ ^ »̂ by £ Ξ Z g aW. This proves
Lemma 2.1(ii), since (n G W=> gι

ne Z). Now by Lemma 2.1

(10) CΊ r/z: 6->@bZ.

It remains to prove that C 1 r/(αFΓ) is one-one. To see this, let 0 Φ y G C.
Then g G j for some g. Let ft G W - Rg g (clearly exists). Now by (9) pn(y) =
y. But (pn o g) G Z (by « G JΓ - i?g g), and thus j Π Z ^ O . Thus C 1 r/z is
one-one. This and (10) together imply C 1 rl(aW): 6 ~ ©bZ. Since Z = K Π
αίT, we have: y e C =>y QK => ZΓ\y = (aW) Π^. Thus C 1 r/(αίF) = C 1 r/z.
Therefore C 1 rl(aW): <£>+ <£>bZ. We have proved (8).

Now for every yEA9 rl{aW) ° rlκ(y) = aWΠy = rl(aW)(y) (since VΠ
aWQK). Thus .4 1 rl(aW) =A 1 {rl{aW) <> rlκ) = (C1 r/(αίF))« (^ 1 r/^).
By (8) and by rlκ G Zym(2l,@b^), both C 1 r/( α ^) and A 1 r/* are isomor-
phisms, therefore A 1 rl{aW) is an isomorphism, too. More precisely, we have
rl(aW): 21 >-» &b(K Π α ^ ) . Therefore, rl(aW) G /5m(2l,@b(KΠ α^F)). We
proved [21 G ( G W J ^ ) ^ and rl(aW) G /j/π(a,©b(KΠ αW )̂)] ^ Condition
(V). The condition a > ω + ω can be replaced by α > ω by the methods of
Sec.1.8 and Sec.II.8 of [18].

Proof of (iii): Let a > ω + ω. Let h = <1: / G ω> U <0: ω < i G a). Let

ί/= | α | + , V= aU, and Q = aUw. Letx= {<7GQ: (V/6ω)?/= 1} U (<?G

F ^ e : (V/Gω)^ = 2}.Let2l = @g(®bK){^).ThenΔΛ: = ω. Let fF= £/~ 1.
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Claim 9.1
(ϊ)rl(aW) eHom(%«W)

(II) rl(a1V)E Is(81).

Proof of Claim 9.1 (I): We prove that condition (ii) of Lemma 2.1 holds for
Z = aW and 31. To see this, let g E Z, >> E .4, / E Δ>> be arbitrary. It is enough
to see that the implication gb G y => (3& Φ 0) gι

b E Z Π y holds. Assume gb E
y. By \Rgg\ < a < U= \W\ we have Rg gξ£ W and thus W ~ (3 Ό Rg g) Φ
0. Let be W~ (3 URgg). Let 5 = α £ / u ) . Recall that /?* = {<O,Z?>,<Z?,O» U
(U~ {0,b}) 1 Id. Thenpb(S)=S. We define (Vĵ e V)pb(y) = pb(y Π S) U
(y — 5). Next we show

(11) ^ : ©bK~@bK

By Theorem 1.3.1 of [18], pb: @6S>^ ©65. rl(S) and r/(K- S) form a direct
decomposition of @bK By this decomposition, the cone <p6 ° rls,rl(V ~ S))
induces the endomorphism pb of (the direct product) @b V. It is easy to see that
pb is an automorphism, too. We have proved (11). Next we prove

(12) pb(x)=x.

Recall thatpb(x) =pb(xΠS)U (x~ S) andpb(xΠ S) = {pbof:fexΠS}.
To see pb(x Π S) e x Π 5, let / G x Π 5 be arbitrary. Then / G α ^ / U ) from
which (p Λ o/) G α t / ( ^ , further (pbof) (£ αU(h) (=Q). Thus ω 1 / ς 2 = <2:
/ G α> and ω 1 (pb of) c 2, therefore (pΛ «/) G X. Further p^ O / G S. Thus
(Pb °f) E (x Π 5). By this we have proved pb(x Π S) c x Π 5. From the lat-
ter ^ ( x Π 5) = x Π 5 follows. From this (12) follows by the definition of pb.

Now, by (11) and (12) we have A 1 pb c /rf. Thus gh=pb°gb<Epb{y) =
y since gbS S and go E j^ by hypothesis. By this we have proved that condition
(ii) of Lemma 2.1 holds for αJV and SI. Then, by Lemma 2.1, rl(αW) E
Hom(%,(Bb(αW)).

Proof of Claim 9.1(11): Now let Z = V- Q. Then aW ^ Z. First we show that
rlz E /5m(8l,@bZ). Let k = <2: / E ω> U <1: ω < / E α>. Let 6: ί/>» I/be such
that boh = k. Then δ: ©b(α(£/)) = @b(ai/) and b(rlQ(x)) = (xΠZ)Π aU{k) =
rl(aUik))(x) (see Figure 4).

nι
<&bV

rlQ^ \ ^ z

@bβ @bZ

δ\ /rl(aU(k))

ebruik))
Figure 4.
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21

/

\rί(aU(k))

Figure 5

Thus the diagram of Figure 5 commutes; that is

(13) A 1 (bo rlQ) =A 1 rl(aU(k)).

Now assume rlz £ Is%. Then (3^ e A ~ {0}) Z Π y = 0. Then Q n j = . y ^ 0
since β U Z = 1H. Further α t / ( / : ) Π ̂  = 0. Thus b(rlQ(y)) Φ 0 = r/(αt/ ( A r ))(^),
contradicting (13). This proves A7Z G 75*21. From this r/z: 2ί ̂  <SbZ follows since
Z is zero dimensional in ©bF. We have proved /7Z G Zs/w(3l,@bZ).

Let 33 = 3ftz§ί. Then £ = 5^(S){x Π Zj . Clearly, 93 G Gw^o m / ? c Gws™rm.
Let E=aU(1).Ψe show that the conditions of Proposition 4.7 of [18] hold
for Q = E and G = {Z Π x}. Condition (i) trivially holds. (Now j = Z Π JC). To
see (ii), l e t/G j> (then ω 1 / £ 2) and <7 = 2. Let /? G αC/ and Γ ς ω α b e arbi-
trary. Now/[Γ//?] 6 j « ( ω U Γ ) 1 p^2^q[T/p] G y. Thus (ii) holds. Fur-
ther, y (= ZΠx) is E-w small in Z. Now by Proposition 4.7(11) of [18] (p. 190)
we have rlE:S$^ @b£. Thus, by 21 ̂  93 ̂ -5 ©b£, we have

(14) a 5 6 c ©b£, C = Sg e{£ Π x}.

Next we prove

(15) (Vy<EC)yC\aW*0.

Let g G ̂  G C. Let Z? G W ~ ( 3 U ^ r f . Then A,(£) = £", and thus by The-
orem 1.3.1 of [18], pb\ <&b(E) >» <&b(E). Therefore pb(x Π E) = x C\ E =>
pb{y) =y=>pb°g£y. Thus, by pb o g e aW, we have y Π aW Φ 0.

Now by (14) and (15) (Vy e A) y Π aW Φ 0. Thus r/(αJF) G Λ(8l).
By Claim 9.1 we have rl(aW) G Ism(U,<&b(aW)).
To see that Condition (V) fails, let / = 0 and D = (2 U A*(x)) ~ {/}. Then

D = ω~ 1. Let<7 = <l: /€£>>. Then # G
 DW^and q c Λ G JC. NOW, (V/GΛΓΠ

αWΓ) <7 ί /proves that Condition (V) is not satisfied by 2ί, W, x, and /. •

Proposition 10 Let 21 G Cr5α ίratf Z G ̂ 4. Γ/ze/z conditions (i)-(iii) fo?/ow ̂ rβ

(i)r/ ze//om(a,@bZ)
(ii) rlz G /fo«

(iii) ΔZ = 0.

Proof: Immediate by Theorem 1 and Proposition 2 of [21]. •

Problems 11 Let a > ω be fixed. Let K > β be two infinite cardinals.
(1) Let K > 2\aUβK Is βCs£g c IΛCs£*?
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(2) Let 21 G βCs£8, K > | α | + U (\A\ Π 2'α U / 3 l). Is then 21 subisomorphic to
s o m e . C C * ?

(3) Does there exist a cardinal y > β such that for every cardinal K > y we have

(4) Does there exist a cardinal y > β such that (Vcardinal K > y) (V21 G
βCs™g) [21 is sub-isomorphic to some κCSa8] ?

(5) Consider the logic CZ,£ as introduced on p. 36 of [1] with a variables where
a is a limit ordinal and Rgt C α. What are the exact cardinality conditions
of the upward Lδwenheim-Skolem-Tarski property of CLFΊ For example,
let 21 be a model of CLF with \A\ = β. Assume \t\ < K, and K > \a\+ U
2 | α U / 3 ) . Is there an cL^-elementary extension 33 of 21 with \B\ = KΊ This is
not settled by II.7.12(ii) of [18] because here (Vγ G Rgt) y + ω < α! That
is, the arity of each relation symbol is infinitely smaller than α. E.g. the ele-
ment in the cylindric algebra of 93 corresponding to a relation symbol r G
Dot should be /(/*)-regular (with t{r) + ω < α ) .
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