Notre Dame Journal of Formal Logic Volume 29, Number 4, Fall 1988

Equivalent Versions of a Weak Form of the Axiom of Choice

GARY P. SHANNON

We make the following definition:

Definition Let (Q, \leq) be a quasi-order (i.e., \leq is reflexive and transitive). Two elements x, y of Q are said to be incompatible if there does not exist $z \in Q$ such that $z \leq x$ and $z \leq y$. A subset I of Q is said to be an incompatible set if any two elements of I are incompatible. For each $x \in Q$, let l(x) denote the set of lower bounds of x; and let c(x) denote the set of elements of Q that are compatible with x. "Countable" is used here to mean "countably infinite".

Let $U_{\aleph_0}^f(U_{\aleph_0}^{\aleph_0})$ denote the statement that the union of a countable collection of pairwise disjoint nonempty finite (countable) sets is countable.

Let $AC_{\aleph_0}^j(AC_{\aleph_0}^{\aleph_0})$ denote the statement that there exists a choice function for any countable family of finite (countable) nonempty sets.

Let $ACS_{\aleph_0}^f(ACS_{\aleph_0}^{\aleph_0})$ denote the statement that for any countable family of finite (countable) nonempty sets there exists a countable subfamily for which a choice function exists.

It is known that in ZF, $U_{\aleph_0}^f$ is equivalent to $AC_{\aleph_0}^f$. (Let $\mathbb{C} = \{C_n : n \in \mathbb{N}\}$ be a countable collection of pairwise disjoint nonempty finite sets. Let $|C_n| = m_n$; and, by $AC_{\aleph_0}^f$, choose for each $n \in \mathbb{N}$ a function $f_n : C_n \to m_n \times \{n\}$ such that f_n is 1-1 and onto. Then $\bigcup_{n \in \mathbb{N}} f_n$ is 1-1; $\bigcup_{n \in \mathbb{N}} f_n \begin{bmatrix} \bigcup_{n \in \mathbb{N}} C_n \end{bmatrix}$ is an infinite subset of $\mathbb{N} \times \mathbb{N}$ (which is countable) – and therefore $\bigcup_{n \in \mathbb{N}} C_n$ is countable. Conversely, if $\mathbb{C} = \{C_n : n \in \mathbb{N}\}$ is a countable collection of finite nonempty sets then $\mathfrak{D} = \{C_n \times \{n\} : n \in \mathbb{N}\}$ is a countable collection of pairwise disjoint nonempty finite sets and hence, by $U_{\aleph_0}^f, \bigcup_{n \in \mathbb{N}} (C_n \times \{n\})$ is countable. Therefore there exists a $g: \bigcup_{n \in \mathbb{N}} (C_n \times \{n\}) \to \mathbb{N}$, such that g is 1-1 and onto. A choice

Received October 27, 1986; revised March 30, 1987

function for C is then given by $f(C_n)$ = the element x of C_n such that g(x, n) is the least element of $g[C_n \times \{n\}]$.

It is also known that in $ZF U_{\kappa_0}^{\kappa_0}$ implies $AC_{\kappa_0}^{\kappa_0}$, but it is not known if $AC_{\kappa_0}^{\kappa_0}$ implies $U_{\kappa_0}^{\kappa_0}$ ([7], pp. 203, 324).

 $AC_{\kappa_0}^f$ is also equivalent to König's Infinity Lemma ([5], p. 298; [1], pp. 202, 203), Ramsey's Theorem [6], and a limited version of Tychonoff's Theorem [4]. It is clear that $AC_{\kappa_0}^f$ implies $ACS_{\kappa_0}^f$, and it will be shown that $ACS_{\kappa_0}^f$ implies $AC_{\kappa_0}^f$.

Let $Q_{\aleph_0}(P_{\aleph_0})$ denote the statement that if (Q, \leq) is a countable quasiorder (partial-order) that contains incompatible sets of arbitrarily large finite cardinality then Q contains a countable incompatible set. $(P_{\aleph_0}$ follows from an old result of Erdös and Tarski [2].)

Let $QU_{\kappa_0}^f(QU_{\kappa_0}^{\kappa_0})$ denote the statement that if (Q, \leq) is a quasi-order that contains incompatible sets of arbitrarily large finite cardinality, and if Q can be written as a countable union of finite (countable) sets, then Q contains a countable incompatible set. Let $PU_{\kappa_0}^{f}, PU_{\kappa_0}^{\kappa_0}$ denote the analogous statements for partial orders.

Let $QM_{\kappa_0}^f(QM_{\kappa_0}^{\kappa_0})$ denote the statement that if (Q, \leq) is a quasi-order that contains incompatible sets of arbitrarily large finite cardinality, and if Q can be written as a countable union of finite (countable) sets, then Q contains a maximal countable incompatible set. Let $PM_{\kappa_0}^f, PM_{\kappa_0}^{\kappa_0}$ denote the analogous statements for partial orders.

It will be shown that in ZF, $QU_{\aleph_0}^f$, $PU_{\aleph_0}^f$, $QM_{\aleph_0}^f$, and $PM_{\aleph_0}^f$ are equivalent to each other and to $AC_{\aleph_0}^f$.

Theorem 1 $AC_{\aleph_0}^f$ is a theorem of $ZF \cup \{ACS_{\aleph_0}^f\}$.

Proof: It will be shown that $U_{\aleph_0}^f$ is a theorem of $ZF \cup \{ACS_{\aleph_0}^f\}$.

Let \mathbb{C} be a countable collection of pairwise disjoint nonempty finite sets; then \mathbb{C} can be written as $\mathbb{C} = \{C_n : n \in \mathbb{N}\}$. Each C_n is finite, and the union of a finite collection of finite sets is finite, so for each $n \in \mathbb{N}$ there exists a natural number k_n such that $\left| \bigcup_{i=0}^n C_i \right| = k_n$. Therefore for each $n \in \mathbb{N}$ there exists a 1-1 function from $\bigcup_{i=0}^n C_i$ onto $k_n \times \{n\}$. For each $n \in \mathbb{N}$ there exist finitely many such functions; and therefore, by $ACS_{\aleph_0}^f$, there exists a collection $\{f_{t_n} : n \in \mathbb{N}\}$ such that f_{t_n} is a 1-1 map of $\bigcup_{i=0}^{t_n} C_i$ onto $k_{t_n} \times \{t_n\}$. Let $g_0 = f_{t_0}$. For each $n, n \ge 1$, let g_n denote the restriction of f_{t_n} to $\bigcup_{i=t_{n-1}+1}^{t_n} C_i$. Then g_n is a 1-1 map of $\bigcup_{i=t_{n-1}+1}^{t_n} C_i$ into $k_{t_n} \times \{t_n\}$, and therefore $g = \bigcup_{n \in \mathbb{N}} g_n$ is a 1-1 map of $\bigcup_{n \in \mathbb{N}} C_n$ into $\mathbb{N} \times \mathbb{N}$. Since the g_n 's have pairwise disjoint ranges, $g\left(\bigcup_{n \in \mathbb{N}} C_n\right)$ is a countable $\left(([3], \operatorname{pp.} 79, 81) - \operatorname{since} g\left(\bigcup_{n \in \mathbb{N}} C_n\right)$ is infinite $\right)$ subset of $\mathbb{N} \times \mathbb{N}$. Therefore (since g is 1-1) $\bigcup_{n \in \mathbb{N}} C_n$ is countable, and $U_{\aleph_0}^f$ is a theorem of $ZF \cup \{ACS_{\aleph_0}^f\}$. Thus $AC_{\aleph_0}^f$ is a theorem of $ZF \cup \{ACS_{\aleph_0}^f\}$. (Theorem 1 can also be proved by showing that König's Infinity Lemma is a theorem of $ZF \cup \{ACS_{\aleph_0}^f\}$, but the proof of this is more involved than the proof given above.)

Theorem 2 Q_{\aleph_0} is a theorem of $ZF \cup \{AC_{\aleph_0}^f\}$.

Proof: Assume that (Q, \leq) is a countable quasi-order that contains incompatible sets of arbitrarily large finite cardinality. Let $Q = \{q_n : n \in \mathbb{N}\}$.

Let C be the collection of incompatible subsets, I, of Q such that $|I| \ge 2$ and such that there exists $y \in I$ such that l(y) contains incompatible sets of arbitrarily large finite cardinality.

If $\mathbb{C} = \emptyset$ then let \mathfrak{D} be the collection of all incompatible subsets of Q. If \mathfrak{D} is not countable then Q contains a countable incompatible set. Assume that \mathfrak{D} is countable; then \mathfrak{D} can be written as $\mathfrak{D} = \{D_n : n \in \mathbb{N}\}$. Let g_1 be the least natural number such that D_1 is a proper subset of $D_{g_1} \left(g_1 \text{ exists since } D_1 \text{ is} \right)$ finite and for each $y \in D_1$ there exists a maximal finite incompatible set $I(y) \subseteq I(y)$ (since $\mathbb{C} = \emptyset$). Therefore the largest incompatible subset of $\bigcup_{y \in D_1} c(y)$ has cardinality $\sum_{y \in D_1} |I(y)|$, and hence $Q \neq \bigcup_{y \in D_1} c(y)$. Let m be the least natural number such that $q_m \in Q - \bigcup_{y \in D_1} c(y)$. Then $D_1 \cup \{q_m\} \in \mathfrak{D}$. For each n > 1 define, by induction, g_{n+1} to be the least natural number such that D_{g_n} is a proper subset of $D_{g_{n+1}}$. Then $\bigcup_{n \in \mathbb{N}} D_{g_n} \subseteq Q$ is a countable incompatible set, therefore Q contains a countable incompatible set.

Assume $\mathbb{C} \neq \emptyset$. If \mathbb{C} is not finite and not countable then Q contains a countable incompatible set. Assume that \mathbb{C} is countable (the proof for the case that \mathbb{C} is finite is similar); then \mathbb{C} can be written as $\mathbb{C} = \{I_n : n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, choose (by $AC_{\aleph_0}^f) p_n \in I_n$ such that $l(p_n)$ contains incompatible sets of arbitrarily large finite cardinality; and for each $n \in \mathbb{N}$, let $\mathbb{C}_n = \{I \in \mathbb{C} : I \subseteq l(p_n)\}$. If $\mathbb{C}_n = \emptyset$ for any n, then (by an argument similar to that given above for $\mathbb{C} = \emptyset$) Q contains a countable incompatible set. Therefore assume that $\mathbb{C}_n \neq \emptyset$ for all $n \in \mathbb{N}$. Choose $r_1 \in I_1 - \{p_1\}$ and let $\lambda(1)$ be the least natural number such that $I_{\lambda(1)} \in \mathbb{C}_1$. Choose $r_2 \in I_{\lambda(1)} - \{p_{\lambda(1)}\}$ and let $\lambda(2)$ be the least natural number such that $I_{\lambda(2)} \in \mathbb{C}_{\lambda(1)}$. Assume that r_n is defined $(n \ge 2)$, $r_n \in I_{\lambda(n-1)} - \{p_{\lambda(n-1)}\}$. Let $\lambda(n)$ be the least natural number such that $I_{\lambda(2)} \in \mathbb{C}_{\lambda(1)}$. Assume that r_n is defined $(n \ge 2)$, $r_n \in I_{\lambda(n-1)} - \{p_{\lambda(n-1)}\}$. Let $\lambda(n)$ be the least natural number such that $I_{\lambda(n)} \in \mathbb{C}_{\lambda(n)} - \{p_{\lambda(n)}\}$. By construction, $\ldots \le p_{\lambda(3)} \le p_{\lambda(2)} \le p_{\lambda(1)} \le p_1$, and $r_2 \le p_1$, $r_3 \le p_{\lambda(1)}$, $r_4 \le p_{\lambda(2)}$, \ldots . Thus it follows that for each $m < n \in \mathbb{N}$, n > 0, r_m and r_n are incompatible. Then $\{r_n : n \in \mathbb{N}\}$ is a countable incompatible subset of Q.

Therefore Q_{\aleph_0} is a theorem of $ZF \cup \{AC_{\aleph_0}^f\}$.

It follows from Theorem 2 that $QU_{\aleph_0}^f$ is a theorem of $ZF \cup \{AC_{\aleph_0}^f\}$ (since $AC_{\aleph_0}^f$ implies $U_{\aleph_0}^f$).

Theorem 3 $AC_{\aleph_0}^f$ is a theorem of $ZF \cup \{QU_{\aleph_0}^f\}$.

Proof: To prove $AC_{\aleph_0}^f$ it suffices (by Theorem 1) to prove $ACS_{\aleph_0}^f$.

Let C be a countable family of finite sets. It can be assumed (without loss of generality) that the sets of C are pairwise disjoint. Define \leq on $Q = \bigcup_{A \in \mathcal{C}} A$

by $x \le y$ iff there exists $A \in \mathbb{C}$ such that $x \in A$ and $y \in A$. Then \le is a quasi-order on Q; and two elements u, v are incompatible iff there exist $A, B \in \mathbb{C}, A \neq B$, with $u \in A$ and $v \in B$.

Let $n \in \mathbb{N}$, and let A_1, \ldots, A_n be elements of \mathbb{C} . Choose $x_1 \in A_1, x_2 \in A_1$ $A_2, \ldots, x_n \in A_n$ (this can be done in ZF). Then $\{x_1, \ldots, x_n\}$ is an incompatible subset of Q. Therefore (Q, \leq) contains incompatible sets of arbitrarily large finite cardinality, and hence (by $QU_{\aleph_0}^f$) (Q,\leq) contains a countable incompatible set, I.

Let $\mathfrak{D} = \{A \in \mathfrak{C} : A \cap I \neq \emptyset\}$, and define f on \mathfrak{D} by $f(A) = A \cap I$. Then D is a countable subfamily of C for which a choice function exists.

Therefore $ACS_{\aleph_0}^f$ is a theorem of $ZF \cup \{QU_{\aleph_0}^f\}$ – and hence $AC_{\aleph_0}^f$ is a theorem of $ZF \cup \{QU_{\aleph_0}^J\}$.

Therefore $QU^f_{\aleph_0}$ is equivalent to $AC^f_{\aleph_0}$.

It is clear that Q_{\aleph_0} implies P_{\aleph_0} . The converse is given in the following:

 Q_{\aleph_0} is a theorem of $ZF \cup \{P_{\aleph_0}\}$. Claim 1

Proof: Let (Q, \leq) be a countable quasi-order that has incompatible subsets of arbitrarily large finite cardinality. Then Q can be written as $Q = \{q_n : n \in \mathbb{N}\}$.

For each $n \in \mathbb{N}$, let $A_n = \{q_i \in Q : q_i \le q_n \text{ and } q_n \le q_i\}$, and let $P = \{A_n : q_i \le q_i\}$ $n \in \mathbb{N}$ }. Define \leq on P by $A_i \leq A_j$ iff $q_i \leq q_j$. Then \leq is a partial-order on P.

Since (Q, \leq) has incompatible subsets of arbitrarily large finite cardinality so does (P, \leq) , and hence (by P_{\aleph_0}), P contains a countable incompatible set, I.

Let J be the set of natural numbers, n, such that $I = \{A_n : n \in J\}$ and such that for any $m \in \mathbb{N}$, if m < n then $A_m \neq A_n$.

Then $\{q_i: i \in J\}$ is a countable incompatible subset of Q; and thus Q_{\aleph_0} is a theorem of $ZF \cup \{P_{\aleph_0}\}$.

Note that the statement: "If (R, \leq) is a quasi-order that contains incompatible sets of arbitrarily large finite cardinality, then R contains a countable incompatible set" is not a theorem of $ZF \cup \{AC_{\aleph_0}^J\}$ – since from this statement it follows that any infinite set contains a countable subset (simply define \leq on an infinite set R by $x \le y$ iff x = y) – but this result requires a stronger form of the Axiom of Choice than $AC_{\aleph_0}^{f}$ ([7], pp. 322, 323). It follows from Claim 1 that $PU_{\aleph_0}^{f}$ is equivalent to $QU_{\aleph_0}^{f}$.

In ZF, $QM_{\aleph_0}^f$ is equivalent to $AC_{\aleph_0}^f$. Theorem 4

Proof: $QM_{\aleph_0}^f$ clearly implies $QU_{\aleph_0}^f$, thus $AC_{\aleph_0}^f$ is a theorem of $ZF \cup \{QM_{\aleph_0}^f\}$.

Assume that (Q, \leq) is a quasi-order that contains incompatible sets of arbitrarily large finite cardinality, and that Q can be written as a countable union of finite sets. Then (assuming $AC_{\aleph_0}^f$), Q is countable and hence Q can be written as $Q = \{q_n : n \in \mathbb{N}\}$. By Theorem 2, Q contains a countable incompatible set, I.

If $Q = \bigcup c(x)$ then I is a maximal countable incompatible set.

Suppose that $Q \neq \bigcup_{x \in I} c(x)$. Let d(1) be the least natural number such that $q_{d(1)} \in Q - \bigcup_{x \in I} c(x)$, and let $I_1 = I \cup \{q_{d(1)}\}$. For n > 1 define, by induction, d(n) and I_n as follows: Let d(n) be the least natural number such that

 $q_{d(n)} \in Q - \bigcup_{x \in I_{n-1}} c(x) \left(\text{if } Q \neq \bigcup_{x \in I_{n-1}} c(x) \right) \text{ and let } I_n = I_{n-1} \cup \{q_{d(n)}\}.$ Either $Q = \bigcup_{x \in I_k} c(x) \text{ for some } k \text{ and then } I_k \text{ is a maximal countable incompatible set;}$ or $Q \neq \bigcup_{x \in I_k} c(x)$ for all k and then $\bigcup_{k \in \mathbb{N}} I_k$ is a maximal countable incompatible set; ible set.

Therefore $QM_{\aleph_0}^f$ is a theorem of $ZF \cup \{AC_{\aleph_0}^f\}$.

By an argument similar to that of Claim 1 it follows that $QM_{\aleph_0}^f$ is equivalent to $PM_{\aleph_0}^f$.

A summary of the implications is that in ZF:

Note that all of the arrows except possibly $AC_{\kappa_0}^f \Rightarrow Q_{\kappa_0}$ are reversible. I do not know if in $ZF Q_{\kappa_0}$ is equivalent to $AC_{\kappa_0}^f$.

Some of the ideas for families of finite sets extend to families of countable sets; but some do not, and some of the implications are not known. A summary of the implications is that in *ZF*:

REFERENCES

- [1] Drake, F. R., Set Theory: An Introduction to Large Cardinals, North-Holland, Amsterdam, 1974.
- [2] Erdös, P. and A. Tarski, "On families of mutually exclusive sets," Annals of Mathematics, vol. 44 (1943), pp. 315-329.
- [3] Hrbacek, K. and T. J. Jech, *Introduction to Set Theory*, 2nd Ed., Marcel Dekker, New York, 1984.
- [4] Krom, M. R., "Equivalents of a weak axiom of choice," Notre Dame Journal of Formal Logic, vol. 22 (1981), pp. 283-285.
- [5] Levy, A., Basic Set Theory, Springer-Verlag, Berlin, New York, 1979.
- [6] Lolli, G., "On Ramsey's theorem and the axiom of choice," *Notre Dame Journal of Formal Logic*, vol. 18 (1977), pp. 599-601.
- [7] Moore, G. H., Zermelo's Axiom of Choice, Springer-Verlag, Berlin, New York, 1982.

Department of Mathematics and Statistics California State University, Sacramento Sacramento, California 95819