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Equivalent Versions of a Weak Form

of the Axiom of Choice

GARY P. SHANNON

We make the following definition:

Definition Let (Q,<) be a quasi-order (i.e., < is reflexive and transitive).
Two elements x,y of Q are said to be incompatible if there does not exist z E
Q such that z < x and z < y. A subset / of Q is said to be an incompatible set
if any two elements of / are incompatible. For each x E Q, let l(x) denote the
set of lower bounds of x; and let c(x) denote the set of elements of Q that are
compatible with x. "Countable" is used here to mean "countably infinite".

Let ϋζQ (U*°) denote the statement that the union of a countable collec-
tion of pairwise disjoint nonempty finite (countable) sets is countable.

Let AClo{AC*g) denote the statement that there exists a choice function
for any countable family of finite (countable) nonempty sets.

Let ACS£Q{ACSχ®) denote the statement that for any countable family of
finite (countable) nonempty sets there exists a countable subfamily for which a
choice function exists.

It is known that in ZFf u£0 is equivalent to ACζ0. ( Let β = {Cn\ n E IN}

be a countable collection of pairwise disjoint nonempty finite sets. Let \Cn\ =
mn\ and, by AC£0, choose for each « e N a function fn: Cn-+ mn x {n} such

that/,; is 1-1 and onto. Then (J /„ is 1-1; (J fn\ (J c J is an infinite sub-
ΛGlN nElN L/?GlN J

set of IN x IN (which is countable) — and therefore (J Cn is countable. Con-

versely, if (3 = [Cn: / Ϊ G N ) is a countable collection of finite nonempty sets
then 33 = [Cn x {/?):/?ElN}isa countable collection of pairwise disjoint non-
empty finite sets and hence, by uζQi (J {Cn x \n\) is countable. Therefore

there exists a g: [J (Cn x {n}) -• IN, such that g is 1-1 and onto. A choice
neJN
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function for 6 is then given by f(Cn) = the element x of Cn such that g{x,n)

is the least element of g[Cn x {n}].\

It is also known that in ZF U*° implies AC$°, but it is not known if AC$g
implies tf$> ([7], pp. 203, 324).

ACζQ is also equivalent to Kδnig's Infinity Lemma ([5], p. 298; [1], pp.
202, 203), Ramsey's Theorem [6], and a limited version of Tychonoff's The-
orem [4]. It is clear that AC£0 implies ACS£Q1 and it will be shown that ACSζQ

implies AC£0.
Let Qχo(Pχo) denote the statement that if (Q,<) is a countable quasi-

order (partial-order) that contains incompatible sets of arbitrarily large finite
cardinality then Q contains a countable incompatible set. (PNo follows from an
old result of Erdόs and Tarski [2].)

Let QUζo(QU*£) denote the statement that if (<2,<) is a quasi-order that
contains incompatible sets of arbitrarily large finite cardinality, and if Q can be
written as a countable union of finite (countable) sets, then Q contains a count-
able incompatible set. Let PUχo,PU$g denote the analogous statements for
partial orders.

Let QMζQ{QM*°) denote the statement that if (Q,<) is a quasi-order
that contains incompatible sets of arbitrarily large finite cardinality, and if Q
can be written as a countable union of finite (countable) sets, then Q contains
a maximal countable incompatible set. Let PMχo,PM$g denote the analogous
statements for partial orders.

It will be shown that in ZF, Qϋζ0, PU£0, QhίζQ, and PM{0 are equivalent
to each other and to ACζ0.

Theorem 1 ACζ0 is a theorem ofZFΌ{ ACSζQ}.

Proof: It will be shown that uζQ is a theorem of ZF U {ACS&0}.
Let e be a countable collection of pairwise disjoint nonempty finite sets;

then C can be written as 6 = [Cn: n G N}. Each Cn is finite, and the union
of a finite collection of finite sets is finite, so for each n e IN there exists a

n

natural number kn such that (J Q = kn. Therefore for each n G N there
n

exists a 1-1 function from ( J Q onto kn x {n}. For each n G IN there exist
ι=0 f

finitely many such functions; and therefore, by ACSχQ) there exists a collection

[ft : n G IN) such that/, is a 1-1 map of (J C, onto kt x {tn}. Let g0 = / / 0

For each n,n > 1, let gn denote the restriction of ftn to (J Q . Then gn

is a 1-1 map of (J Cz into ktn X [tn], and therefore g = \J gn is a 1-1

map of (J Cn into IN X IN. Since the gn's have pairwise disjoint ranges,

gl [j Cn) is a countable (([3], pp. 79, 81)-since g( | J Cn) is infinite)

subset of IN x IN.
Therefore (since g is 1-1) (J Cn is countable, and ί/jf0 is a theorem of

nGJN
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ZF U {ΛCSi0}. Thus ACζ0 is a theorem of ZF U {ACS£0}. (Theorem 1 can
also be proved by showing that Kόnig's Infinity Lemma is a theorem of ZF U
[ACSχo)9 but the proof of this is more involved than the proof given above.)

Theorem 2 QK o is a theorem of ZF U {AC{Q}.

Proof: Assume that (Q,<) is a countable quasi-order that contains incompat-
ible sets of arbitrarily large finite cardinality. Let g = ( g Λ : « 6 l N ) .

Let C be the collection of incompatible subsets, /, of Q such that | / | > 2
and such that there exists y El such that l(y) contains incompatible sets of arbi-
trarily large finite cardinality.

If β = 0 then let 3D be the collection of all incompatible subsets of Q. If
3D is not countable then Q contains a countable incompatible set. Assume that
3D is countable; then 3) can be written as 3D = [Dn: n E N}. Let gx be the least

natural number such that Dx is a proper subset of Dgι lgx exists since D{ is

finite and for each y E Dx there exists a maximal finite incompatible set I(y) <Ξ
l(y) (since 6 = 0 ) . Therefore the largest incompatible subset of | J c(y) has

cardinality ][] \I(y)\, and hence Q Φ \J c(y). Let m be the least natural

number such that qmEQ- \j c(y). Then Z)j U [qm] E 3D]. For each n > 1

define, by induction, gn+ι to be the least natural number such that Dgn is a
proper subset of Dgn+ι. Then (J Z)gw <Ξ Q is a countable incompatible set,

therefore Q contains a countable incompatible set.
Assume β =£ 0 . If β is not finite and not countable then Q contains a

countable incompatible set. Assume that (B is countable (the proof for the case
that (B is finite is similar); then C can be written as β = {/„: ΛZ G IN). For each
«G1N, choose (by AC£0) pn E In such that l(pn) contains incompatible sets of
arbitrarily large finite cardinality; and for each n E IN, let Qn = ( / G 6 : / c
l(pn)}. If 6 Λ = 0 for any Λ, then (by an argument similar to that given above
for 6 = 0 ) Q contains a countable incompatible set. Therefore assume that
en Φ 0 for all π G IN. Choose π G Λ - {px} and let λ( l ) be the least natural
number such that / λ ( 1 ) G Gx. Choose r2 G /χ(i) — [p\(\)} and let λ(2) be the
least natural number such that / λ ( 2 ) G G λ ( 1 ) . Assume that rn is defined (Λ > 2),
rn E I\(n-\) — {Pλ(n-i)}' Let λ(n) be the least natural number such that Iλin) G
e λ ( π _ D . Then choose (by ACζQ) rn+ι G / λ ( π ) - {pMn)}. By construction, . . . <
P\(3) ^Pλ(2) ^PMD -P^ andr2<Pur3<pψ)9r4<pM2), ... Thus it follows
that for each m < n G IN, n > 0, rm and rn are incompatible. Then {rΛ: n G IN} is
a countable incompatible subset of ζλ

Therefore Qχ0 is a theorem of ZF U M C ^ } .

It follows from Theorem 2 that QC/jζ, is a theorem of Z F U MCj{0} (since

^Csf0 implies t/jζ,).

Theorem 3 AC£0 is a theorem ofZFU{QU£0}.

Proof: To prove AC£0 it suffices (by Theorem 1) to prove ACS(0.
Let β be a countable family of finite sets. It can be assumed (without loss

of generality) that the sets of β are pair wise disjoint. Define < on Q = (J A
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by x < y iff there exists A E 6 such that x E yl and yGA. Then < is a quasi-order
on Q; and two elements u, v are incompatible iff there exist A,B E &,AΦB, with
w E 4̂ and J ; E 5 .

Let # E IN, and let Au... ,̂ 4Λ be elements of β. Choose x{ G Au x2E
A2,... ,xn ^ An (this can be done in ZF). Then {jcl5. .. ,xn] is an incompati-
ble subset of Q. Therefore (ζ>,<) contains incompatible sets of arbitrarily large
finite cardinality, and hence (by QUζ0) (Q,<) contains a countable incompat-
ible set, /.

Let 3D = [A ee:A ΠIΦ0], and define / o n 33 by f(A) = A Γ) I. Then
3D is a countable subfamily of C for which a choice function exists.

Therefore ACSζQ is a theorem of ZF U {βt/κj ~~ a n d h e n c e ^ c κ 0

 i s a

theorem of ZPU (βt/iίj
Therefore QϋζQ is equivalent to 4̂Cjf0.

It is clear that Qχ0 implies PK o. The converse is given in the following:

Claim 1 Q*o is a theorem o/ZFU{ PKo}.

Proof: Let (ζ>,<) be a countable quasi-order that has incompatible subsets of
arbitrarily large finite cardinality. Then Q can be written as Q = [qn: n E IN}.

For each « e N , let An = {#/ E Q: <7, < <?„ and ^ < <7Z), and let P - [An:
n E IN). Define < on P by 4̂f < Aj iff ^ < ^7. Then < is a partial-order on P.

Since (Q,<) has incompatible subsets of arbitrarily large finite cardinal-
ity so does (P,^), and hence (by Pχ0), P contains a countable incompatible
set, /.

Let / be the set of natural numbers, n, such that / = {An: nG J] and such
that for any m E IN, if m < n then Am Φ An.

Then {#,: / E /) is a countable incompatible subset of Q; and thus Qχ0 is
a theorem of ZFU {PKo}.

Note that the statement: "If (/?,<) is a quasi-order that contains incom-
patible sets of arbitrarily large finite cardinality, then R contains a countable
incompatible set" is not a theorem of ZF U [AC£Q] —since from this statement
it follows that any infinite set contains a countable subset (simply define < on
an infinite set R by x < y iff x = y) — but this result requires a stronger form of
the Axiom of Choice than ACζQ ([7], pp. 322, 323).

It follows from Claim 1 that PUl0 is equivalent to QUlQ.

Theorem 4 In ZF, QMi0 is equivalent to ACζ0.

Proof: QMζ0 clearly implies QUζQ, thus AC£0 is a theorem of ZF U { QM£O].
Assume that ( β < ) is a quasi-order that contains incompatible sets of arbi-

trarily large finite cardinality, and that Q can be written as a countable union of
finite sets. Then (assuming ACζ0), Q is countable and hence Q can be written
as Q = {qn: n E IN}. By Theorem 2, Q contains a countable incompatible set, /.

If Q = U c ( x ) ^ e n ^ i s a maximal countable incompatible set.
XGI

Suppose that Q Φ (J c(x). Let ύf(l) be the least natural number such

that qd{X) E Q - (J c(x), and let ^ = / U {g^i)}. For « > 1 define, by in-
XGI

duction, d{n) and In as follows: Let d{n) be the least natural number such that
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ί r f ( Λ ) e δ - U c(x)[\ϊQψ U c{x)\ and let /„ = /„_! U[qd{n)}. Either

Q = (J c(x) for some /: and then Ik is a maximal countable incompatible set;
xeik

oτ Q Φ (J c(x) for all k and then (J /^ is a maximal countable incompat-
xGlk A Γ G N

ible set.
Therefore QMζQ is a theorem of ZF U M Q f j

By an argument similar to that of Claim 1 it follows that QM^Q is equiv-
alent to PMl0.

A summary of the implications is that in ZF:

PUί0 ~ QU{0 ~ AC{0 « QMζQ ** PMζ0

si & t %
ACS'0=> Uio ρ K o ̂ P K o .

Note that all of the arrows except possibly ACζQ => Qχ0 are reversible. I
do not know if in ZF Qχ0 is equivalent to AC{0.

Some of the ideas for families of finite sets extend to families of countable
sets; but some do not, and some of the implications are not known. A summary
of the implications is that in ZF:

\l * It ^
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