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Number-Theoretic Set Theories

PAUL STRAUSS*

In Section 1 we shall describe a system, WTN, which is a natural extension
of pure number theory, and where all individual variables range over the nat-
ural numbers. This system avoids Gόdel constructions of undecidable sentences.
In Section 2 we prove some elementary theorems in WTN. In Section 3 we con-
sider ordinal numbers, and also indicate a proof of the axiom of choice. In
Section 4 we consider cardinal numbers, in particular we show that all sets are
countable in WTN. In Section 5 we consider real numbers. Here we discuss the
problem of doing Lebesgue measure theory in WTN. In Section 5 we also con-
sider a theorem related to Herbrand's Theorem. In Section 6 we consider related
systems (this section can be read right after Section 2).

The system WTN was first announced in [7], and has certain similarities
with [2], [12], and [13].

/ The system WTN Let PN be classical pure number theory, i.e., Peano
arithmetic. For definiteness, we consider it formalized as in [4], p. 82, but for
simplicity we consider ~ for negation, D for implication, and (z) for univer-
sal quantification as the only primitive logical connectives (cf. [4], p. 406,
Ex. 2). Furthermore, we identify the symbols of the system and strings of
symbols with their Gόdel numbers according to a customary assignment. We use
the logical notation of [5], in particular the dot notation. And we shall use
Xx, ΛΓ2, . . . as the individual variables. We sometimes use x, y for xx, x2i respec-
tively. We use z, w, w, υ, p, q, r, s, t, c, d, with or without subscripts, as
meta-variables ranging over the individual variables of our system. We use α and
b as terms.

We identify natural numbers with nonnegative integers, although it is of
some interest to consider them identified with positive integers instead, partic-
ularly in our treatment of real numbers (cf. Section 5), but we shall not do so
here.

There is a primitive recursive function v such that if m is a natural num-
ber then v(m) is the numeral of m (hence v(m) is also a natural number). We
sometimes write 0, 1 , . . . , m for v(0), v(l), . . . , v(m), respectively.
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If/is a (general) recursive function, then it is numeralwise representable
in PN (cf. [4], pp. 200, 295); i.e., there exists a formula P{uu..., uk, w)
such that: If / ( m b . . . , mk) = n, then \-P{mu . . . , mr, n) where h- stands for
provability in PN; and also, we have \-(El w)P{mu..., mk, w). We sup-
pose that there is an effective procedure for constructing a unique such
formula P(u{, . . . ,uk, w) when given a recursive/. That is, we assume given
a recursive map M such that, if e is the Gόdel number of /, then M(e) =
[P(uu,...,uk, w)].

Then, for any formula F(v), we write F{f{ux,..., uk)) for (Ez) P(uΪ9

. . . , uk, z) F(z) where z is free for w in P(u{,..., uk, w) and free for v in
F(ι>). When more than one function is represented in a formula, we suppose an
effective procedure for eliminating them one at a time (see [4], p. 407).

We adjoin to PJVthe primitive symbols Tλ, T2,.. .(or more precisely, 7],
T2,.. .are new distinct positive integers of our formal system). If a is a term,
then we stipulate that Tn(a) is a formula. We say that the degree of a formula
A is n, if Tn occurs in A but no Tm occurs for m > n. If no Tn occurs in A,
we say that its degree is 0. We now adjoin the following "truth axioms" or
"Γ-axioms" which are influenced by [10]:

If A is a sentence (i.e., closed formula) of degree <n, then Tn+Ϊ(A) =A
is an axiom. We call this extended system 77V.

The system 77V seems to require an ω-rule in order to fully utilize the
Γ-axioms. The author has tried to define such a rule in a manner which is as
close to giving a formal system as possible, and which is relatively easy to apply.
Other possibilities also present themselves, but the following (viz. rule W,
considered in [6]) appears to be the most natural to use. When rule Wis added
to TN, we get the system WTN which we shall define inductively.

We shall assume that proofs in TN are in tree form and arithmetized in the
manner of [4], We also use the recursive function notation of [4]. If A is a
formula of 77V, we write:

<5>lo(A,k) for "A: is a proof of A in 77V, hence (k)0 = A".

(Pζn+iiAtk) for u(P^n{A,k)\ or there exists a formula C and natural
numbers / and./ such that (P^(C,/) and (PfaiCDAJ) and k = 2^ 3'" 5Λ
or there exists a natural number e and formula B{u) such that for every
m, <?tn(B{m), {e}(m)) and A is (u)B(u) with * = 2 i 4 3"\

The last disjunct above with {e}(m) in it, we call rule W. We say that A
is provable in WTN, if there exists a k and n such that (?%n(A,k). The fact that
WTN avoids Godel constructions of undecidable sentences is due to rule W.

Observe that instead of having 77V as our base system, we can eliminate
rule 9 of [4], (p. 82) which states: from CDA(U) where u is not free in C, infer
CD (u)A(u). And we can also eliminate the axiom schema of mathematical
induction. Both of these postulates can be proved using rule W(cϊ. [4], p. 406,
Ex. 2).

Observe that we can only use rule W a finite number of times in WTN, but
this is all we apparently need in our developments. In [6] Shoenfield apparently
allows a transfinite number of uses of rule W. Specifically, if a is a Kleene con-
structive ordinal notation, one can easily define (?ζa(A,k) and hence the sys-
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tern W*TN. If we allow Ta to be a primitive symbol and add the obvious
Γ-axioms, we get the system W*T*N.

For k > 1, there exists a recursive function σk such that σk(niι9..., mk, n)
is the result of simultaneously substituting mx for x{,..., mk for xk in n*, where
n* is an effectively chosen alphabetic variant of n, so that for every mh ntj is
free for xt in n*.

For £ > 1 , write Sί+ifo , . . . , * * , 6) for 7;+1(σ*(i/(tfi),..., v(ak), b)).
We usually omit the superscript k, and for k > 1, we write a semicolon before
6 rather than a comma. If A??!,..., mk are natural numbers and A is a formula
of degree <AZ, then SΛ+i(/Wi,..., mk; A) states that the ordered £-tuple
{mu . . . , m^) satisfies the predicate expressed in our system by A. This is the
crucial notion of our theory! Using it, we see that set-theoretic notions can be
expressed in our system WTN, which is a natural extension of pure number
theory. In particular, Sn+ι(x, y) is interpreted as xGy.

Define θ(m,n) = [(x) .m = n]. We write En+Ϊ(a,b) for Tn+Ϊ(θ(a,b)). If
A and B are formulas of degree <n whose only free variable is x (i.e., X\), then
En+\(A,B) states that the "sets" A and B have the same members. Observe
our procedure of choosing subscripts so that the degree of a formula is at least
equal to the largest subscript occurring in it.

We use the turnstile, H-, for provability in WTN.
Using the notion of degree, we are prevented from defining things by means

of a vicious circle, or by impredicative definitions (cf. [4], p. 42; [3], p. 37,
Def. 2; and [13]). In other words, we are able to assert truths only over things
that have been (or could have been) defined previously.

As an elementary illustration, let us consider RusselPs paradox. Write A for
~Sπ + 1(*,x). Then we get \-Sn+2(A,A) = Tn+2(σ{v(A), A) = Tn+2(σ(A9A) »
—Sn+\(A9 A) which is not contradictory. Observe that the second equivalence
above requires us to first establish \-x = yD . Tn+ι(x) = Tn+Ϊ(y) which is our
first theorem of Section 2 (cf. [4], p. 408).

2 Some elementary theorems

τ i hx = j D . rπ + 1(x) = τn+1(y).

Proof: We prove this by two uses of rule W. First, let us choose a particular
natural number m, and concentrate on establishing \-x = m D . Tn+χ(x) Ξ=
Tn+ι(m) (which we abbreviate as Bm). Next, we wish to exhibit a recursive
function fm such that for every /, fm(i) is a proof in 77V of / = m D . Tn+x (/) Ξ=
Tn+ι(m) (which we abbreviate as Bmi). The proofs of Bmi are constructed in
essentially two different manners, depending on whether / = m or not. If / = m,
we first construct a proof of Tn+X(i) = Tn+ι(m), and then of Bmi by the
propositional calculus. If / Φ m, we first construct a proof of / Φ m using the
two Peano axioms x' =y' Dx = y and x' Φ 0 (cf. [4], p. 82). We then prove
Bmi using the propositional calculus. Hence we've indicated how to construct
fm. Furthermore, this/ w has been effectively given, i.e., we can construct a
Gόdel number em of fm. Now employ rule Wto obtain (x)Bm. Now these em

9s
can be effectively enumerated. So, use rule W again to obtain our theorem.

Rule W was used differently in the proof of Tl than in the proofs of
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theorems to follow. In all other cases, rule FT is used in conjunction with the
truth axioms.

Let φι

n be a recursive function that enumerates all formulas A of WTN
such that the degree of A is <Λ, and for every j > /', Xj does not occur free in
A. Hence φ\ enumerates the sets of degree <Λ, and φι

n enumerates the /-ary
relations of degree <«. We write 'xf for φ{,(*/) We also write imn for <jSn(m)
and ιmn for φι

n{m). For / = 1, we usually omit the superscript /.

T2.1 \-En+x{x\xn).
T2.2 ^En+ι(x",y") DEn+ι(y",x»).

T2.3 y-En+ι(x",y")En+ι(y",zn) D En+ι(x",zn).

Proof of T2.1: We need to construct a recursive function /such that for every
m, f(m) is a proof of J£'Λ + 1(φπ(m), φn(m)). For each ra, first construct a
proof of (x). φn(m) = φΛ(m). Then, using the relevant truth axiom, Tl, and
the fact that θ and φn are recursive, we construct the desired /. Finally, use
rule W.

The proofs of T2.2 and T2.3, although a little longer, are also easily
established.

T3 M « i , , uk).Sn+ι(uu. ..,uk; φk(m)) = σ(uu. . . , « * ; φk

n{m)).

Proof: Sn+ι(iu . . . , ik\ φk{m)) = T + ^ σ Q Ό Ί ) , > Aik)\ Φn(m))) =
Tn+ι(σ(v(iι)9. , ., v{ik)\ φk

n(m))) = σ(iu. . . Ak\ Φk

n(m)) and use rule W k
times.

T4 If A and B are in the range ofφn, then

\-En+ι(A,B). EE . (x). Sn+ι(x9A) Ξ Sn+ι(x,B) .

PAΌO/: Use T3.

The usual Boolean operations on sets and other operations such as the
power set are easily defined in WTN. We shall restrict our attention to the inter-
section of two sets. Let & be the recursive function such that &(ij) = [i&j].
Then we have:

T5 ^(u):Sn+l(u,&(vn,wn))^.Sn+l(u,vn)&Sn+l(u,wn).

Proof: Use rule W twice.

For k > 1, write Extk

+2(a) for (uu...9uk, vx...9vk): En+ι(un

u vn

{).
....En+ι(uZ9υft.Sn+2{un

u...9ub a).DSn+2(vn

u...9vg; a). F o r * = l , we
omit the superscript k. An a for which Extk

+2(a) satisfies the axiom ofexten-
sionality. In Sections 3, 4, and 5 we have attempted to observe the axiom of
extensionality where feasible, hence our theory is essentially an extensional
theory. But, by ignoring the axiom of extensionality in our developments in
WTN, one would obtain an intensional theory which might also be of interest.
We shall not consider such a theory, however.

3 Ordinal numbers Let A be a formula in the range of φ%+\, i.e., a
binary relation. We often wish to consider the field of A. We now construct a
recursive function a such that a(A) is construed to be the set corresponding to
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the field of A. Hence an+ι(m) = [(Eu)σ(x,un; m) v(Eu)σ(un,x; m)]. When
it is understood by context which α n + 1 is being used, we usually omit the
subscript n + 1.

We write

Conn+2(a) for (Ez)a = 2zn+Ϊ .(u,v):Sn+2(u\a(a))Sn+2(vn,a(a)).
D.Sn+2(u",vn;a)vSn+2(v",u";a) .

In the above, a refers to an+i since the members of α(α) are construed to
have degree <«. Conn+2(a) states that the relation a is connected.

We now define the notion of a well-ordered relation:

Worn+2(a) for Conn+2(a):. (u) :.Extn+2(un+ί). (Ev).
Sn+2(vn,un+λ)Sn+2(υn,a(a)): D : (Ev) :Sn+2(vn,un+ι)
Sn+2(vn,a(a)) .(w) .Sn+2(w",un+ί)Sn+2(w",v"; a)DEn+ι(v",w") .

We now define the notion of ordinal similarity (or ordinal equivalence).
The definition below may look rather formidable, but really is rather easy to
read. The first conjunct states that V + 1 is extensional, the next two state that
2r"+1 is 1 - 1, the next two after that state that 2r"+i is onto, and the last two
state that 2rn+2 is order preserving. Now the definition:

OEn+2(a,b) for (Er) ::Ext2

+2(
2r"+>): (t,u,v).

Sn+2(tn,u"; 2r"+ϊ)Sn+2(t",v"; V + 1 ) o E n + ι ( u " , v " ) .
Sn+2(t",v"; 2rn+ι)Sn+2(un,v"; V + 1 ) DE n + ι (t",u") : .
(u):Sn+2(u",a(a)). D . (Ev).Sn+2(v",a(b))
Sn+2(u",v"; 2r"+i):. (u) :Sn+2(u\a(b)). D . (Ev).
Sn+2(v", a(a))Sn+2(v", u"; V + 1 ) : . (u, v):
Sn+2(un, v";a).D. (Es, t). Sn+2(s\tn; b)
Sn+2(un,sn; 2r"+ι)Sn+2(vn,t"; V + 1 ) : .
(u, v): Sn+2(un, v";b).D. (Es, t). Sn+2(s",t"; a)

n+2\s ,u , r )bn+2\t ,v , r ) .

It is not too difficult to establish that OEn+2(x9y) is an equivalence rela-
tion even though the proof is rather long.

We now wish to define the notion of an ordinal number as an equivalence
class of OEn+2(x,y) which has a well-ordered representative. So we write

Orpn+3(a,b) for Worn+2(b). (w). Sn+3(w,a) s OEn+2(b,w) .

Read as "b ordinally represents a".

Ordn+3(a) for (Ez) .Ext^2(
2zn+{). OrPn+3(a,2zn+ι) .

Read as "a is an ordinal number".

Let κn+ι(m,k) = [m.σ{y,k\ m). — En+{(y9k)]. If m is a relation and
kG a(m), then κn+ι(m,k) is the initial segment of m determined by k.

There appears to be no difficulty in establishing the basic theorems con-
cerning Worn+2(a), e.g.,

T6 V-Worn+2{
2rn+ι) .Extϊ+2(

2r"+ι): D : (u9v). Sn+2(u",v"; V*+1)
Sn+2(v",un; 2r"+ι)DEn+ι(u\v").
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We shall consider one nontrivial and basic theorem. It is the well-known
theorem that states: A subset of an initial segment of a well-ordered set is not
ordinally equivalent to that set. Translated into WTN9 we have:

T7 \-Worn+2(
2yn+ι) .Ext2

n+2{
2yn^) .Sn+2{w\a{2yn^)).

(uiv).Sn+2(u^v";2zn+ι)DSn+2(u",v";κn+ι(
2yn+\wn)):

D : ~ O £ Π + 2 ( V + 1 , V + 1 ) .

For the proof of T7 and elsewhere we need the following functions:
ξ(m,n) =mn = m exp n, ξ{m9n) = {m)n9 and τr(«) -pn (cf. [4], pp. 222 and
230). T7 is the analogue of Theorem XII. 2.1 of [5], p. 459.

Proof: The crux of the following proof is the variable c. We have, on one hand,
an infinite strictly descending sequence (c)0, (c)u..., of elements of 2yn+ι

9

where (c)0 = w", or, more precisely, (c)0 = kn in preparation to rule W. But
on the other hand, since 2yn+ι is well-ordered, this sequence must have a least
element, hence a contradiction, which proves our theorem. Observe that/below
enumerates this descending sequence. A rigorous proof of T7, however, is not
easy, and now follows:

As we've said, we prove T7 by contradiction. Write F(y9 z, w, r) for the
conjunction of the antecedent of T7 with OEn+2(

2yn+1,2zn+ι) except that in
the latter factor, "(Er)" is removed. We assume F(j, j9 k9 m) (in preparation
to four applications of rule W). Write G(c, v)[k9 m, ϊ] for f(c,0) = kn:. (u):
u<υD. σ(f(c, u), f(c, u')\ 2mn+ι)σ{ξ(c9 u'), a(2in+ι)). {Ed). f(c, u') = d\
We now establish a lemma:

L F ( i J , k , m ) f- ( c , v ) : G ( c , υ ) [ k , m J ] D . ( u ) . u < v D .

σtf(c9u'),l(c,u); 2in+ι). ^£ / f + 1 (f(c,w / ), f(c,«)).

L Proof: By induction on w. Assume F(j, j, k, m), G(c9 v)[k, m, /]. Basis:
And assume 0<v. So σ(];(c, 0), f(c, l ) ; ~ 2 m n + 1 ) . And since Sn+2(£(c, 0),
«(2iw + 1))> we get (using rule C of [5] on ty i.e., existential specialization)
Sn+2(tn, a(2jn+l))Sn+2(£(c, 0), /Λ; 2 m Λ + 1 ) from the definition of
OEn+2(

2Γ+ι

9

 2jn+ι). So En+l{jXc, 1), / π ) . We now wish to establish Sn+2(tn

9

kn\ 2in+ι). ~En+ι(tn, kn). We do this by rule Wonp and later on q (we use
p and <7 to range over natural numbers only for a short while). We have

Sn+2(Pn,Ά(2Jn+1)) Ξ Tn+2(σ(r(pn)9 QL(2Γ+1))) . Ei .
(Eu)σ(pn,un; 2jn+ι) v (^ι/)σ(wΛ,£Λ; 2jn+ι). s .
( ^ ) S Λ + 2 ( p Λ , W

Λ ; 2j"+ι) v ( ^ ) S Λ + 2 ( « Λ , p Λ ; 2 y- + 1 ) . D .
( ^ ) 5 Λ + 2 ( ^ , w Λ ; i 5 l l +i( 2/Λ + 1,4' 1) v (Eu)Sn+2(u»,p"; κn+ι(

2Ln+ι,kn)) .

Each disjunct gives the desired result, so let us consider just the first one.
So assume Sn+2(pn,Qn; κn+ι(2in+ι,kn)) (in preparation for rule W on q). So
Tn+2(σ(E(p"), v{qn)\ κn+ι(

2Γ+ι, k"))). So σ(p"9 q"; κn+ι(
2in+\ kn)). So

σ(p\ qn ?in+x). σ(q", k"; 2in+x). ~En+ι(q\ kn). Since Worn+2(
2Γ+ι), we

get by transitivity σ(pn

9 kn\ 2 i Λ + 1 ) . Now if En+ι(pn

9 kn)9 then σ(qn

9 pn\
2in+ι). Hence £' Λ + 1 (2 Λ , pn) by antisymmetry, so En+ι(qn

9 kn) which con-
tradicts. Hence ~En+ι(p"9 q"). So we've established Sn+2(pn

9 a(2jn+ι)) D .
Sn+2(pn

9 kn\ 2in+ι) ~En+ι(pn

9 kn). The other disjunct gives the same result.
Rule W and the fact that Sn+2(tn

9 a(2jn+ι)) give Sn+2(tn

9 kn\ 2in+ι)



NUMBER-THEORETIC SET THEORIES 87

~En+ι(tn, k"). Since Ext2

+2(
2in+ι) .En+ιtf(c9 Q), kn)9 we get S Λ + 2 (f(c, I ) ,

Γ(c, Q); 2 Γ + 1 ) .~£ Λ + i ( j ; (c, i ) , f(c, 0))
Now for the induction hypothesis: And assume uf < v. Induction hypothe-

sis gives S π + 2 (£(c, «'), f(c, w); 2 i # I + 1 ) . ~ £ Π + I ( r ( c , «'), f(c, «)) . So (Es9 t).
S Λ + 2 (J Λ , tn\ 2jn+ι) Sn+2tf(c, u')9 s"; 2m"+ι) SΛ + 2(Γ(c, i/), f; 2 m " + 1 ) . But
Sn+ 2(f(c, u')9 f(c, a" ) ; 2m"+ι) SΛ + 2(£(c, i/), f(c, «'); V + 1 ) . So £ Λ + I ( f ( c ,
w"), J Λ ) £ I I + I ( r ( c > u')9 ' " ) • So S Λ + 2 (f(c, w-'), f(c, w'); 2 i Λ + 1 ) . Now suppose
En+ι(ζ(c9 u\ f(c, « ')) . Since Ext2

+2(
2mn+ι), we get S Λ + 2 (f(c, w), f(c, w");

2 m A 7 + Γ ) . Hence £ Λ + i ( f ( c , w')» Γ(c» " ) ) which contradicts. Hence ~En+ι(ζ(c,
u"), f(c, wr)) This proves L.

Now let

f(k,mJ) = l(Ec9v):.G(civ)[kimJ]:(u).£(c9v' + u)=O:En+l([(c9v)9x)].

We wish to u s e / ( £ , m, i) as a w Λ + 1 in Worn+2(
2Γ+ι). First observe that

Extn+2(f(k, m,i)). This follows easily from h-G(c, v ) [£, m, /] D . (Ed).ξ(c,
v) = dn which is easily proved by induction on v.

Since h-G(ξ(2, £ " ) , 0)[A:, m, / ] , we get \-σ(kn

9 f(k, m, / ) ) , hence
>-Sn+2(kn,f(k, m9i)). Also Sn+2(kn, a(2in+ι)) from F ( i , y, k9 m). Hence
( β ) : S ι , + 2 ( ί Λ , / ( * , ffl, i)).Sn+2(tn

9 a(2in+ι)).(s).Sn+2(s",f(k, m9 /))
SΛ+2(5 / I, ίΛ; 2 I Λ + 1 ) 3 £ n + i ( ί π , 57 1). Remove " ( £ ί ) " above, by rule C. Since
i-S Λ +2(ί Λ , / (&, w> 1)) Ξ σ ( ί Λ , /(A:, m, / ) ) , we get σ(t\ f(k9 m9 / ) ) . Also,
S Λ + 2 ( ί Λ , α ( 2 ι Λ + 1 ) ) gives (Eg) .Sn+2(qn

9 *(2j"+ι)) .Sn+2(tn

9 qn\ V + 1 ) . Now
use rule C o n (7. Write b for c . ξ(τr(ι/), <?"). So we get G(6, υ')[k9 m, /] . This
follows from \-(u):u<v'D f(c, w) = f(6, w) and h-(c, y) : (u). f(c, y' + «) =
0. D . ( ^ ) . f(Z?, υ') = qn. These two statements can be proved in PN by for-
malizing GόdePs β-function (cf. [4], p. 244, Remark 1) or, from the numeral-
wise representability of f, ξ, TΓ, we simply use rule W.

Now L gives S Λ + 2 (f(6, i;'), Γ(ft, v); 2 i w + 1 ) ^ + i ( Π ^ ^ ) , f(ft, v))
But En+ι(ζ(b, v)9 tn).l(b, v')=qn, by definition of/, last conjunct. So
Sn+2(q", tn\ 2in+ι), so £T

Λ+1((7/7, tn) which contradicts. Hence we've estab-
lished T7 for i, y, ^, m in place of y9 z, w, A* respectively. Now use rule W
four times.

The axiom of choice and the well-ordering of the universe appear to be
provable in WTN, as we indicate below.

Write

VOn+ι for (Eu) :En+ι(u"9 x). (υ).En+ι(υn

9 γ)Du<v .

Vι

n for {Eu).ιun =x .

For / = 1, we usually omit the superscript.
Observe, in passing, that if Kis x — x9 we get Sn+γ(V9 V), so the axiom of

foundation can be refuted in WTN.
By means of KO Λ + 1 , we may well order Vn. We also use VOn+x for a

proof of the axiom of choice, which we now state:

T8 ^(x):Sn+3(x"+\zn+2). D .Extn+2(x"+ι). (Ey).
Sn+2(y\xn+ι).: D :. (Er):. (u9υ9w) .Sn+3(u9v

n; 2rn+2)
Sn+3(u9w"; 2r«+2)DEn+[(v",w"): (x):Sn+3(xn+ι

9z"+2) D .
( £ » . S l f + 3 ( J f I + 1 , - μ l l ; 2 r Λ + 2 ) S Λ + 2 ( ^ Λ , x I I + 1 ) .
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To prove this, we write R for Sn+2(y, x). (w). Sn+2(w"9 x) D VOn+ι(y9 wn).
Then R is the desired "choice function".

4 Cardinal numbers We leave it to the reader to define the notion of cardi-
nal equivalence, CEn+2(a9b). It is similar to the definition of OEn+2(a9b) but
shorter.

It is not too difficult to establish that CEn+2(x9y) is an equivalence
relation.

We now wish to define a cardinal number as an equivalence class of
CEn+2(x,y). So we write

Crpn+3(a9b) for (w) .Sn+3(w9a) - CEn+2(b9 w) .

Read as "b cardinally represents a".

Cardn+3{a) for (Ez) .Extn+2(zn+ι). Crpn+3(a9z
n+ι) .

Read as "a is a cardinal number".

We now define the countable cardinals in such a way that they are exten-
sional:

Let ψ(k) = [x' = k], yn+ι(0)=Ψ(0), yn+ι{k+ 1) =

[ 7 I M - I ( * ) V £ Π + I ( * , £ ( * ) ] , and yn+2(k) = CEn+2(x,ln+ι(t))

We see that yn+\(k) is an extensional set with k distinct members,
and that *-Cαrdn+3(y_n+2(k)). We easily get such theorems as \-x Ψ y D
~En+ι(±(x), φ(y)), and v-x Φ y D ~CEn+2(yn+ι(x), yn+ι(y)). We write

Nn+ι for (Ez)En+1(x9ψ(z))

and

ώn+2 for CEn+2(x, Nn+ι) .

We easily get h~Cαrdn+3(ώn+2).

We now prove that all sets are countable:

T9 \-(x): (Ez)CEn+2(x"+\yn+ι(z)) v C E Λ + 2 ( ^ + 1

t JVΛ+1).

Proof: We consider two cases.

Cα5β 1. ( ^ w ) ( w ) : S Λ + 2 ( w Λ , x Λ + 1 ) D . (Ev) .En+ι(un, vn).v < w.Sn+2(vn

9

xn+ι). We abbreviate this formula to (Ew)A(w). Note that x also occurs free
in A(w).

We shall prove:

(1) (w, x) :A(w) D (Ez)CEn+2(xn, yn+ι(z)) by induction on w. Basis:

w = 0. Then ,4(0) yields that xn+ι is empty, hence CEn+2(xn+1

9

ϊπ + i(0))

Now assume induction hypothesis and A{w'). If ^4(w), then there is no
trouble, so assume ~A(w)9 i.e.,

(2) (Eu):.Sn+2(u"9x
n+ι):(v): En+ι{u\υn) .Sn+2(vn

9x
n+ι). D w< y.
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There is a least such u that satisfies (2). By rule C, take p for that u. We get
w<p. But A(w') yieldsp< w'. Hencep = w. Let g(j9 k) = [j. ~En+x(x, k)].
Assume Sn+2(un

9 g(xn+ι, wn)). Then (£y) . ^ ( M 1 1 , υn).v<w. Sn+2(vn

9

g(xn+ι, wn)) since A(w'), v<w\ and ~2?/I+1(i;'1, w"), where we use (1)
with g(xn+ι, wn) in place of xn+ι. So, by induction hypothesis, we get
(Ez)CEn+2(g(xn+ι

9 w"), χn+ι(z)). Use rule C on z and r where V + 1 is the
equivalence relation involved. Let Λ(/, y, k) = [/ v . ^ + 1 ( x , j)En+ι(y9 k)].
Then C£>

/H_2(jt/I+1, 7/?+iU')) where the equivalence relation involved is h(2rn+{,
wn, ±(z)). Hence Case 1 yields the first disjunct of T9.

Case 2. The negation of Case 1, i.e.,

(3) (w)(Eu):.Sn+2(u^xn+i):(v):En+ι(u^vn).Sn+2(v\xn+ι).Dw^v.

This proof is fashioned after the one for T7. In this case c gives a 1-1 cor-
respondence between xn+ι and N π + 1 . This correspondence has the form

c = 22a°3° 3 2 " 1 3 1 p2ak ik

where the α/ belong to xn+ι. We have ao<a{ < . . . < ak. This 1-1 corre-
spondence is given explicitly by/below. Now for the formal proof: In prep-
aration for rule W, replace x by m. For the 2rn+ι in the definition of
CEn+2(mn+\Nn+ι),wetake:

/(m) = [(^c,ί;):::σ(φΛ(f(f(c,0),0)),m/7+1).(t/).w<f(f(c,0),0)3
~σ(un

9 m
n+ι) :f(f(c,O),l) = ψ(0)::. (u):: u < v D :.

mc,u')Λ)=±(u'):(t):t<ϊ(ζ(c,u'),O).σ{t",m"+ι).D.
(Es) .5 < u' .En+ι(φn(ϊ(ϊ(c,s),0)), tn):. (s) :s < W D
~En+ι(φn(ζ{ζ{c,s),Q))9φn{ζ{t(c,u'),O))):.σfa^
^En+ι(x9φn(ί(ac9v)9O))).En+ι(y9nnc9υ)9l))].

Observe that / has degree n + 1.
We first show that / is 1 - 1:
We obtain \-Ext2

+2(f(m)) since f(£(c, v), I) = \j^(v). Now assume
Sn+2(PΪ, Qu Am)) and S~+2(p2, qξ; £{m)). Use rule C o n / ( m ) with x, ^
first replaced by/?f, <7f, and then bypf* Qi obtaining cu vu c2, v2. We now
prove

(4) vx < υ2 D : (u): u < υx D.£(t(cl9 u)9 0) = f(f(c 2, u)9 0) . f ( f (c l f

w), I ) = f(f(c 2, w), i ) by induction on w, assuming υx < y2.

Basis: w = 0 is easy. Now assume induction hypothesis and u' < υx. Assume
mcu u')9 0) < £(ϊ(c2, u')9 0). So (Es).s < uf.En+x{φn{ζ_{ξ_{c2i 5), 0),
Φn(t(t(cu W), 0 ) )) . But, by induction hypothesis Γ(f(e2, 5), 0) = £(];(<:,,
5), 0), hence En+X(φn(ϊ(ϊ(cx, s), 0)), φΛ(f(f(c, w'), 0))) which contradicts.
We obtain a similar contradiction if ζ(ζ(c2, w')> Q) < f ί f ί q , wr), 0). Hence
f(f(ci, i/'), Q) = f(f(c 2, «'), 0) Also we see that f ( f (c l f w'), I ) = f(f(c 2,
ii'), I ) = ±(W). So (4) is proved. Hence we get £ Λ + 1 (pf , /tf) s £π +i(ςrf, ςr2

Λ).
And so/(m) is 1 - 1.

We prove (p) :Sn+2(pn

9 mn+ι) D . (Eg) .Sn+2(q\ Nn+X) .Sn+2(pn

9 qn\
Am)) by straightforward strong induction on p, extending the c, v as was
done in the proof of T7.
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Finally, we wish to prove:

(5) (p): Sn+2(pn, Nn+ι) D . (Eg). Sn+2(gn, mn+ι) Sn+2(q", pn\ f(m)).

We also prove this by strong induction on p. Basis: p = 0. Then apply (3)
with w = 0, and take the least such u of (3) for the q of (5). Now assume
induction hypothesis, and assume Sn+2(p'n, Nn+\). Apply (3) again with
w=p', hence obtaining a new u of (3) for the q of (5). To obtain this result,
we must extend the c, υ in the definition oίf(m) from satisfying (5) for num-
bers </?, to satisfying (5) for/?'.

From T9, we easily obtain:

T10 \-Card(x) D . (Ez)En+ι(x,yn+2(z)) vEn +^(x9ωn + 2).

We state the following theorem without proof, it follows from T9:

Theorem 1 If f is a recursive function, A is in the range of φn+ι,
M / W M ) , and \-x*yD ~En+ι(f(x),f{y))9 then \-CEn+2(A, Nn+1).

Using Theorem 1, we obtain

Til \-CEn+2(Nn+uVn).

Furthermore, we get

T12 hC£ Λ + 3 (K Λ ,K Λ + 1 ) .

Proof: Obtain CEn+3(Vn, Nn+2) and CEn+3(Nn+2, Vn+χ). Then use transitivity
of CEn+3.

However, we can prove that there are sets of degree = n + 1 which are not
equivalent to any sets of degree <«, i.e.,

T13 HEu)(v)~En+2(un+ι,v»).

Proof: Take un+ι to be ~Sn+ϊ(x,xn).

Also we obtain that Vn is properly included in Vn+χ, i.e.,

T14 H ( « ) . Sx(u9Vn) D Sx{u,Vn+x): {Eu).S{(u9 K Λ + 1 ). -^(w, KΛ).

Proof: Observe that \-(x). _KΛ D ifΛ+i because φn and ψrt+i are primitive recur-
sive; hence we obtain this by formalizing GόdeFs j3-function (cf. [4], p. 244,
Remark 1) or, since φn and φn+{ are numeralwise represent able, simply use rule
W. The second conjunct follows from T13.

5 Real numbers As the reader has come to realize by now, formal devel-
opments in WTN are rather cumbersome. In this section, I spare the reader the
details of a development of real numbers, which is more unwieldy than the devel-
opments of Sections 3 and 4. With this in mind, let us proceed.

A real number is to be a set of positive integers of the form m =

2mχ. 3 m 2 . 5m where m3Φθ and m is to be associated with the rational num-

ber —! such that under this association, the set is the lower half of
m3

a Dedekind cut. Write {zu z2, z3) for ξ(2, Zi) £(3, z2) £(5, *3>.
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In order to see the complexities involved we give a definition of the real
numbers of degree <n.

Realn+ι(a) for (u)::. Sn+Ϊ(u, a).D:. (Eux, u2i u3):

u = (uuu2)u3) ,u3 Φθ. (Evuv2,v3) .Sn+ι((vuv2,v3), a) .v3Φθ.

uιv3 + u3v2<u3vι + u2v3: (vx,v2,v3) :v3 Φθ.

υxu3 + v3u2 < υ3ux + v2u3. D Sn+x((vXiv2, υ3), a)::.

(Eu, vuv2, v3): Sn+ι(u, a).υ3Φθ. ~Sn+ι((vXiv2, v3), a).

Read "# is a real number of degree <tf".

We then define the basic operations on reals, such as addition, add(a9 b)\
subtraction, sub(a, b)\ and multiplication, mult(a, b) — observing that this can
be done in such a way that, if a and b are reals of degree </?, then so are
add(a, b), sub(a, b), and mult(a, b). It is easy to define the predicates < and
< for reals.

One then obtains that if A is a nonempty set of degree =n + 1 all of whose
members are real numbers of degree <«, which are bounded above by a real
number of degree </?, then the set has a least upper bound (l.u.b.) which is a
real of degree <n -f 1. Indeed, the l.u.b. is the union of the bounded set of reals.
This result apparently cannot be sharpened, i.e., the l.u.b. may not have
degree <n.

By using Theorem 1 of Section 4, one obtains

T15 h C ^ + 2 ( Λ U i , Realn+ι(x)).
OO

One should have no difficulty in defining a = J2 /̂ That is, we write
ι=0

Sumn+2(a, b) for "the sum of the sequence b (hence b is a binary relation) of
reals of degree </? converges to the real number a of degree <ΛZ". Hence one
may define Measn+3(a9 b) for "a is a set of degree <n + 1 whose members are
reals of degree <«, and b is a real of degree <n + 1 which is the Lebesgue outer
measure of a".

However, it will turn out that the Lebesgue outer measure of the unit
interval [0,1] will equal 0. This will not conflict with the classical result that the
measure equals 1, since the Heine-Borel theorem cannot be proved in WTN. The
crucial point is that a set of reals each of degree <n may have a limit point of
degree =n + 1. Moreover, the 1 - 1 function that maps the unit interval [0,1]
onto Nn+ι has the same degree as [0,1] itself (cf. T9 above). So unlike the
situation in [12], p. 251, this 1 - 1 function cannot be distinguished from more
"legitimate" 1 - 1 functions. Hence the theory of Lebesgue measure cannot be
developed in JFTTVin the classical manner. Indeed, if there were such a count-
ably additive measure, then WTN would be inconsistent.

The first thought the author had to resolve this problem was to deal with
a density measure δ, such that if b is a set dense in the interval (c,d), then
δ(b) —d — c provided c < d. But then, both the rationals and irrationals in the
unit interval would have density measure 1, which is no good.

The referee has suggested a possible remedy, viz., using Bishop's defini-
tion of measure (cf. [1], pp. 155-159).

We now discuss another approach. We first observe that probability and
statistics are based on measure theory. Let us consider the probability of choos-
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ing a particular real number r in the unit interval. This probability P({r}) = 0
in the standard approach. That is, if we accept the premise that a probability
of 0 states impossibility, then it is impossible that any particular number would
be picked. This seems to indicate that P({r}) should be >0. This observation
seems to require that we develop measure theory a la A. Robinson's "non-
standard analysis".

The following theorem perhaps should be called a "thesis" or "quasi-
theorem", especially since it requires further elaboration. Suppose that a person
who is primarily a mathematician wishes to see whether certain sentences are
provable in WTN ox not, without going through the formidable details. He may
desire to formalize a sentence of WTNvtxy carefully, and then agree that it is
"obviously true" hence probably provable. Observe that all the formal theorems
we considered in this article from Tl to T15 are "obviously true", and we pro-
vided, in many cases, a rigorous proof of them. We wish to connect the notion
of "obviously true" with "provable in WTN" as best as we can.

Theorem 2 IfA is a sentence of WTN, such that by reading its content care-
fully it becomes "obviously true" then \-Λ.

Proof: Write "OΓ" for "obviously true". What follows may be regarded as a
definition of OT.

Let B be the sentence obtained from A by advancing all unbounded
quantifiers to the front and contracting them (cf. [4], p. 285). Next, obtain C
from B by replacing the existential quantifiers by the numeralwise representable
recursive functions and constant now to be defined. We take an example.
Suppose B has the form (Eu)(v)(Ew)(z)(Et)D(u, v, w, z, t)9 where D(u, v,
w, z, t) has no unbounded quantifiers, then C is D{m> v,f(v), z, g, (v, z)).
We write C(v, z) for C.

Observe that A is OT implies B is OT implies C is OT, and \-C implies \-B
implies \-A. So all we have to show is that C is OT implies f-C.

For C to be OT seems to imply that the functions / and g can be
explicitly constructed. Observe that only bounded quantifiers occur in C. Hence,
in a sense, C is "primitive recursive" except of course some Tn's may occur in
it. So numeralwise representability should be established for C. That is, if C" 1

is the informal predicate that C represents, then for all /, j if C~ι(i, j) is true,
then \-C(ij). So use rule Wtwo times and we get \-(v, z)C(v9 z) hence \-A.

Observe that we used such functions / in the long proofs of T7 and T9
(above). Also, observe that we must replace all occurrences such as σ(u9 kn) by
Sn+ι(u, kn) in C before using rule W (zϊ. T3, Section 2, above).

Theorem 2 is obviously related to Herbrand's Theorem.
An informal development of analysis, along the lines indicated above,

should first be undertaken (cf. [13]).

6 Related systems Let T'N be the extension of 77V obtained by adjoining
to 77Vthe "Γ'-axioms": If m is not a sentence of degree <n, then — Tn+X(m) is
an axiom. We now prove:

Theorem 3

(1) 77V is consistent relative to PN, and
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(2) TN is consistent relative to TN. Hence
(3) TN is consistent relative to PN.

Proof: (1) follows because in any proof only finitely many Γ-axioms Tn(A) Ξ= A
are used. If they are for the formulas A],..., Ak, then consider interpreting
Tn{x) as {x=Aι .A\) v . . . v (x = Ak.Ak). The details of making this precise
are left to the reader. (This proof is due to the referee.)

To prove (2), simply replace every occurrence of a Γ'-axiom in a proof by
m — m. The proof remains the same otherwise, since ~Tn(m) does not inter-
play with the rest of the proof.

Shoenfield in [6] showed that W*PN is complete. Hence it may well be that
W*T'N is complete. Indeed if we let rule W be the unrestricted ω-rule (i.e., if
for every m, A(m), then infer (u)A(u)), then we easily see that WTN is
complete, using a similar argument to the proof that W'PN is complete.

Let rule W be like rule Wexcept that the fact that, for every m, {e}{m)
is a proof of A(m) must be provable in PN. We easily get a proof predicate,
(?&(A, k) for WTN, along the lines indicated by the definition (?ζn(A, k)
given in Section 1. We see that (P^(A, k) is primitive recursive since all
natural number variables in the definition are bounded by k. Hence W"PN,
WTN, and WTN are all incomplete since they are formal systems.

We now describe the systems SN and WSN which are natural extensions
of PN (cf. [9]). We adjoin as primitive symbols Gi, G2, > a n d stipulate that
if α and b are terms, then α e π b is a formula. We say that the ̂ -degree of a
formula A is n, if En occurs in A, but no G w occurs for m > n. If no Gn occurs
in Ay we say that its G-degree is 0. Next we adjoin the following axioms to our
system. Let x be the first variable of our system, and let A be a formula of
G-degree <n whose only free variable is x, then (x). x En+ι A s A is an axiom.
This is system SN. We obtain WSN by adjoining rule Was usual. We obviously
have

Theorem 4 WSN is interpretαble in WTN.

Proof: Use T3 of Section 2.

We shall now consider systems of ramified analysis, which are not number-
theoretic systems (in the sense of the first sentence of this paper) but occur in
much literature (cf. particularly [2], especially pp. 7 and 21).

All these systems are extensions of PN, where we add the predicate G and
big variables Xn, Yn, Z Λ , . . . for n > 0. We call n the ̂ -degree (for "ramified
degree") of the variable Xn, etc. If α is a term of PN, then α G X" is a formula
of 7?-degree n. Next, we say that the /^-degree of a formula A is n, if n is the
maximum of all k + 1 such that a variable Xk occurs bound in A and of all m
such that a variable Ym occurs free in A. If no big variables occur in A, we say
that A has /^-degree - 1 .

Consider the following comprehension axiom schema, which is used in all
our ramified systems:

(CS) (EYn)(x) .xEYn = A where A is a formula that may or may not
contain big variables, but Yn does not occur free in A.

We get the system Rn if the /^-degree of A is <n. According to Feferman,
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Ro is the system Weyl would be most happy with. The union of the Rn we call
R (for "ramified analysis").

We adjoin rule Wto R, obtaining WR. Following Feferman, we may also
consider transfinite systems W*R*, etc. (cf. Section 1).

Theorem 5 WTN is interpretable in WR.

Proof: This proof is due to Feferman (private communication). We make use
of Wang's development of a truth definition in Rn+\ for Rn (cf. [11]). 71 (x) is
interpreted as "x is the Gόdel number of a true arithmetic sentence", which is
given in Ro. Using this interpretation, we can associate with each sentence of
WTN of degree <1 its interpretation in Ro. Then T2(x) is interpreted as "x is
the Gδdel number of a sentence of degree <1, whose interpretation is true". This
can be given in Ru etc.

Theorem 6 WR is interpretable in WSN.

Proof: Let φn enumerate the formulas of WSN of E-degree <n, whose only
free variable is x. We have \-(x) .xEn+ι Φn(tΠ.) Ξ Φn(

m) (using the analogue
of Tl). This proof is complicated by the fact that for WR, free variables of the
same /^-degree as the set to be defined by the comprehension axiom schema can
appear on the right of the equivalence. So suppose that φn{m) above has a sub-
formula, φn(j)> which is of E-degree = n. Let Φn+\(m) be the formula obtained
from φn(m) by replacing "φn(j)" by "« £«+i ΦnU)"> then we would get I—(JC) .
xen+i Φn(m) Ξ <Λί+i(/w). Next, we would get \-(Ey)(x) .xen+ιy

n = ΦZ+ϊ(m).
Finally, by rule Wonj, we would get \-(Ey)(x) .xGn+ιy" s Φnt\(m)) where
ΦntΛm) is obtained from Φn+\(m) by replacing " κ e Λ + i Φn{j))" by tt«6Λ+i
υnn where υ does not occur in φ*+ι{m). This shows that WR is interpretable in
WSN.

Hence we have by Theorems 4, 5, and 6:

Theorem 7 WTN, WR, and WSN are mutually interpretable.

We close by considering another system AS, called arithmetical set theory,
which is a number-theoretic set theory and is PN itself! That is, consider the
following abbreviations in PN, which enumerate the arithmetical predicates. If
a and b are terms, write

tfE3*for {b}(a)=0,
a(Ξ 2-3* for (Ex){b}(a,x) =0,
αE22 3*for (x){b}(a,x) = 0,
αE23 3*for (x)(Ey){b}(a,x,y)=0, etc.

In general, we have aG2n-3b where the numeral n has a status similar to
that of degree, say in WTN. We call n the form and b the base of the set 2n 3^.
This system was first announced in [8].

Observe that we have dispensed with the distinction between/, n,.. .and
/, n,.. .since no confusion can result.

Let φk be a primitive recursive function which enumerates the Gόdel num-
bers of the /:-ary primitive recursive functions. We can do this in such a way that
Φk is monotone increasing. Observe that there exists a primitive recursive func-
tion, η, such that η(n) = k. We write nb for 2n 3φ"Wib). We call b the index
of the set nb.
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We spare the reader a formal development of the theorems of AS. As a
matter of fact, some serious difficulties arise. However, we give the reader one
simple example:

Let e be a Godel number of the representing function of the predicate
x = x. Then we can prove in AS h- (x)xE 3e, i.e., t-(x){e}(x) = 0. This can be
established by formalizing GόdeFs β-function (cf. [4], p. 244, Remark 1). By
universal specialization, we get \-3e G 3e. Hence the axiom of foundation can
be refuted in AS.

If we consider G a primitive symbol, we obtain the system AS'. That is,
we have as axioms, (x, y) .xG 3γ = {y}(x) = 0, etc. Then we can prove in
AS' h (Ey)(x) .xEy. So, in this manner, as we develop some basic theorems
in AS' or WAS', we could begin to dispense with the cumbersome need to keep
track of degree or form in our developments.

Finally, if PNI is the intuitionistic system of [4] (pp. 82, 101), we get the
systems WTNI, AS'I, etc., where the definition of "form" is complicated some-
what. These systems may be of interest to intuitionists.
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