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Recursively Saturated c^-like

Models of Arithmetic

ROMAN KOSSAK*

Two models of PA are called similar if they are elementarily equivalent and
have the same standard systems. In [3] it was shown than any two recursively
saturated ω r l ike similar models are Looωi-equivalent, and that there is at least
a continuum of pairwise nonisomorphic, recursively saturated, ω r l ike models
which are similar to a given countable recursively saturated model of PA. In
this paper we show that the number of models with the above properties is in
fact 2 K l , and we may also construct them to be mutually not elementarily
embeddable.

Thus, it is natural to ask in what extensions of Lωω it is possible to
describe recursively saturated ω rlike models up to isomorphism. Since we have
2 N l pairwise nonisomorphic models, countable languages are out of the con-
sideration (at least when 2*° < 2 K l ) . This applies in particular to the stationary
logic L(aa). In Section 3 we take a look at finitely determinate structures, which
were studied by Eklof and Mekler in [1]. The reason is that the proof of our
theorem on the existence of 2 K l pairwise nonisomorphic models (Theorem 2.4)
does not exclude the possibility that a stationary logic version of the isomor-
phism theorem is true for finitely determinate models. Theorem 3.5 shows that
this is not the case. We still may have 2*1 pairwise nonisomorphic, recursively
saturated, ω r l ike finitely determinate models which have the same standard
systems and satisfy the same L(aa) theories. Moreover, from a lemma due to
Shelah, it follows that the models constructed are also Looωi(αα)-equivalent.
The proof of Theorem 3.5 uses the 0 principle and the existence of Kurepa trees.

No knowledge of stationary logic, except for the Eklof-Mekler character-
ization of L(aa)-equivalence for finitely determinate structures and/or the
Shelah lemma, is needed for our considerations. In fact, all of our results about
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ωrlike models are just suitable translations of facts about countable, recursively
saturated, models. The main role is played by the structures of the form
(M, Mo), where M is countable recursively saturated model, Mo <e M, and Mo

is the union of intervals of the form [0, an] for some special sequence {an}nGω

coded in M, called an ascending sequence of skies.
Structures of the above form are not recursively saturated but have prop-

erties surprisingly similar to those of recursively saturated structures (M, Mo)
with Mo <e M.

In Section 3 we give a construction of finitely determinate, recursively satu-
rated, ωi-like models. The construction uses pairs of models of the first form
described above. We have failed to use recursively saturated pairs for a similar
kind of construction. We comment on this and state an open problem at the end
of Section 3.

Section 4 was added later, after a conversation with Shelah.

/ Preliminaries We will use the terminology and notation of [7] and [9]. We
also refer to these papers for all the notation and results not explained here.

Letters M and N with various subscripts will denote nonstandard models
of PA, and we call them "models" for short.

As usual we choose one of the standard ways of coding finite sets and
sequences in PA. If a is an element of M, then Da is the set of elements of M
coded by a, (a)i is the /-th term of the sequence coded by a, and Ih a is the
length of this sequence.

If/is a function and A is a subset of the domain of/, then the image of
A under /is denoted by/* A, and the restriction of/ to A is denoted by/t.4.

End extensions and elementary end extensions, denoted respectively by
^e and <e, are always understood to be proper.

Many of the results we mention can be stated in stronger forms. However
we have chosen the level of generality just appropriate for our purposes. This
applies in particular to the following basic isomorphism theorem (cf. [7]). Recall
that models are called similar if they are elementarily equivalent and have the
same standard systems.

Theorem 1.1 Any two countable, recursively saturated, similar models are
isomorphic.

The next theorem was stated first in [9]. It is also an easy corollary of the results
of [3] which we mention in Section 3.

Theorem 1.2 (Smoryήski) IfM and N are countable, recursively saturated,
models and I Qe M <e N then there is an isomorphism of M with N which is
the identity on I, and (M, /) < (N, / ) .

A model M is said to be ωrlike if it is of power K { but every initial seg-
ment of it is countable. Since every recursively saturated model is the union of
a chain of recursively saturated countable elementary submodels, we have the
following corollary.

Corollary 1.3 IfM is a recursively saturated ωx-like model, Mo is countable
and recursively saturated, and I^e Mo <e M, then (Mo, /) -< (M, / ) .
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Now let us mention the result of Eklof and Mekler characterizing L(aa)-
equivalence of models of power K2 (of any first-order theory).

If M is of power K u then every continuous chain of countable submodels
of M whose union is M is called an ωΓfiltration of M. The following is a
characterization of finitely determinate structures from [1]. We shall treat it as
a definition.

Definition 1.4 A model M of power X{ is called finitely determinate if there
is an ω rfiltration {Ma}aGωι of M such that for all k9 ny r E ω, k < n, if
(α 0 , . . ., otn), (β0,. ., βn) Ξ [ωi] < ω , where α, = 0y for j < k, a0, > , ar (Ξ
Mak Π M ^ , then

(A/, Mα / l,. . . , M α o , α 0 , . . . , αr) s (M, M ^ , . . ., M β o , tf0,..., flfΓ) .

Theorem 1.5 (Eklof, Mekler) Let M and N be finitely determinate structures
of power Xx. Then M is L(aa)-equivalent to N if and only if there are
ωγ-filίrations of M and TV, respectively, such that for every (ao,...,an) e
[ ω ! ] < ω we have

(M9Man,...,Mao) = (N9Nan9...9Nao) .

2 Nonisomorphic models In this section we give a quite general method for
constructing nonisomorphic, recursively saturated, ωrlike models. In a special
case, we may also show that the models constructed cannot be elementarily
embedded in one another.

All the constructions of families of pairwise nonisomorphic models in this
paper will be based on the following model theoretic result. Its usefulness in our
context was pointed out to me by Wilfrid Hodges.

Theorem 2.1 Let M and N be models of power X ι (of any first-order the-
ory), and let {Λfα}αGωp {A^}αGωi be their ωx-filtrations. Iffis an isomorphism
of M onto TV, then the set {a E ω{ : / * Ma = Na} is closed and unbounded
in ω\.

This result can be proved by a back and forth procedure and is true also
for /c-filtrations of models of power K for every regular cardinal K.

As will be clear from the proof, to obtain 2 K l pairwise nonisomorphic,
ωrlike, recursively saturated models which are similar to a given countable
recursively saturated model, it is enough to know that for every countable recur-
sively saturated model M, there are recursively saturated Mo, Mi such that
MQ <e M, Mi <e M, and the structures (M, Mo) and (M, Mx) are not
isomorphic. In fact the following much stronger result is true. We will also need
this result in Section 3.

Theorem 2.2 (Smoryήski [8]) For every countable recursively saturated
model M there is a continuum of elementarily inequivalent structures of the form
(M, Mo), where Mo is recursively saturated and Mo <e M.

The following simple but useful lemma is a straightforward application of
the basic isomorphism theorem.
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Lemma 2.3 Let Mo, No be countable recursively saturated, similar models.
Then for every M such that Mo <e M, there is an N such that No <e N and
(M,M0) = (N,N0).

The proof of our main result on nonisomorphic models is a combination
of Theorem 2.1 and the fact that ω{ is the union of Xγ disjoint stationary sets.
Let C be a family of power Kt consisting of disjoint stationary subsets of ωλ.
We denote the power set of C by (P(C).

Theorem 2.4 For every countable recursively saturated model M, there are
2 K l recursively saturated, ω\-like, pairwise nonisomorphic models which are
similar to M.

Proof: For every χE(P(C), we will construct a continuous chain of countable
recursively saturated elementary end extensions of M. Let Mo <eM,Mx<eM
be recursively saturated and such that (M, Mo) 3* (M, M{). Let M0(χ) = M,
and for limit ordinals λ G ω l f let Mλ(χ) = \jMa(χ). The successor step looks

as follows. If α G U x, then we take Ma+Ϊ(χ) such that (Mα + 1(χ), Ma(χ)) =
(M, Mo). Otherwise, take Ma+ι(χ) such that (Mα + 1(χ), Ma(χ)) = (M, Mx).
For x G P(C), let M(χ) = (J Mα(χ). We claim that if Xι, χ2 G (P(C) and

αGω]

Xi ^ X2> then M(χ!) and M(χ2) are not isomorphic.
Suppose/: M(χx) -+ M(χ2) is an isomorphism. Take a stationary set 5 on

which X! and χ2 differ. By Theorem 2.1, there are a, β G S, a< β, such that
/ * Λί«(xi) = Af«(X2) and / * M^ίxO = Af/3(χ2). Hence, we obtain that
(Mβ(Xι), Ma(Xι)) = (M^(χ2), Mα(χ2)). However, it follows from Theorem 1.2
that for every x and every a < β, (Mβ(χ), Ma(χ)) = (Mα + 1(χ), Mα(χ)), which
gives a contradiction.

Now we shall give a construction of 2 K l models which are ωrlike, recur-
sively saturated, and similar, but which are not elementarily embeddable in one
another. The construction will be an elaborate version of the one we have given
for the proof of Theorem 2.4. We will need the following two results. The first
is an obvious corollary of the main result of [4]. Let us say that a subset
X^Mis inductive if the structure (M, X) satisfies the induction schema in the
language of PA with an additional predicate for X. Let us also say that
X, 7 c M are elementarily equivalent if (Af, X) = (M, Y).

Theorem 2.5 Every countable recursively saturated model M of PA pos-
sesses an uncountable family of inductive subsets of M which are pairwise
elementarily inequivalent, and each of them can be coded in some countable,
recursively saturated elementary end extension of M.

Theorem 2.6 (Kotlarski [5], Schmerl [6]) If M, NY PA, X is an inductive
subset of M, and N is a cofinal extension ofM {written M <cofN)> then there
exists X ^ N such that (M, X) < (TV, X).

Theorem 2.7 For every countable recursively saturated model M, there is
a family o/2 K l recursively saturated, ωΓlike models which are similar to M,
such that no one of them can be elementarily embedded into another.
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Proof: Let {^α}αeωi be a family of subsets of M given by Theorem 2.5, and
let Ta = Th(M, Xa). Let C be as in the proof of Theorem 2.4. For every
X G (P(C) we construct M(χ) = (J Mα(χ) as follows. Let M0(χ) = M, and

let TV be any countable, elementary end extension of M. For limit λ, we put

M\(x)= UΛ/«(X).

Successor step:

Case 1: α ί Ux
In this case, we take Afα+i(χ) such that (Afo+1(χ), Afα(χ)) = (TV, Af).

Case 2: a E (J χ.
For every 5 E χ, we fix an enumeration {yβ}β<=ωι of S. We take 5 E χ such
that α E S, and 0 such that a = y$. There exists X c Mα(χ) such that (Mα(χ),
^ί) N 7^ and .Yean be coded in a countable, recursively saturated elementary
end extension of Mα(χ). We take one such extension as M α + 1 (χ) . We claim
that if for χu χ2 E (P(C) there exists S such that SEχι and 5 <£ χ2, then M(χx)
is not elementarily embeddable in M(χ 2).

Suppose that/is an embedding of M(χ{) into M(χ 2). Then {a E ωt :
/ * Ma(χι) <cofMa{χ2)} is closed and unbounded in ωi Hence, there is a set
^ c S o f power X{ such that for all a E A, f* Ma(χλ) <Cco/Mα(χ2).

Take α E i . We have (/* Ma(χi),f* X) Y Tβy whereof is the set used
in the construction of Ma+ι(χι). By Theorem 2.7, there is X ^ Ma(χ2) such
that (Ma(χ2), X) V Tβ and .Ϋis coded in M α + 1 (χ 2 ) (to verify the second part
of this last statement consult [5] or [6]). But, since α ί Ux2> (Afa+i(X2)>
Ma(χ2)) is isomorphic to (N, M). The family of subsets of M coded in TV is
countable. In particular, we have only countable many complete theories of
subsets of M coded in N. This gives a contradiction and finishes the proof.

3 Nonisomorphic finitely determinate L(aa)-equivalent models Theorem 2.2
says that for every countable recursively saturated model M, there is a
continuum of distinct theories of structures of the form (M, Mo), where
Mo <e M and Mo is recursively saturated. Using the basic isomorphism the-
orem, for every such a theory Γ, we can construct a continuous chain of
recursively saturated models {Ma(T)}aGωι9 such that for every a E ωu

(Ma+ι{T), Ma{T)) V T. Let M(T) = \J Ma(T). If Tx Φ T2i then clearly
αGωj

M(T{) and M(T2) cannot be L(#tf)-equivalent. So for every countable recur-
sively saturated model M, we obtain a continuum of recursively saturated
ωrlike models which are similar to M and hence are all Looωi-equivalent, but
they are pairwise L(#tf)-inequivalent.

Our next aim will be to show that (at least assuming V= L) there are 2*1

finitely determinate, recursively saturated, ωrlike similar models which are pair-
wise nonisomorphic but L{aa)-equivalent.

First let us recall some terminology and facts from [9] and [3]. We say that
I Qe M has cofinality ω in M if there is an a E M which codes an increasing
sequence of a nonstandard length and / = (J [0, (a)n]. We say that an element

«Gω
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a of M codes an ascending sequence of skies if a codes an increasing sequence
of a nonstandard length and for every / < lha and every function F definable
without parameters in M, M V F ((a),) < (a)i+i. If a G M codes an ascending
sequence of skies, then we write a G ASS(M) and we let Λf(ω, a) de-
note ( J [ 0 , (*)„] .

The following are two simple but fundamental facts.

Proposition 3.1 Let M be recursively saturated.
(i) For every b e Λf, ί/zere ex/ste a G ,4SS(M) swc/z ί/ία/ (a)0 > b.

(ii) For every a G v4&S(M), //ze model M(ω, #) w recursively saturated and
Λf(ω, a) <eM.

If I ^e M, J Qe TV, and / is an isomorphism of / into /, then we say that it is
an (M, N)-isomorphism if for every A ^ I which is coded in M, / * 4̂ is coded
in TV, and, conversely, for every subset Z? <Ξ / which is coded in TV, f~ι * B is
coded in M. Observe that \ϊ M Qe Mx and N <^e Nu then / is an (M, TV)-
isomorphism of / onto / if and only if it is an (Mu Nγ)-isomorphism of /
onto J.

Also, it is easy to see that if g is an isomorphism of M onto N and
g * / = /, then g restricted to / is an (M, TV) -isomorphism of / onto J.

The next theorem, based on the results of [9], was crucial for the proof of
the positive result of [3] mentioned in the introduction.

Theorem 3.2 Let M and TV be countable recursively saturated, similar
models. Let Mo <eM, N0<eN have cofinality ω in M and TV, respectively. Let
a G ASS(M), b G ΛSS(TV) be such that Mo < (a)0 and TV0 < (b)0. Then every
(M, N)-isomorphism of Mo onto TV0 can be extended to an isomorphism of M
onto TV such thatf* M(ω, a) = TV(ω, b).

Corollary 3.3 Let M and TV be as above. For n G ω, let an G ASS(M),
bn G ASS(N) be such that M(ω, an) < (an+ι)0, TV(ω, bn) < (bn+i)0 and
M= \jM(ω, an), N= \jN(ω, bn). Then the structures (M, {M(ω, an)}nGω),

(TV, {TV(ω, 6Λ)}π G ω) are isomorphic.

If M o is a countable recursively saturated model, then by the basic
isomorphism theorem, there is a countable recursively saturated model Mx such
that M o <e Mi, and for some a0 G ASS{MX), Mo = Mj(ω, ax). We may iterate
this procedure ωi times, taking unions at limit stages. So after ωi steps, we
obtain an ωi-like, recursively saturated model M = \J Ma, such that for

ocGωi

every a G ωu there is an aa G ASS(Ma+ι) such that Ma = M α + 1 ( ω , aa). Now
by the (finite case of) Corollary 3.3 and Theorem 1.5, we have that all models
of the above form are finitely determinate, and if they are similar, then they are
also L(#tf)-equivalent.

Next, we will show how to construct 2*1 such models which are mutually
nonembeddable.

In the proof of Theorem 2.4 we constructed nonisomorphic similar models
M and TV by producing suitable filtrations {Mα}α G ω i, {Na}aGωι such that for
sufficiently many a, no isomorphism of Ma onto TVα could be extended to an
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isomorphism of M α + 1 onto Na+\. This obviously cannot be done in the case of
finitely determinate structures constructed from ascending sequences of skies.
We cannot produce M α + 1 and Na+\ to "block" all isomorphisms from Ma to
Na. But we can block some of them, and in the presence of the 0 principle this
is just enough.

The tool for blocking isomorphisms will be the following lemma.

Lemma 3.4 Let M be a countable recursively saturated model, and let
{Xn}nGω be a family of subsets of M of order type ω which are cofinal in M.
Then there is a recursively saturated model N such that for some a E ASS(N),
M = N(ω, a) and none of the Xn's is coded in N.

Proof: Let N be a recursively saturated countable model such that for some
a E ASS(N), M = N(ω, a). It is enough to show that there is an automorphism
f\ M-+ M such that for every « G ω , / * I w i s not coded in N. Assume that
every set occurs infinitely many times in the sequence {Xn}ne<a> and let {Yn}neω

be the family of subsets of M of order type ω which are coded in N.
We will construct an automorphism / by the usual back and forth proce-

dure with every back and forth step followed by an adjustment described below.
Suppose we have a partial automorphism given by two finite sequences ά

and 5 such that for every formula φ, M |= φ(a) ++ φ(b). Then take the first k
such that Yk has not been used in the construction yet. Since M is recursively
saturated and Xk is unbounded in M, we can find an element x of Xk which is
greater than all the elements definable from a in M. Now consider the follow-
ing type:

t(5, v) = {φ(b, v): M t φ(3, x)} .

It is not difficult to see that t(b, v) is realized arbitrarily high in M (see |9],
Lemma 2.5). But also if Mf is a recursively saturated model such that b E
M' <eM, then t(b, v) is realized arbitrarily high in M'. Now observe that the
set Mf Π [J Yn is finite. Thus, we can find x' realizing t(b, v) in M' such that

xf ί U *Λ> a n d we can prolong our partial automorphism by putting/(x) = x'.
n<k

If/is an automorphism constructed according to the above procedure then
for every n, k E ω we have/* Xn Φ Yk, which finishes the proof.

We will use the following version of the 0 principle (which is an easy
consequence of the usual one). There is a sequence {fa: a E ω j of functions
fa: a -> a such that for every /: ω{ -> ωi the set {a E ω^ /1 a = fa} is sta-
tionary in ωi.

A binary tree 7" is called an ωx-Kurepa tree if Γhas at least K2 branches
of length ωu and for every a E ωu the set Ta of elements of T of rank a is
countable. The existence of ωrKurepa trees follows from V - L and is indepen-
dent from ZFC. (See [2], Theorem 55).

Theorem 3.5 (V = L)ι For every countable recursively saturated model Mo

there is a family 21 of finitely determinate, recursively saturated, ωrlike models
similar to Mo, such that 21 has cardinality K2, and for all distinct elements M
andNof%,Mis L(aa)-equivalent to Nbut Mcannot be elementarily embed-
ded into N.
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Proof: For the sake of clarity, let us construct two mutually nonembeddable
L(aa)-equivalent models first. Let h: ωι -> ωi be a continuous enumeration of
the limit ordinal numbers smaller than ωi. We will construct two chains of
models {Ma}aeωι9 {Na}aeωιi where Mo = No is a given countable recursively
saturated model and for every a the ordinal h(a) is the universe of Ma and Na.
If λ is a limit ordinal, then, as usual, Mλ = [jMa and Nλ = [JN\. For the

successor step assume that we already have Ma and Na recursively saturated
models with universes h(a). Let F = Λ ( α ) , given by the 0 principle. If F is
neither a cofinal embedding of Ma into Na nor a cofinal embedding of Na into
Ma9 then we simply take Ma+ι and Na+i to be any countable recursively satu-
rated models such that for some aa E ASS(Ma+ι)9 ba E ASS(Na+i), we have
Λfα = Ma+χ(ω, aa) and Na = Na+ι(ω, ba). If Fhappens to be a cofinal elemen-
tary embedding of Ma into Na or Na into Mα or both, then we proceed as
follows (assume the third and worst possibility). First we take any Ma+1 as
above, and then we produce Na+X such that for some ba E ASS(Na+ι), Na =
Na+{(ω, ba) and none of the following subsets of Na is coded in Na+\:

1. F * Xa for some Xa c Ma of order type ω coded in M α + 1

2. F " 1 * Y for all 7 g F * Na of order type ω coded in M α + 1 .

So iVα+i does not code the image under F of a certain subset of Ma coded in
M α + 1 . Also, the image under F of a certain subset of Na coded in 7Vα+1 is not
coded in Ma+\.

Let M- (J Ma, N= (J 7Vα. Suppose that/: Af-* Nis an elementary

embedding. Then for some a E ωu we have/ί Mα =fh(a) and/* Λfα <CofNa,
where -<co/ means cofinal extension.

Now it is easy to verify that the image under/of any subset of Ma which
has order type ω and is coded in Ma+U must be coded in Na+ί. In particular,
fh(a) * Xa i s coded in Na+U which is impossible by the construction. Similarly,
we show that TV cannot be elementary embedded in M.

Now we will describe a way of constructing K2 models with the above
properties. Let T be an ωrKurepa tree. For every s E T we will construct a
recursively saturated model Ms by induction on the rank of s in T. Let Mφ =
Mo and for s whose rank is a limit ordinal, let Ms = (J Ms>. To describe the

successor step let us assume that for every s E Ta, we have a recursively satu-
rated model Ms with the universe h(a). Let {Mn}nGω be an enumeration of
{Ms: 5Έ Γα}. For every n E ω, we will construct recursively saturated count-
able models M°, Λf,J such that for some a}, E ASS(Afi), Mn = M^(ω, αΐ) for
/ = 0, 1. Let Mo and ΛfJ be any models as above and suppose we already have
Mι

k for k < n, i = 0, 1. Then we take F = fh(a). By Lemma 3.4 we find Mι

n,
/ = 0, 1 satisfying the above conditions and such that the following sets are not
coded in Mι

n for / = 0, 1 :

1. F * X/c, for some Xι

k c M^ which has order type ω and is coded in M£,
for every k such that F * Mk <COf Mn, i = 0, 1.

2. F~ι * y, for all Γ c f * ΛfΛ which have order type ω and are coded in
Mk or M\, for every k such that F * Mn <cofMk.
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So now if s E Ta+Ϊ9 then we define Ms to be Mι

m where sf ~ i = s and Mn = Ms>.
For every branch B of T let M(B) = \J Ms. The same arguments as

see
before show that if Bx Φ B2 then M{BX) is not elementarily embeddable in
M(B2).

The obvious question connected with Theorem 3.5 is whether any set
theoretical assumptions of the kind we used are really needed for the proof.

A second question concerns the variety of finitely determinate structures.
Is every finitely determinate recursively saturated ω r l ike model expressible as
the union of a continuous chain of models {Mce}aGωι such that for every a E
α>i, Ma = M α + 1 (ω, a) for some a E ASS(Ma+\)Ί We believe that the answer to
this question must be negative. In fact we would have a large family of finitely
determinate, recursively saturated ω rlike models without the above property if
the answer to the following question was positive.

Suppose Mo < e,..., <e Mni No < e9..., <e Nn are such that Mn and Nn

are similar and countable. Suppose that for every / < n, (M / + 1 , Mj) = (TV/+1,
Nj), both pairs are recursively saturated and Λf, and TV/ are semiregular in M / + 1

and TV/+1, respectively. Is it true that then (AfΛ,..., Mo) = (Nn,...9N0)l
Recall that if / ^e M, then the cofinality of / in M, c/(/), is the smallest cut
J <^e M such that there exists an increasing function coded in M such that
/ = [J [0, /(/)] . A cut / is called semiregular in / if cf(I) = I. Observe that the

ieJ
assumption about semiregularity of cuts in our question is essential since in the
other case, we could have for some /, j < n, cf(Mj) = Mi while cf(Nj) Φ TV/.

4 Nonisomorphic L^^iaayequivalent models The ωrfiltrations con-
structed in the proof of Theorem 3.5 have, in fact, stronger properties than those
needed for the Eklof-Mekler characterization of elementary equivalence of
finitely determinate structures. It follows from Theorem 3.2 and the next lemma
that models built from such filtrations are also Looωi(ί7ί/)-equivalent.

Lemma 4.1 (Shelah, unpublished) Let {Λfα}αeωi, {Na}aGωι be ωrfiltra-
tions of models M and N, respectively. Suppose that for any α, β < ωu Haβ is
a nonempty set of isomorphisms from Ma onto Nβ9 and for all a < al9 β < βu

every isomorphism in Hatβ extends to an isomorphism in Hauβr Then M and
N are Loaωι (aa)-equivalent.

Corollary 4.2 (V = L) For every countable recursively saturated model Mo,
there is a family 31 of recursively saturated ωχ-like models similar to M o such
that 21 has cardinality K2 and for all distinct M and N in 21, M is
Looωι(aa)-equivalent to N but Mcannot be elementarily embedded into N.

Remarks: The proof of Lemma 4.1 goes by a straightforward induction on the
depth of Looωι(aa) formulas. One shows that for all φ(xo> > χm-> Λ)> > Λ?)>
where Po,. . . , Pn are unary predicates for all α 0 , . . . , am E M α , M α o , . . . ,
Man c Mand h E Haβ α, β < ω{ we have:

M |= φ(a0, ...,am, M α o , . . . , Man)

iff N (= φ(h(a0), , h(am), h * MaQ9..., h * M α # l )
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We have simplified the statement of the lemma to the form needed for
Corollary 4.2. The assumptions in a more general form can be written as fol-
lows. For any regressive functions/, g: ω{ -> ω1} there is a family of sets of par-
tial isomorphisms (HOίiβ)Oi^<ωχ such that if/ (a) = g(β) then Ha β maps Ma

isomorphically onto Nβ and if f(a) = g(β) and/(«i) = g(β\), then every
isomorphism in Ha β extends to one in Hauβv

The lemma in this formulation could be used for a proof of Corollary 4.2
without the assumption V=L, provided we had a positive answer to the ques-
tion stated at the end of Section 3 and the answer was given by a theorem similar
to Theorem 3.2.2

NOTE

1. In fact, the assumption of O is sufficient for the proof. Once we have O we have also
CH, and as can be easily seen the construction that we give can be carried out along
any ω r t ree if all the levels Ta have cardinality at most Xj.

2. The V = L assumption can be deleted from the proof of Corollary 4.2 by a slightly
different method. The answer to the question from the end of Section 3 is still
unknown.
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