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DOMAIN RESTRICTIONS IN STANDARD DEDUCTIVE LOGIC

PETER SWIGGART

Introduction Although this paper draws upon logical evidence associated
with Gόdel-type undecidability arguments, its concern is independent of
current work in the philosophy of mathematics. The issue to be examined
is the conceptualization of a system of deductive logic as applicable to a
domain, both infinite and comprehensive, of individual classes or sets of
numbers. Historically, the notion of an infinite domain was introduced into
deductive logic for the purpose of accommodating number theory and thus
establishing a logical foundation for the conventions of mathematical
practice. Yet subsequent developments in mathematical logic have made it
evident that a host of formal difficulties attend any naive understanding of
the infinity hypothesis. Moreover, it is no longer certain that the notion of
a comprehensive ontological domain for classical logic is a primary
conceptual need. The focus of attention has shifted from the importance of
standard logic for mathematical theory to the impact of mathematical
analysis upon our understanding of what constitutes a logical system.
Questions of logical domain seem less relevant to mathematics proper than
to issues involving the nature and ontological status of a formalized
language.

In this paper the evidence both of the class contradiction and of GδdeΓs
undecidability proof will be used as evidence against the assumption of an
ontologically total domain for either a typed postulational logic or an
untyped logic with the class membership predicate as primitive. The
notion most essential to my argument concerns the status of individual or
predicative constants when logical schemata are supplemented by actual
class or property names. If we say that a logical calculus has the capacity
to represent formally an infinite number of classes or properties, we are
committed to the view that the formalized language in some sense contains
an infinite supply of interpreted constant symbols which can serve as
replacements for variables. However, any formula in which such constants
are employed will contain only symbols that are discoverable within some
finite list of the expressions of the language. It is this characteristic of a
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formalized language that justifies the determinate application of a system
of Gδdel encoding.

As Finsler [2] pointed out some years ago, the analysis of mathe-
matical proofs as consisting of finite concatenations of available signs will
lead to the conclusion that not all definable binary sequences are finitely
definable. In this paper a similar argument is focused upon the formal
representation, by an individual class or property name, of complex but
determinate conditions upon a quantifiable variable. In an untyped logic
with a primitive membership predicate, a system such as Quine's ML, the
restrictive theorem '~(3y)(x)(x ey = ~(xex))9 can be derived from basic
axioms. This theorem can be understood to mean that no class name
selected to represent the condition (~(xex)' could in fact be the name of the
requisite class of individuals—by virtue of the contradiction which would
follow. A comparison of the ML situation to that of Richards' Paradox, the
inspiration for Finsler's account, can be instructive. If the phrase 'the
least number not formally designated' is taken to be a definitive means for
designating a number formally, the result is an obvious contradiction.
Similarly, the rule that all complex conditions upon x can be represented
by an ζxey9 expression, with 3; the name of the determined class, would
lead to an MLJ contradiction. The significance of Richards' Paradox is the
evidence it provides of the need to discriminate formal from informal
names or designations of numbers. The effect of the restrictive theorem
upon ML| logic is to show that not all polyadic conditions upon a variable
can be represented as monadic conditions [12]. If ML schemata are given
ontological implication, the implication is that no 'existent' class of
individuals determined by ζ~(xex)' can fall within the semantic domain of
the formal system.

In the case of undecidability arguments, when the mathematical cal-
culus is a typed system modeled upon Principia, this mode of analysis
leads to the conclusion that metamathematical arguments of the Gδdel type
are insufficient to overturn the assumption of decidability for the calculus
in question. It cannot be demonstrated that such a system is decidable, but
it can be shown that the assumption of decidability is enough to cast in
question the basis for existing undecidability proofs—namely the notion that
all computable mathematical functions are formally representable by a
propositional function of the calculus. Though technically outside the
formal system, the recursively defined diagonalization function upon which
the undecidability argument depends can be compared, in its semantic role,
to the expression 'the least natural number not formally designated' in
Richards' Paradox and to the determinate condition '~(xex)' in ML logic.
In the face of the hypothesis of decidability, the rationale for assuming the
representability of such a recursive function can only be the view that a
mathematical calculus is ontologically comprehensive—that such a calculus
can contain names for all sets of natural numbers, including those that are
recursively definable.

It appears to be the case that the above argument does not apply to a
mathematical calculus in which numerical variables and constants are not
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supplemented by class or property names, for example the system to which
Tarski and Robinson [13] apply their undecidability analysis. In such a
system there is no gap between computation of the diagonalization function
and the assumption of formal representation by a class or property symbol.
In Tarski and Robinson the effect of predicate structure is achieved not by
the use of a membership predicate, nor by the juxtaposition of symbols of
distinct type, but by the incorporation into the formal system of symbols
for mathematical calculation. The domain restriction with which this paper
is concerned is a notational restriction that applies to systems with quan-
tifiable individual variables and in which sets or properties of individuals
can be formally named. In the case of an untyped logic for set theory the
existence of such a restriction is directly demonstrable; in the case of a
typed mathematical calculus any proof that such a restriction pertains must
be filtered through a coding methodology such as a system for Gδdel
numbering. The two arguments for a domain restriction are fully parallel
only when the distinction between provable and unprovable formulas is
given a status equivalent to that between truth and falsity. Such a status
appears to fail for basic number theory, but contrary to GόdeFs 1931 claim
it will succeed for a typed Principia logic, provided that the set or property
terms of such a system are understood to obtain their semantic value
through an initial ontological interpretation of the system as a whole.

The results of this paper are thus directly applicable to questions
involving the ontological status of a general logic for set theory or of a
mathematical calculus which names sets or properties of numbers. There
is no inconsistency in the claim that a deductive logic admits an infinite
domain of individuals and supplies conditions for the generation of an
infinite number of classes or properties of individuals. However, it can be
seen that restrictions apply to the inclusion of names for all such infinite
totalities. We can indicate the ontological existence of more sets or
properties than are subject to formal representation within the deductive
system.

ι1 The failure of efforts to create an equivalent of the Liar's Paradox in a
deductive logic with sentential variables is not usually taken as evidence of
a notational restriction within such a logic. Yet the difference between
natural and formal expressions of the Paradox can be highly instructive
from this point of view. Given appropriate utterance conditions, there is no
formal obstacle to our taking the eidetic phrase 'this sentence' in the
sentence 'This sentence is false' as referring to the natural sentence of
which it is a part. The assignation of value to such a phrase is not unlike
the assignation of arbitrary value to the functional variables of mathe-
matics upon the basis of practical need. That is to say, the specified use
of such a phrase as 'this sentence' will vary from situation to situation,
even as the phrase retains the status of a variable name.

However, in a system of deductive logic which lacks eidetic signs, and
in which the discrimination between a variable and a constant or proper
name is enforced, such an assignation of value according to the situation of
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use is no longer possible. The following definition of the Liar sentence can
be immediately recognized as ill formed.

(1) S = df. Sis false

We can explain this ill formedness as a violation of the language-
metalanguage discrimination. But even if the expressions of the formal
language can contain the names of such expressions, it is evident that the
constant-symbol (S' cannot be the name of a sentence containing that same
symbol, since substitution rules will lead to the creation of an infinite
regress. If we take 'S' to be a constant-symbol which has been given a
referential meaning according to an initial interpretation of the symbols of
the formal deductive system, then it is evident that (S' cannot have been
assigned such a value. The restriction in question applies only to the
choice of (Sf as the name of that particular sentence and does not extend to
the choice of some other symbol as naming the sentence in question—at
least within the hypothesis that the language contains names for its own
sentences.

The limited explanatory power of the language-metalanguage distinc-
tion becomes evident when the problem of finding an appropriate name for
sentences of the language is transformed, by way of quantification theory,
into the class contradiction difficulty. That there exists a formal parallel
between the two issues of deductive logic is evident in the following exam-
ples of eidetic reference combined with a quantification over sentence
names and with a quantification over classes.

(2) (X) {If X is the name of this sentence, then X is false)
(3) {z) {If z is the class x determined by this class matrix, then z fails to

be included within z)

In the case of (2) the choice of any name for the sentence in question
will lead to the Liar contradiction, but the eidetic expression 'this
sentence' is evidence of imperfect formalization, so that the contradiction
is not one of deductive logic. However, the application of the same strategy
to the names of classes determined by sentences, not the names of the
sentences themselves, leads to the formulation of (3), where the eidetic
reference can be removed without affecting meaning.

(4) {3y){x){xey=(z){z=xΏ~{zez))

Thus (4) expresses the claim that there can exist a class y such that
objects x belong to y if and only if they satisfy the condition '{z){z =
XΏ ~(zez)Y, which expresses the sense of (3) in logical language. In (4)
we have a nonstaridard but effective version of the class contradiction,
since for any 3; taken to be x, both (y ey D ~(;y ey)' and '~(y ey) D yey' must
hold.

The threat of the class contradiction in an untyped logic is usually
explained by giving ζ~(3y){x)(xey = ~{xex))' as a derivation from tentative
acceptance of ζ{3y){x){xey = 0)' as an axiom for class abstraction. But
the version given as (4), where the class matrix is in the form of a
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quantification statement, helps to explain why no class name can be
generated from the matrix (~(xexY. The explanation lies in the distinction
between single and two place conditions upon a variable, or ζF(x)\ sentences
and sentences that like (~(xex)' are of (G(x,xY form. (See [12] for a
discussion of the 'G(x,x)' status of 'xex' in an untyped logic with ζe' a
primitive dyadic predicate). Any sentence of (G(x,x)9 form will be truth
equivalent with a universal quantification over y which contains ζx9 as a
free variable:

(5) G(x,x) = (y)(y=xΏ G(x,y)).

The equivalency given as (5) is a formalization of the fact that ζG{x,x)'
cannot be reduced to a sentence of F(x) form without implying a universal
quantification over y, and in an untyped logic such a reduction can lead to
contradiction. The sense of (5) can also be conveyed by (7), which is
derived directly from (6), in a non-empty logical universe.

(6) (y)(G(y,y) = G(y,y))

(7) (y)(3x)(G(x,y) s G(χ,χ)),

But (7) is identical with (8)

(8) ~(3y)(x)(G(x,y) = ~G(*,*)),

w h i c h y i e l d s (9) a s a t h e o r e m in u n t y p e d l o g i c w i t h {e9 p r i m i t i v e .

(9) ~(3y)(x)(xey = ~(xex)).

The derivation of (9) from (6) is an explicit denial of the claim that there
can exist a class name y such that ζxey = ~(xex)' holds for all x. The
existence of such a theorem as (9) also indicates that because of the truth
identity given as (5) there can exist no (F\xY (or 'xey') sentence to which
'~G(x,x)' is truth equivalent, provided G is taken to be the class member-
ship relation. There must exist at least one multiplace condition upon x in
such a logic which cannot be represented as of ζF(x)y form.

The standard interpretation of (9) as a theorem of untyped logic is that
there can be no class y that is determined by the class matrix '~(xex)'.
But a more precise interpretation, where the domain of the logic is taken to
be natural classes, is that if such a class exists it cannot be included within
the logical domain. In contemporary theory the implication of the class
contradiction for questions of logical domain has been obscured by the
failure of logicians to recognize any difficulty in the notion that the vari-
ables of a deductive logic can have an infinite totality of classes as their
effective range. As long as class existence is defined within the formalism
of the logic—as in Quine's definition of existence as being the value of a
bound variable—there is no way to prove the restriction to a finite domain.
But in Quine's own Mathematical Logic (ML), the direct consequence of the
infinity assumption is formal proof within the ML system of the existence
of at least one class that is a non-element, or a class that can belong to no
other class. This is a consequence of Quine's emendation of the naive
class abstraction rule '(3y){x)(xey = φY by compounding 0 with the
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requirement of elementhood (xeV, which is definable as 6(3z){χezY. For
any class y such that (χey =: xeV.~(xex)' holds is a class for which
'(z)(~(y tz)Y is also true. However, Quine's need to assume the existence
of a class that is a nonelement is explained more effectively by the
hypothesis of a finitary limit upon class representation in ML or upon the
effective domain of its quantifiable variables. Such a limitation can be
expressed as the notion that for «any finite list of class values supplied to
such variables, there may exist a natural class that cannot belong to such a
list. The finitary restriction does not prohibit the infinite extension of such
a list of possible values; it merely informs us that no such list can include
a class that is in fact the class of all the included values that do not include
themselves. The existence of such a restriction cannot be demonstrated
within ML logic itself, but its consequences are manifest in the incorpora-
tion of the theorem ζ~(By)(x)(xey = ~(xex)Y and in the fact that the matrix
{~(xex)' is irreducible to 'Fix)' form.

A close natural parallel to the domain restriction upon an untyped logic
such as ML is the bibliography paradox. We know that there can exist no
natural bibliography of all bibliographies that do not include themselves.
But if the existence of classes of bibliographies is defined only with regard
to constructible bibliographies, then it also follows that there can be no
natural class of bibliographies that do not include themselves. We can
preserve the concept of such a class by isolating it from the notion of a
constructible list—a list which if constructed would constitute another
bibliography in need of listing. Similarly, to preserve the concept of an
existent class of self-exclusive classes we must separate such a concept
from that of a deductive logic with a domain that includes such a class. In
short, we may reject Quine's definition of existence and posit at least one
existent class that falls outside the domain of an untyped logic.

It can be seen that this notion of a finitary restriction upon the values
of quantifiable variables is parallel to the generalization of the Liar
Paradox given as (2) above where the restriction is against the choice of a
constant-symbol with a specified referential value. In a system of logical
schemata such as ML, the proof of a restriction against an ζF(xY equivalent
for '~(xex)' can be formulated only as proof that no value exists for y such
that 'xey = ~(xexY. But if names of individual classes are added to such a
system, the restriction can be stated as the existence of at least one
dyadic condition upon x, namely '~(xexY for which no 'xea' or 'xeby or
ζxec\ . . ., equivalent exists, where 'a', (b', V , etc. are actual names of
classes. This lack of a proper name in such a logic for the class of classes
that satisfy (~(xexY, if such a natural class exists, can also be expressed
as a finitary limit upon any ordered series of classes. The class of all
such classes in the series will be a class within the series, and it will be a
member of the class of all classes that do not include themselves. But if
the class of all classes in the series is determined by a compound
expression 0 which contains ~(xex), it will prove to be a nonelement that
cannot belong to any further class and in this formal respect will bring the
series to a finitary end.
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2 In order to apply the evidence of Gόdel's Proof to issues involving the
domain of deductive logic it is necessary to focus attention upon the formal
nature of those systems to which a methodology of Gδdel numbering can be
applied. Such a methodology depends upon the initial assignation of
numerical values by application of a metamathematical function, both to
primitive expressions of the system and to well formed expressions defined
as concatenations of such expressions. It is a common-place of mathe-
matical practice to assign specific recursive values to functional variables
in such a way that the notational status of the variable as a variable is not
affected. But a predicative variable of a deductive calculus, ranging over
sets of numbers indeterminately, cannot retain its status as a primitive
variable of the deductive system if it is given a determinate value. In an
interpreted deductive system the variable-constant discrimination must
apply at all type levels; the distinction is enforced by the customary
definition of a propositional function as any sentence containing a free
variable. In typed logic the sentence cF(x)\ where ζF' and 'x' are both
variables, remains devoid of truth value as long as either variable is
unreplaced by a constant of the appropriate type. In a standard logic to
which a system of Gδdel numbering is applied, the constant-variable dis-
tinction is doubly reinforced in that no such ζF(x)' sentence can have a
determinate value if its Gδdel number is computed upon the basis of a
number assigned to 'F' in its formal status as a predicate variable. In
addition the constant-variable distinction at the level of primitive signs
must be understood to imply that in an interpreted deductive calculus each
predicative constant will possess a determinate value that is prior to any
use of the calculus. If Ά' is a predicative constant and '3' a numeral, then
the truth or falsity of the sentence M.(3)' will be independent of any effort to
assign Ά' an ad hoc predicative value.

To make this critical assessment of what is notationally implied for a
standard deductive logic subject to Gδdel numbering is to give the essence
of the analysis which follows. For certain accepted formulations of GδdeΓs
Proof are characterized by the use of predicative variables or constants as
if they were like the functional variables of mathematics in receiving
values upon the basis of ad hoc definition. For example, the deductive
system to which Gδdel [3] applies his original undecidability argument is a
typed logic with variables of type n assigned Gδdel numbers p , where p is
a prime number >13. To the variables of type 1, or numerical variables,
there will correspond ordinal numerals of the same type, either zero or
zero concatenated with one or more applications of the successor function.
However, Gδdel lists no predicative constants that correspond to variables
of types n, when n > 1. As a result, in the schematic sentences or
propositional functions of the language, numerical variables can be
replaced by numerical constants, but there are no such replacements
possible for variables of a higher type. However, any formulation of an
undecidable sentence upon which the Proof depends will require the
creation of a truth functional sentence containing a predicate symbol of
type 2 with a definitive value—a value that is recursively defined by a
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mathematical process. Strictly speaking, no such sentence can be for-
mulated in a deductive system with no predicative constants, since any
variable of the requisite type cannot surrender its formal status as a
symbol with the Gδdel number of a variable with an indeterminate meaning.
It is possible to add predicative constants to such a mathematical calculus
and revise the numbering function accordingly. But the difficulty now
emerges that such constants cannot be assigned recursive values arbi-
trarily. To formulate an undecidable sentence based on recursive cal-
culations it is necessary to use a dummy constant letter that is defined
as standing for a constant with the requisite value, assuming that such a
constant is contained within the supply of constants among the primitive
signs of the formal language. Such an assumption rests upon the hypotheses
not merely of an infinite supply of numerals for the deductive logic but of
an infinite and comprehensive supply of predicates of the requisite type.
However, the conditions of the undecidability argument suffice to cast
question upon the validity of such an hypothesis. For upon the assumption
of consistency and decidability for the mathematical calculus, it follows
that the predicate necessary for formulation of the undecidable sentence
cannot be found within the supply of predicates for the calculus. It is in
this context that the undecidability proof can be compared to the class
contradiction, and both difficulties taken as evidence against the hypothesis
of a total domain for the deductive system in question.

Using the informal exposition of GδdeΓs Proof by Nagel and Newman
[6] we can demonstrate the feasibility of this alternative interpretation. By
applying a process of metamathematical reasoning, the authors formulate
the following diagonalization function.

(10) (x) ~Dem (x, Sub (y,13,y)).

Such an expression "belongs to the arithmetical calculus," the authors
state, even as it conveys the information that for every x there exists no
sequence of formulas with Gδdel number x that constitutes a proof of the
formula obtained from the formula with Gδdel number y by replacing any
appearance of the variable with Gδdel number 13 (the variable ζy') with the
numeral for y. Since the logical equivalent of such a formula "has a Gδdel
number that can actually be calculated," we can replace ζy9 by the numeral
for such a number, and in this way obtain a formula that occurs within the
arithmetical calculus and expresses the claim that it is itself not demon-
strable. Since no consistent system can incorporate a proof either for such
a formula or for its negation, it follows that if the system in which such a
formula appears is consistent, the formula itself must be undecidable.

The source of notational difficulty in such an argument can be located
in the claim that an expression conveying the sense of (10) belongs to the
arithmetical calculus, a claim which can be interpreted to mean that an
expression of the type (11) can be formulated within the calculus.

(11) (x)(~A(x,y))

In (11) the symbol Ά' stands for some actual predicate of the calculus that
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is satisfied by x and y only if the arithmetical relationship indicated by
'Dem (x, Sub {y,13,y)Y in fact holds for x and y. Nagel and Newman include
no such predicate in their formal language and follow Gόdel in assigning
predicative values to second-level variables. From enforcement of the
variable-constant distinction it follows that if the mathematical function
(10) is representable in the formal calculus there must exist such a
predicate as Ά' with the requisite value. However, if this is the case, then
the expression (11), containing only ζy9 as a free variable, will have a
definitive Gδdel number that can be designated as p. If we replace 'x' by
the numeral for p, then the undecidable sentence (12) can be obtained.

(12) (x)(~A(x,p))

Such a sentence states that it is itself undemonstrable; thus (12) cannot be
false without contradiction and must be true though undecidable. However,
the formulation of such a sentence depends upon the existence of such a
predicate as Ά', with the requisite predicative value. Given the nature of
such a predicate, we cannot prove its existence in the formal calculus
except upon the hypothesis of a domain of predicates both infinite in number
and unlimited in its capacity to represent all recursively definable sets.

The question which is thus raised is whether or not the arithmetical
calculus can contain a comprehensive supply of interpreted predicative
constants. This question concerns the nature of deductive systems and
cannot be answered by metamathematical analysis. But it can be shown
that if the hypothesis of decidability is preferred to that of a total domain,
then the proof that (12) is undecidable can be taken as proof that (12) is ill
formed within the deductive system—or as proof that no predicate with the
value given to Ά' can be included in the formal calculus. The argument
that no such predicate exists can be understood to imply that no number p
can be the Gδdel number of (11). Since the predicative constants of the
system will each have a Gδdel number, we can arrange such predicates
according to the order of their Gδdel numbers. Beginning with the first
such predicate (A1

}

9 we find that upon the assumption of consistency and
decidability such a predicate cannot be the predicate that represents the
requisite arithmetical function. The same argument applies to ζA2

9, to
ζA3

9, and so on for all the predicates in the formal system.

The impossibility of finding an adequate representation of the diagonal
function that is crucial to GδdeΓs Proof is explained by the fact that the
Gόdel number of any such predicate must enter into the computational
process that is indicated by (10). The effect for recursive arithmetic is
comparable to a self-contradictory quantification over its own domain, as
in the case of the Class Paradox. However, such an indeterminacy does not
affect the computational process per se, since the diagonalization function
will yield a determinate set of numbers for any finite extension of the list
of predicates of the formal system. This is because we need not assume,
for any finite list of Gδdel numbers of predicates, that such a list will
contain the Gδdel number of the predicate that represents a function which
is computed upon the basis of such a list. Since any infinite extension of
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the list of formal predicates must run parallel to the infinite generation
of natural numbers, we have in the conditions of the Gδdel argument an
effective counter-example to the assumption that in the generation of any
recursively enumerable function, the Gδdel number for a representing
predicate will be subject to computation. Even if a process of computing
numbers inductively is infinitely extended, the numbers in question can only
contain Gδdel numbers for a finite list of formal predicates. But for any
such list of predicates the undecidability argument constitutes evidence that
it cannot contain a representing predicate for at least one recursively
enumerable function—the diagonal function in question. This means that
even upon the assumption that the desired predicate is contained within an
infinite supply of predicates, its Gδdel number will never be subject to
calculation, and it can never be determined through calculation whether or
not the number computed upon the basis of such a predicate does or does
not satisfy the diagonal function. In this respect the assumption of
determinacy for the recursive process is tied to the hypothesis of a finite
domain for any calculus to which it is related by a process of Gδdel
numbering. The contrary assumption of an infinite domain permits the
conclusion that even if an undecidable sentence in fact exists in the formal
logic, its Gδdel number cannot be subject to finitary computation.

The above argument suggests the presence of a restriction against the
actual formulation of an undecidable sentence in a typed deductive logic, a
restriction that is independent of the more general question of whether such
a sentence can exist. Yet, the notion that an undecidable sentence must
exist in a deductive system is an empty notion if it implies both that such a
sentence cannot be in fact formulated and that its Gδdel number can never
be inductively generated. In fact the effective application of a system of
Gδdel numbering to a deductive calculus clearly presupposes that if a
predicate exists among the primitive predicates of such a logic, it can be
found in some finite list of the predicates of the system, for example the
list composed of its Gδdel number plus predicates with a lesser Gδdel
number. From this point of view the restriction upon the domain of a
deductive calculus can be defined as the fact that well formed expressions
of the calculus can contain no expression that cannot be contained within a
finite list. As a consequence the domain of the calculus is restricted to
those individuals and sets of individuals whose formal representation can
be found within some finite list of constants of a given type. The restric-
tion is thus implicit in the concept of truth functional sentences that are
deduced from abstraction schemata by the replacement of variables by
constants. By contrast, the concept of recursive enumeration permits the
'inductive' representation (by assigning a recursive value arbitrarily to a
variable) of sets of numbers that advance beyond any finite list of 'deduc-
tive' representations of sets of numbers. There is of course no given set
of numbers that eludes deductive representation, since a deductive system
can be interpreted so as to contain a constant-symbol with the requisite
value. But if an inductive process is tied to a deductive system, as in the
case of Gδdel enumeration, it is possible to define recursively a set of
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numbers that is arithmetically definitive only upon the assumption of a
finitary limit to the domain of the associated deductive system.

3 To nineteenth-century logicians such as De Morgan and Peirce, a de-
ductive logic that accepts the law of Excluded Middle was regarded as
committed to a finite domain. When the ''universe of thought" is unlimited,
De Morgan writes, "contrary names are of little effective use: not-man,
a class containing everything except man, whether seen or thought, is
almost useless" ([1], p. 180). To Peirce the requirement of a finite domain
was associated with the concept of an enumerable collection, which he
defined as a collection subject to a principle of well ordering but which
contains a last unit ([7], 4.106). Peirce distinguished the domain of logic
from that of mathematics by associating the former with collections
incorporating a last unit, and the latter with collections that submit to a
principle of ordering but may lack a finite termination. For example, he
accepted for logic De Morgan's syllogisms of Transposed Quantity, which
include the following:

Some Xis Y
For every X there is something neither Y nor Z
Hence, something is neither X nor Z.

Such a syllogism expresses the fact that if there is an exact pairing be-
tween X's and something neither Y nor Z, and if the number of X's is finite,
then the fact that some X is Y will imply that for at least one X there is no
X with which it can be paired. Thus the pairing must be with something that
is not Z and yet cannot be X. If applied to the number series, the syllogism
yields an odd-even paradox.

Some odd numbers are prime
Every odd number has for its square a number not even nor prime
Hence, some numbers not even are not odd.

The paradox fails upon the recognition that the pairing of odd numbers with
their squares is an endless process; only upon the assumption of a last odd
number does it follow that such a number must have a square that is
neither even nor odd.

De Morgan's syllogism is of interest to contemporary students of logic
in that a correlation can be made between its assumption of a finitary limit
upon enumerable collections and the restriction that is implied for deduc-
tive logic by the practice of generating classes from multiplace conditions
upon a single variable. It can be easily shown that some classes must
satisfy the criterion by which they are generated. But if the series of
classes satisfying the criterion is of infinite length, then no class can be
singled out as representing all the classes in such a series. For example,
the matrix (~(xex)' can have no 'xey' equivalent if the class y in question
must satisfy '~(xexy and be followed in the series of ζ~(xex)' classes by
some class that includes y as well as any class that y contains. To add the
criterion of elementhood to the matrix '~{xexy, as in ML, is to legislate
the existence of a class satisfying '~{xex)' that contains all other classes
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in the series of ζ~(xex)' classes but cannot be followed by any class in
which it is itself contained. Such a class will satisfy Peirce's notion of a
last unit that defines the collection of (~(xexY classes as of finite length
and in this sense an enumerable collection of classes.

To speak of a limit upon the range of quantifiable variables in a
deductive logic is to imply the existence of a means for distinguishing one
class value from another, so that an ordered series of such values can in
principle be created. In the case of deductive schemata we cannot order
values according to lists of class names. But we are able to obtain proof in
the untyped schemata of ML that no value for y can exist which satisfies the
condition '(x)(xey =~{xex))\ In the case of GδdeΓs Proof the definitive
condition for the predicate Ά' that represents such a diagonal function as
'(~Dem (x, Sub (y,13,y))' is not stated within the framework of the system,
so there is no way to prove absolutely that such a predicate cannot exist.
But the status of the system as a typed mathematical calculus with
numerical constants will guarantee the existence within the system of a
series of interpreted predicate-symbols—a series that according to Gδdel
methodology must be subject to precise enumeration. Otherwise, predica-
tive claims about specific numerals will lack a determinate truth value.
Instead of a technique for distinguishing the condition that the class of
self-exclusive classes must satisfy, we have implicit in the system a
method for arranging the predicative functions of the type c{x){~A(x,y)y —or
whatever type is appropriate to the particular undecidability demonstration
— in an ordered series that corresponds to the ascending Gδdel numbers of
the Ά9 predicates. The expression of this type that would represent the
diagonal function (~Dem (x, Sub (y,13,y))' has the same paradoxical rela-
tionship to such a list of predicative functions that the name of the class of
all self-exclusive classes would have in an ordered list of the names of
such classes. If either list is taken to be of infinite length, then for any
expression we take to be the requisite expression it can be shown that the
expression is not the one that was sought. As a consequence, the choice of
any predicate Ά' as the representing predicate proves to contradict the
hypothesis of decidability for the calculus. Upon the hypothesis that any
list of Ά' predicates is an enumerable list, but with a last unit, the
decidability assumption can be seen to hold.

Such demonstrations of a finite domain for deductive logic are linked to
the definition of well formed sentences as concatenations of primitive signs
where the signs that name classes or predicative conditions must obtain
their specific meaning through an initial interpretation of the deductive
system as a whole. In the case of logical schemata the commitment is
merely to the logical domain per se; in the case of an interpreted mathe-
matical calculus it must be to the assignation of particular values to
particular constant-symbols of the calculus. It is for this reason that the
practice of assigning values arbitrarily to the predicative variables or
dummy constants of a typed deductive calculus suffices to blur the status of
such a system with respect to vital questions of logical domain. It is
a hallmark of inductive mathematical practice to assign meanings to
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functional variables upon the basis of recursive specification, as in the
locution of 'giving a value to a variable'. But it is a requirement for the
use of deductive systems that such an assignment of value be understood as
the replacement of the variable with a constant that already has the value in
question. When the assignment of value is not affected by a domain
restriction inherent in the deductive system, the two locutions can be
informally assimilated, as in the contemporary custom. But when the
domain question is at issue, as in the case of the undecidability argument,
it becomes necessary to make the notational discrimination.

Contemporary mathematical logic was developed in connection with
an abrupt and largely unquestioned rejection of the nineteenth-century
assumption of radical differences between the methodology of deductive
logic and of mathematical practice. Once quantification over an infinite
range of values was introduced into deductive logic, it became necessary to
make a basic discrimination, in Russell's words [10], between statements
about all such values and statements about any particular one—a distinction
already used, he tells us, in mathematics. The ail-any distinction is
required in order to deduce directly from general to particular statements,
as in the use of Hubert's [4] ideal proposition '(ή)(n + 1 = 1 + n)', to validate
the inductive rule 'n + 1 = 1 + n' in its application to any number. In this
historical context the fact that a quantification statement transforms a free
into a bound variable becomes its most definitive characteristic. Yet in
Principia and early systems of mathematical logic, the implications of such
a discrimination are not fully developed. For example, there is an im-
precision in Russell's account of variables that deserves close attention.
Strictly speaking, the deduction from a bound to a free variable is not a
logical deduction at all unless the free variable is given a specific value, in
which case it ceases to be a variable and functions in the manner of a
constant or actual proper name. Russell's 'ail-any' notion of the role of
bound and free variables does not stand close examination, but it is closely
related to his notational practice of supplying rules for inference by the use
of uninterpreted schemata, where the only way to show the deduction of an
ζFx' statement from ζ(x)Fx' is to represent the former statement as ζFx'
itself, with 'x9 taken to have an actual though unstated value. The result is
an anomalous role for the free variable (x9 as having an indeterminate
value and at the same time serving as the equivalent of a dummy constant.

In quantification systems subsequent to Principia the treatment of ζFx9

as a propositional function or open sentence was more rigidly affirmed,
as was the deductive principle of supplying a definitive list of primitive
symbols for the logical system and generating well formed sentences only
as concatenations of such symbols or reducible to symbol concatenations.
However, logicians have continued Russell's practice of treating free
variables as the equivalent of constant-symbols, especially at higher type
levels. The result is an incorporation into informal logical practice of the
untested hypothesis of an unrestricted domain. For the question whether
class variables can range over all natural classes can be submitted to
critical investigation only if it is recognized that in deductive systems with
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quantifiable variables, only actual predicates or class names can designate
specific sets or collections of individuals. The finitary restriction upon
any axiomatic logic that contains names of properties or sets is a basic
restriction upon what can be deduced from variable schemata by the re-
placement of free or bound variables by symbols with a definitive meaning.
However, any use of such a system—any logical deduction carried out by its
means—must result in what may be called a constructed sentence, or a
sentence definable as a finite concatenation of particular symbols. If the
rule is enforced that sentences expressing nonlogical truths cannot contain
free variables, then it becomes evident that such sentences must contain
actual predicates or class names, if they make definitive claims about set
membership. Although it may be claimed that the variables of a deductive
logic have an infinite range, their effective range in the generation of truth-
functional sentences is limited, in this sense, to the finite lists of sentences
that can in fact be constructed within the logic by a process of actual
deduction.

The evidence of the class contradiction and Gόdel's Proof tells us that
the hypothesis of a domain both infinite and ontologically total for standard
deductive logic, by contrast to basic number theory, is an hypothesis that
must be rejected, and for reasons that were familiar to nineteenth-century
logicians. By metalinguistic operations performed upon any finite list of
the class names of an untyped logic we can conceptualize at least one class
for which no such name can exist in the logic. And in the case of a typed
logic subject to a system of Gδdel numbering, our intuition of an un-
representable set of numbers can be supported by inductive proof that such
a set can in fact be recursively defined.
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