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POINT MONADS AND P-CLOSED SPACES

ROBERT A. HERRMANN

1 Introduction* Let P be any topological property. Recall that a space
(X,τ) is P-closed if X is a P-space and a closed subset of every P-space in
which it is embedded. As is well known [1] for P = completely regular,
normal, paracompact, metric, completely normal, locally compact, zero-
dimensional, a P-space is P-closed iff it is compact. Robinson [12] was
the first to show that a space (X,τ) is compact iff *X = \J{μ(p) \peX}, where
μ(p) =Γ\{*G\pe Ge r}. In [7], [9], it is shown that a space (X,τ) is
Hausdorff-closed (henceforth called H-closed) iff *X = [){μθ(p) \p e x],
where μθ{p) =^\{^{c\xG)\p e Ge Ύ]. A space (X,τ) is almost completely
regular [13] if for each regular-closed A ^ X (i.e., A = c\χ\n\xA) and xflA
there exists a real valued continuous map f:X —> [0,1] such that f[A] = {θ}
and/(Λr) = 1. in [9], it is shown that an almost completely regular Hausdorff
space {X,τ) is almost completely regular-closed iff *X = \J {μa{p) IPe X\
where μ (p) = Π{*( ί n tχdχG !) \pe Ge r}. The monad μ(p), α-monad μa(p) and
θ-monad μθ(p), in addition to characterizing various P-closed spaces, are
extensively employed to investigate numerous other important topological
properties. Of particular interest is the result in [6] which shows that a
filter base fg on X is Whyburn [resp. Dickman] iff Nuc 3 = Π{*^l F e 7$} c

ns(*X) = \J{μ(p) \pe X) [resp. Nuc 3 C nsθ(*X) = \J{μθ(p)\pe X}]. For other
recent results using these monads, we direct the reader to references [6],
[7], [8], [10], [11]. Elementary applications of the a and θ-monads and
simple basic propositions may be found in [7].

The major goal of this paper is to define a new monad, the w-monad,
and show that it characterizes the completely Hausdorff-closed spaces in
the usual nonstandard manner. A space (X,τ) is completely Hausdorff
(sometimes called Urysohn or functional Hausdorff) if for distinct p, qe X
there exists a map fe C(X), the set of all real valued continuous functions
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on X, such that f(p) Φ f(q). Example 4.13, [1] is that of a nontrivial com-
pletely Hausdorff-closed space which is not H-closed while example 4.19 is
that of a nontrivial completely Hausdorff-closed, regular-closed space which
is not compact. Thus a slight weakening of the completely regular axiom
yields an important P-structure which has been subjected to intense in-
vestigations [5], [15]. In the last section of this paper, certain applications
of our major result are given which indicate the inherent economy of effort
associated with nonstandard methods.

As far as the structure of the nonstandard model *9W is concerned, we
shall assume that the superstructure 9W = (U, e, pr, αp) is that constructed
by Machover and Hirschfeld [11], even though any appropriate set theoretic
superstructure will suffice. We shall, unless otherwise indicated, assume
that *9W = <*!t, *e, *pr, *αp> is an enlargement of 9W [10], [11], [12]. As
usual, if A e *U, then *A = {x | [x e *U]Λ [X *e A]} and for 3 c P{χ)y the power
set of X, we let Nuc 3 = Γl{*^l^e3}.

2 The w-monad Let (X,τ) be a topological space. An open filter base 3
is completely Hausdorff if for each peX which is not a cluster point of 3
there exist an open neighborhood G of p, F e 3 and feC{X) such that
/[G] = {l}and/[F] = {0}.

Definition 2.1 For each p e X, let the w-monad of p be

Mw(/>) =Π{*/"1[μ(/(/>))]l/^C(X)}.

Observe that for each peX, μ(p) c μw(£) and that if τw is the weak
topology generated by C(X), then μ'(p) = μw(£), where μr(P) is the monad
generated by the topology τ w . The following result is obtained directly from
Definition 2.1 and the nonstandard theory of filter bases on a meet-
semilattice of sets.

Theorem 2.1 For a space (X,τ), an open filter base ^ is completely

Hausdorff iff μ(p) Π Nuc 3 = 0 implies that there exists anfe C(X) such that

*f[β(P)] = Wand */[Nuc 3] = {θ}.

Theorem 2.2 Assume that 3 is a completely Hausdorff filter base on X.
Then

μ(p) Π Nuc 3 Φ <P iff μw(/>) Π Nuc 3 Φ φ.

Proof: The necessity is obvious. For the sufficiency assume that
μ(P) Π Nuc 3 = φ. Then Theorem 2.1 implies that there exists a map
fe C(X) such that *f[μ(p)] = {1} and */[Nuc 3] = {θ}. Since f(p) = 1, then
μ(f(P)) Π */[Nuc3] = φ. Hence */~1[μ(/(/>))] Π Nuc 3 = Φ implies that
μw(/>)ΠNuc 3 = 0.

Corollary 2.2.1 A completely Hausdorff space {X,τ) is completely Haus-
dorff-closed iff for each completely Hausdorff filter base 3 there exists
some pe X such that μw(£) Π Nuc 3 ^ 0 -

Proof: This follows from Theorem 4.9 in [1].
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Recall that if g is an ultrafilter on X, then Nuc 3 is called an
ultramonad. Also, if we let Fί I {q} = {x \ [x c X] Λ [q e *x]}, q e *X9 then we
know that Nuc g is an ultramonad iff there exists some q e *X such that
Nuc g= Nuc Fil{#}= NF{#}.

Theorem 2.3 For any q e *X and peX, NF{#}n μ^(p)φφ iff for eachfe Q{X),
μ(/(/>))Π*/[NF {<?}]*£>.

Proof: Since the necessity is obvious, then assume that μ(f{p))Π
* / [ N F M 1 * 0 for each feC(X). Now for each /e C(X) it follows that
*/[NF{tf}] = NF{*/(tf)}. Consequently, μ(f(p)) Π */[NF{#}] * 0 implies that
*/[NFfe}]Cμ(/(/))) for /eC(X). Hence NF{g}Cμw(f) and the proof is
complete.

We now come to the major result:

Theorem 2.4 Let (X,τ) be a topological space. Then every completely
Hausdorff filter base on X has a cluster point in X iff *X = \J{μ^{p) \p e X}.

Proof: For the necessity, assume that every completely Hausdorff filter
base on X has a cluster point in X and *X Φ \J{μ^(p)\peX}. Thus there
exists some qe *X such that for eachpeX, NF{#}ίΊ μw(p) = Φ since μw(ί) is
a filter monad. Consequently, for e&chpeX there exists fpe C(X) such that
*/p[NFMl (Ί μ{fp(P)) = 0. Therefore, for each p e X, there exist fp e C(X) and
Upe Fi I {̂ } such that

*(fp[Up]) Π μ(/^)) = Hc\^fp[Up]) Π μ(/^)) = 0,

where, as usual, "c l* " denotes the closure in <#. Regularity now implies
that *(c\*fp[Up\) Π μθ{fp(p)) = 0 [6], p. 163. Hence for the set monad
μ(d*j£[ϊ0, we have that μ(cl^/?[ί7?]) Π μθ(fp(p)) = ψ. Normality of H now
yields, μ θ (c l^[^]) Π μθ(fp(p)) = 0 [6], p. 163. From continuity, we have
that μ(p) Π */^"1[μ0(cl^[ί/?])] = 0. Observe that there exists a continuous
map hp'.β -* k (the so-called Urysohn map) such that *hp[μθ(f (/?))] = {1} and
*hp[μθ(c\Λfp[ϋp])] = {0}. Hence we have that Hhpfp)[μ(p)] = {1} and
*(V/>) [ ^ ' [ μ ί d ^ l ^ ] ) ] ] = {0} since μθ(c\φ[Up]) = μ(c\*fp[Up]). Now by
simply observing that for each^eX, Up

 C//,"
1[/^[C^]] C/^~1[G!] for any open

set G 3 c\fifp[Up], we have, using the fact that Fι\{q} is a filter, that A =
Π ί ^ ' t M c U / p t ^ ] ) ] ^ 6 - ^ } * 0 Moreover, the continuity of each fp and the
nonstandard theory of filters on a meet-semilattice of sets imply that
A = Nuc d$, where © is an open filter base.

We now show that © is a completely Hausdorff filter base. Let
μ(p) Π Nuc© = 0. Then there exists a map hpfpeC(X) such that *hp*fp[μ(p)] =
{1} and

*VΛlNuc«] c *v/?[*//Γ1[μ(cUΛ[^D]] = {o}.

Therefore, from Theorem 2.1 we have that © is a completely Hausdorff
filter base. However, since μ(p) Π Nuc © = Φ for each /> e X, then we have a
contradiction and the necessity follows.

The sufficiency is immediate from Theorem 2.2 and this completes the
proof.
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Corollary 2.4.1 A completely Hausdorff space X is completely Hausdorff -
closed iff *X = (J W/>) \peX}.

Corollary 2.4.2 A completely Hausdorff space X is completely Hausdorff -
closed iff for each filter base g on X there exists some pe X such that
μjp) Π Nuc 3 Φ P.

We say that a space (X,τ) is Urysohn if for distinctp, q eX there exist
neighborhoods Np, Nq of p and q respectively such that c\χNp Π c\xNq = <jb.
It is well known that a space X is Hausdorff [resp. Urysohn] iff for distinct
p,qeX, μ{p) Π μ(q) = 0 [resp. μ̂ (/>) Π μ5(?) = ψ [7]].

Theorem 2.5 4̂ s/xzc£ (^,τ) zs completely Hausdorff iff for distinct p, qe X,
μw(/>)Πμw(^) = 0.

Proof: Assume that X is completely Hausdorff. Then there exists feC(X)
such that f(q) Φ f(p). Hence μ (/(/>)) Π μ(/(tf)) = 0. Thus */"x[μ(/(/>))] Π
y ^ μ ί / t e ) ) ] = 0 implies that μw(/>) Π μw(^) = 0. Conversely, assume that
X is not completely Hausdorff. Then there exist distinct/), qeX such that
for each feC(X), f(p) = f(q). Consequently, μ(/(/>)) = μ(/te)) for each
/ e C(X) implies that μw(p) = μw(^) and the proof is complete.

3 Applications It should not be construed from the fact that the
following results are easily verified that they are essentially trivial. On
the contrary, it is an indication of the strength of Theorem 2.4 and the
inherent economy of effort associated with the nonstandard monadic method.

Let τw be the weak topology generated by C(X). As previously ob-
served, for e&chpeX, μ'(/>) = μw(/>), where μ'(/>) is the monad generated by
τw. Thus one obtains as an immediate consequence of Theorem 2.5 that a
space (X,τ) is completely Hausdorff iff (X,τw) is Hausdorff. It is well known
that τw is a completely regular topology.

Theorem 3.1 If (X,τ) is a topological space, then *X = \J{^(p)\pe X} iff
(X,τw) is compact.

Proof: Simply apply Robinson's [12], p. 93 criterion for compactness.

Corollary 3.1.1 A completely Hausdorff space (X,τ) is completely Haus-
dorff-closed iff {X,Ί^) is compact.

Corollary 3.1.2 For a completely Hausdorff space (X,τ), let ® = {f~1[G]\
[feC(X)]*[G is open in <#]}. Then (X,τ) is completely Hausdorff-closed iff
every cover <$ c © of X has a finite subcover.

Proof: Either use the fact that @ is a subbase for τw or apply Theorems 4.1
and 4.3 [8], where we note that Theorem 4.1 holds in any enlargement for
the nonstandard extension of any standard subset of X.

Corollary 3.1.3 A completely Hausdorff-closed space is compact iff it is
completely regular.

Proof: A space (X,τ) is completely regular iff r = τw .
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Remark: In [15], Stephenson shows that a completely Hausdorff space is
Stone-Weierstrass iff it is completely Hausdorff-closed. Consequently,
Corollary 3.1.1 also follows from the known result, which has been
previously established by application of the Stone-Cech compactification,
that a completely Hausdorff space is Stone-Weierstrass iff (X,τw) is
compact.

Theorem 3.2 A completely Hausdorff-closed space is H-closed iff it is
nearly-compact iff it is almost completely regular.

Proof: Observe that completely Hausdorff implies Urysohn and an H-closed
Urysohn space is nearly-compact. Moreover, a nearly-compact space is
almost completely regular. Now assume that completely Hausdorff-closed
(X,τ) is almost completely regular. It is easily verified from the defini-
tions that for any almost completely regular space X, μw(P) c μa(p) for
each£ eX. Moreover, if feC(X) and peX, then *f[μθ(p)] c μθ(f(p)) (i.e.,/
is ^-continuous) [8]. Since <R is regular, then μθ(p) a *f~ι[μ(f(P))] for each
peX. Consequently, μθ(P) = μw(£) for e&chpeX. Theorem 4.2 now implies
that X is H-closed [6], [7], [8] and this completes the proof.

Corollary 3.2.1 A space (X,τ) is almost completely regular [resp. com-
pletely regular] iff for each peX, μw(/>) = μa(p) [resp. μw(/>) = μ (/>)].

Corollary 3.2.2 For any space (X,τ) and pe X, we have that μθ(p) c μw(/>).

Theorem 3.3 If *X = \J{μ^(P) \P € X}, then X is pseudocompact.

Proof: Let qe*X. Then qe μw(β) for some peX. Hence for each/eC(X),
*/(#) £ μ(f(P)) c Mo, the set of finite elements in *X. Consequently,
*(/W) C M O implies that f[x] is bounded.

Theorem 3.4 A completely Hausdorff-closed space X is homeomorphic to a
quotient of *X.

Proof: This is obvious since {μw(/>) \p e X} is a partition of *X.

The Q-topology $ on *X is the topology generated by {*G|Ge *τ} as a
base. Notice that since Theorem 2.1 [6] does not require a highly saturated
enlargement, then μw(/>) is Q-open for e&chpeX. Consequently, if (X,τ) is
completely Hausdorff-closed, then the surjection ft:(*J*f,£) —> (X,τ) defined
by h[μw(p)] = \p\, ptX, is Q-continuous. Furthermore, μw(p) is Q-closed
for each pe X since Si is regular.

In [3], Button establishes the following interesting results. A space
(X,τ) is regular [resp. Hausdorff, discrete] iff (*X,£) is regular [resp.
Hausdorff, discrete]. If (X,τ) is completely Hausdorff, then (*X,£) is totally
separated. In an &rsaturated enlargement, (X,τ) is regular iff (*X,£) is
completely regular and each G§e ̂  (i.e., a P-space). Thus any nonregular
completely Hausdorff-closed space is the continuous image of a totally
separated nonregular space. Moreover, any completely Hausdorff-closed,
regular, noncompact space (F,τ), such as example 4.19 [1], is the con-
tinuous image of a nondiscrete, totally separated, completely regular
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P-space (*Γ,$). Indeed, if there are no measurable cardinals, then we may
also assume that (*Γ,$) is not extremally disconnected.

Finally, we point out that the w-monads may be used to characterize
c-maps [5]. It is not difficult to show that a map f:X-* Y is a c-map iff
*f[β(p)] c μw(/(ί)) for each peX. Further, Lemma 2.2 in [5] may be
improved upon. Simply observe that if f:X —> Y is a c-map and Y is almost
completely regular, then Corollary 3.2.1 implies that / is almost-
continuous; which implies that/is 0-continuous.
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