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SCOTT'S MODELS AND ILLATIVE COMBINATORY LOGIC

M. W. BUNDER

Introduction In most work on illative combinatory logic the equality
predicate is assumed to have properties that include:

(4) IfX = Y, then λuX = λuY.

and

(77) If u is not free in X, λu(Xu) = X,

which together are equivalent to the extensionality property

(ζ) If Xu = Yufor all u not free in X and Y, then X = Y.

Scott's model Φoo for pure combinatory logic (see [8]) satisfies all
these properties, but his graph model in [10] does not satisfy (77) (or (ζ)),
(ξ) is satisfied but Scott seems to have some doubt about it.

In [7] where Kleene sets up a formal system in which intuitionistic
mathematics can be developed, (ξ) and (77) are not used. Kleene defines λuX
only if X is a " te rm", λuX is then a "functor" (which is not a term). In
his formal system equality is defined only over terms so that (ξ) and (77)
are meaningless.

It is therefore of some interest to see to what extent combinatory logic
can be applied if it lacks these rules. We show in this paper that the
results in [l]-[5]—the basing of propositional and (higher order) predicate
calculus and set theory on combinatory logic—go through with only minor
modifications if a weak equality (one without (ξ) and (77)) is used. We also
investigate how much of the illative system developed in these papers can
be interpreted in models such as Scott's model in [9]. Seldin has done this
for a similar system which since then, he has proved to be inconsistent.

A system of rules If we take as primitive rules:

Rule Eq If X = Y, then X H Y.
Ξ ZXY, XU h YU.
DTΞ If A, XU \-YU where U is an indeterminate not free in A, X or Y,

then A, LX*\-ZXY.
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H XhHX

HΞ FXHY, L X H H ( Ξ X F ) ,

where L is FAH or FHH,1 and we take as axioms

LH HFHHH
LA HFAHA,
where the = in Rule Eq is the weak equality, we can develop propositional
and predicate calculus and set theory as in [2] and [3] if we amend a few of
the proofs. As an illustration we amend the proof of Theorem 5 of [2]: We
have by HΞ

F(KX)H(KF), L(KX)HH(Ξ(KX)(KF))

so to prove

I D H F , H I H H ( I 3 Ϋ)

we need

HX,XO> HFHF(KX)H(KF) (1)

and

HXHL(KX). (2)

Now by Rule Eq,

HX, AUhBH(KX)U

so an application of DTΞ gives (2).

X => HF is H(ICX)(K(H7)), so

1 3 HF, XhHY

and by Rule Eq

XO> HF, KXU\-BH(KΫ)U

so (1) follows by (2) and DTΞ.

A finite formulation If however, we use a finite formulation as in [1]
(with L = FAH or FHH), one vital step in the proof of DTΞ from the axioms
fails if we do not have (η) and (ξ)2 and in fact it is possible to prove
theorems with DTΞ (for example t-ΞA(BA(SKS))) which are not provable
using the axioms without one of (ξ) and (η). The proof of DTΞ in [1]
proceeds by induction on the number of steps in the proof of YU from Δ and
XX] and we reconsider the case where YU is obtained by Rule Eq. We have
by the inductive step:

Δ H Ξ X Z ,

we have ZU = YU and we want to conclude

Δ H Ξ I F
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and we use (ξ), (μ) {If X = Y, then VX = VY) and (Eq). If we add the extra
rule:

If YU = ZU, then LX, ΈXZ i-ΞXF,3

this problem is overcome, but we have to then consider the case where this
new rule is used in the proof of YU from Δ and XU. We then require:

If YU = ZU, then LX, LX,, ZX^Xu^ZXZ)) ^ΈX^λu.CEXZ)).

etc.

The following generalized version of Rule Eq encompasses all such
rules:

Rule EqΞ If YU = ZU where U is not free in Xl9 Y, or Z, then for all n^O

and all terms Xγ . . . Xn and variables vι . . . vn_ι LX, LX\ . . . \-Xn,

ΣXnίλVn^CZXn-ΛλVn^ λZ^Ξ^F) . . .) H ΞX^λZvΛΞX^λZ^ . . .
λv^X.Z) . . .).

Note that for n = 0 this is Rule Eq. Rule EqΞ is implied by Rules Eq
and (ξ) or by Rules Eq and DTΞ and it satisfies the model of [10].

Interpretations in Scott's model in [9] Now we look at the interpretation
of our illative system in this model. If we interpret ΈXY as Vu(~ueXv
ueY) (in Scott's notation, using Scott's quantifiers and connectives which
have far stronger properties than those in [2]) and interpret A as a
universal class we have an interpretation similar to that developed by
Seldin. Thus Rules Eq, Ξ, DTΞ, HΞ (both for L = FAH)4 and H and Axiom
LA hold in the model. DTΞ and HΞ for L = FHH however clearly do not
hold in the model as they would require VH and so Vu.Huv~Hu, which
leads to a contradiction as in [6].

Of the work in [2] we therefore cannot interpret the sections dealing
with conjunction and disjunction as these are defined in terms of quantifica-
tion over H. The standard false proposition ΞHI of [2] must be interpreted
as Vw.w which is not a proposition in the sense of [8] (i.e., it is not such
that Vu .uv ~Vu .u). The alternative standard false proposition Q(KI)(BI) of
[2] (this assumes the introduction of an equality Q with appropriate
properties) is a proposition in the sense of [9] if Qxy is interpreted as
X = F. Thus the strong negation of [2] can be interpreted in the model. As
Seldin shows that Peirces law holds in the model, we have that the full
classical system of [2] can be interpreted in the model, while the
intuitionistic subsystem cannot.

In the development of the Zermelo-Fraenkel and Bernays set theories
in [3], A and M (the class of sets) are identified, so as we had to identify A
and E to interpret the predicate calculus, it is clear that no substantial part
of either system can fit the model. For the G'όdel set theory developed in
[3], however, A and M were not identified and a number of axioms used
there hold in the model. We would, however, require an interpretation of M
in the model for a substantial part of the set theory to hold in the model.
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NOTES

1. In [1] and [2] quantification over H was possible by means of the Axiom hFAHH, however
this is inconsistent if A = E (a universal class) or with certain other axioms. In [4] the use of
I-FAHH in the proof of DTE was avoided by taking L as primitive however this approach does
not allow the derivation of the properties of conjunction and distinction as they are defined in
terms of Ξ in [2]. The approach used here is that of [5].

2. Using only (£) we can prove:

If A, X \-Y, then if u is not free in Δ, Δ, L(λuX) \-'Ξj(λuX)(kuY).

When u is not free in X or Y this gives us the deduction theorem for P (implication) as in [ 1 ],
but without (17) this is of little use when u is free in X or Y.

3. A stronger version of this:

IfXU= YUandZU= VU, then ΈXZV-ΈYV,

suggested by J. P. Seldin lead the author to this rule and eventually to Rule EqH below.

4. As for A = E, V and L can be identified, Scott's deduction theorem for F in [8] is virtually
identical to that in [2], which was first published in the authors dissertation in 1969.
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