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Introduction When we write (Vu).X(u) DO Y(u) in predicate calculus, we

require that X(u) O Y(#) makes sense for all # in the range of quantifica-
tion. This requirement for every pair of unary predicates X and Y in the
calculus may impose a strong restriction on the range of quantification of
the system. Hence there may well be Xs, and Ys in the system for which
X(u) O Y(u) holds or at least makes sense for one or more us not in the
range of quantification.

This problem, for unary predicates, is overcome by the use of Curry’s
restricted generality = (see [1]) which has the rule:

Rule = =XY, XU YU,

This rule does not restrict the Us we use to any particular range.
(Note that we write XU instead of X(U), also we will usually write Xu D, Yu
for ZXVY.)

If, however, X and Y are binary predicates we find that the problem
arises again. If we want to represent ‘“Whenever XUV holds, YUV holds”’
using =, the best we can do is what is suggested in [2], i.e., to write:

X u Dy Xuv Dy Yuv),

where X, is a range of quantification. Taking A for X, as a common range
of quantification for all such Xs and Ys may well be as inappropriate as it
was above and finding an X, and X, may not be possible for each X, so it
seems reasonable to introduce a generalized version of =. If we introduce
a = such that

EXY, XU, Uy, YU, U,

—n

and similarly Z%, ... E" ... all such problems are solved. If we now want
to represent whenever XUV and YUV hold, ZUV holds we can use

Xuv A Yuv Oy,0 Zuv

provided we have the conjunction a. If, however, we want to leave open the
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possibility of defining A in terms of = and other notions (as in [4]) we have
to have some other way of representing this.

We therefore introduce a version “Z” of = that generalizes it in two
ways. These are brought out in the following rule:

Rule *2" *E"X, ... XV, XU, ... Uy ..., X3 Uy... U, mYU, ... U,.
where & and » are non-negative integers.

We show below that with axioms similar to those given for Z in [3], we

can prove a Deduction Theorem for *Z” similar to that proved for = in [3].

Rule *=" and the Deduction Theorem for kzn We should note that as it
stands we have not only generalized Rule = (which is Rule k=" with

B =mn = 1) to cases where 2 > 1 and % =1, but also to °=”, a generalized

universal generality (Z' corresponds to II in [1]) and to *Z°, a generalized
implication (%=° corresponds to P in [1]). In most systems we will not need
a Rule *Z" for each k, ne N. If we have Rule *Z” for k and » sufficiently

large we can define:
PRI S . LAy B ... (Kxs)(Ky)?
and
oml oo L ax A B xR L (KT) L. )y
where there are j Ks in (K(. . . (K7) . . .)) and where T is any theorem.
These with Rule *Z” will give us Rule ‘Z/ for i < % and j < n.

Given a small number of axioms for =, and either H (‘“‘HX’’ represents
“X is a proposition’’) or L (““LX” represents ‘X is a first order
predicate’’), Rule Z can be reversed as follows, (see [3] and [5]):

—

The Deduction Theorem for =. If A, XU YU where A is any sequence of
obs and U is an indeterminate not free in A, X, ov Y, then A, LX -EXY.

If we write “L,X’’ for ‘X is an m-ary predicate’’, we can set up
similar axioms to prove the following Deduction Theorem for ke,

The Deduction Theorem for*=" If A, X,U, ... Uy ..., XU, ... U, YU,
... U, where U,, . . ., U, are indeterminates not free in A, X, . . ., X ov Y
and A +L,X; for 1 <i<k, then AF*E"X, . . . X,Y.

The axioms required for the proof of this (numbered as in [3]) are:

Axiom 2 FL,X, Ok o LpXe Dxp XUy o Uy o vy XUy - L Uy
2
Dul,...,unxiul e Uy

1. Kis a combinator with the property KXY = X for all X and Y.

2. For expressions involving O, Dy, , Dy, .. 4, €tC. we assume association to the right.
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Axiom 3 FLp%; Oy .0 LXp D HYy Oy y DXy oty o, XpUy L Uy,
Dul...uny

Axiom 4 FL,x; O ... Lyxg Dup (Xy8y v Uy ooy XUy L Uy Du“m’un
Wilhy oo Unlyeo Vs ooy Wyl oo Uy o Vg Dy oy VU oo Ul . Ug)
le,,_,’wyt,},[{xlu1 ce Uy e G KRUy e Un Dy WUy U Uy %)
v ltquy )by R ey o XUy U Dy W U
2 O (I ) = P C Y TR R R
Dutyeeryun Yt - Uity o) L (Guy L w)]

Axiom 6 +x DO, Hx.

In [3] and [5] we also needed a universal class E to express these
axioms, here this is not necessary and so E and Q for equality (in [3] we
defined E to be WQ) become optional extras. If Q were included we could
add the following axioms to the above:

~WQK, WQS, -WQ*=", ~WQQ, -waL,,
Axiom 1 ~WQx D, WQy D, WQ(xy).
Axiom 5 FL,%; Oy .. LpXp Dxp X1y o Uy, oy XUy L U

Oty un WU, for 1 <i<k.

Uiy

The following theorems follow from Axioms 2, 3, and 4:

Theorem 1 L,x, ..., LoXp=X,0 . o .ty o o oy Xpthy o . . Uy

wtyers iy itht o o o Un, for 1<i<k.
Theorem 2 L,x,, ..., L,x%, YFx 0, .oty oo o, XpU, . .. Un Dy oo up Ve
Theorem 3 L,%), . . ., Lpxp, (% o 0ty o o oy XpUy o o Un Dy L ay
Wity Ul U ) o (Bt )y e (K Uy Uy L, Xy
Un Dy Wrthy + - Uttty oo tn) oo (g o)), [y oty o,
XpUy .. . Uy, Dul,m,u%{wlul. R T W TR P V8
Dyl,...,vqyul ce Uy .l Z)q}]
FX U Uy ey XUy U Dy VU (U .. w,)
(o, . .. ).

(With n = & = 1 these are identical to Theorems 1, 2, and 3 of [3]).

1—

To prove Theorem 1 from Axiom 2 we require only Rule 'E', to prove
Theorem 2 we need Rule '=', Rule '=° (i.e., Rule P) and Axiom 6, but to
prove Theorem 3 we need Rules ‘=, '='*', and’=%

Proof of the Deduction Theovem for *=" Let there be p steps Y, U, . ..
Upy oo s Uy ... U, = YU, ... U, in the proof of YU,... U, from A and
X, U0,...0, ... XU,...U, We show by induction on m that provided

ArL,X; for 1<si<k,
ARRE"X, ... X,Y,, for 1< m < p. (1)

There are five cases to consider (assuming ~WQU is included):
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1. Y, is X; for some 1 i<k,

2. Y,U,...U,is a constant (wrt U, ..., U,), i.e., an axiom or a part
of A,

3. Y,U,...U,is WQU;,

4, Y,U,...U,is obtained from Y;U, ... U, by Rule Eq.,

5. Y,U,. ..U, is obtained from Y; U, . . . Uy, . . ., Y;U,. ..U, and
Y;U,. ..U, by Rule "Z" where i, . . . %, j < m.

Cases 1, 2, and 3 involve no inductive hypotheses and so take care of
the m = 1 step, but they are also applicable when m > 1. In the inductive
step the theorem is assumed for Y, with # <m. Cases 1 and 2 are given
directly by Theorems 1 and 2 and Case 3 follows from Axiom 5 by applying
Rule 'E' & times.

Case 4: If A+Y,U,. .. U, follows from A ~Y;U, ... U, and
Y,Ui... U =Y,U,...U (0<7<n),
then it follows that Y, = Y; so that:

Xty oo v Uy oo XUy o U, D,
Xpthy o o o Un Dy ug¥my - o Uy

hvan Y1ty o o Uy = X Uy Uy
Lees

the result follows.

Case 5: Let Y,U, ... U, be obtained from Y, U, ... U, ..., Y;,;U ... U,
and Y;U, . . . U, by Rule "E® (with ¢,, . . ., 4,, j <m, t <k, and g <n). Then
Y;U, ... U, must have the form

WU, ... 00,...0,.. ,W,U ... 0U,...79,°2 ZU, ... U, .. .7

Vleo .Uq
where

WoUy .. . UVy. .. Vg= YipUl...U,,for some
Vi ..., Vygandall p, 1 <p<it,

(N.B. each V, may involve U, . . . U,) and
ZU .. UV, ... V= YU, ... U

By the inductive hypothesis we have:

AFX Uy oo Uy ooy Xl o Uy Dy, Wotts UV T,
for 1<spst
and
AgbXguy oo Uy oo Xy o U Dy
(Wit oo oty oo o0y oy, Wity o %0 L L
Pupiivg Ly Uy V).

3. If '29 for t < k and q < n is defined in terms of K=" in the way suggested above, we need only
consider uses of Rule ¥Z" itself.
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Thus taking Theorem 3 with V, for tu,...u,(l1<7 <gq)and Zfor Y
we obtain (1).

Note that in proving this deduction theorem we have used Rule imi only
for ¢ < k and j < n except perhaps in the proof of Theorem 3 where we used
VZ'* where ¢t < k. If we have Rule *=" for all non-negative integers 2 and »
we clearly also have the Deduction Theorem for k=" for all k and n. If we
have Rule ‘=’ only for ¢ < # and j < n where # < n we can prove the
Deduction Theorem for ‘= for alli <k and j < n. If, however, 2 =#n we can
only prove the Deduction Theorem for ‘=l for i <n - 1 and j < n because of

our need of Rule 'Z!*' for t <.

Also note that L, has been left completely unspecified in the axioms. It
could represent the class of n-ary predicates ranging over individuals, i.e.,
L,=F,A .. .AH, over other predicates, e.g., L, = F,(FAH)(F,AAH) . . . H,
over propositions, i.e., L, = F,H. . . H, over functions, e.g., L, =
F.(FAA)(F,AAA) . . . H or over any combination of these, e.g., L, =
F.H(FAA)(F,AAH) . . . H.

Thus as soon as we decide on a definition of L, in Axioms 2, 3, 4
(and 5) we have a deduction theorem for k=" in terms of that L,. Of course
certain choices of L, will lead to an inconsistency (such as Curry’s
paradox for L,=WQ-—see [1]). It is also possible, as it was in [3], to do
without Axiom 2, but this would be at the cost of complicating Axiom 3
somewhat.
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