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GENERALIZED RESTRICTED GENERALITY

M. W. BUNDER

Introduction When we write (Vu) .X(u) i> Y(u) in predicate calculus, we
require that X(u) D Y(u) makes sense for all u in the range of quantifica-
tion. This requirement for every pair of unary predicates X and F in the
calculus may impose a strong restriction on the range of quantification of
the system. Hence there may well be Xs, and Fs in the system for which
X(u) 3 Y(u) holds or at least makes sense for one or more us not in the
range of quantification.

This problem, for unary predicates, is overcome by the use of Curry's
restricted generality Ξ (see [1]) which has the rule:

Rule Ξ EXF, XU\-YU,

This rule does not restrict the Us we use to any particular range.
(Note that we write XU instead of X(U), also we will usually write Xu ^>u Yu
for ΈXY.)

If, however, X and Y are binary predicates we find that the problem
arises again. If we want to represent "Whenever XUV holds, YUV holds"
using Ξ, the best we can do is what is suggested in [2], i.e., to write:

XγU^>u (X2uv ^>v Yuv),

where Xγ is a range of quantification. Taking A for Xλ as a common range
of quantification for all such Xs and Fs may well be as inappropriate as it
was above and finding an Xγ and X2 may not be possible for each X, so it
seems reasonable to introduce a generalized version of Ξ. If we introduce
a Ξ2 such that

Ξ2XF, XUιU2\-YUιU2

and s i m i l a r l y Ξ 3 , . . . Ξw . . . al l such p r o b l e m s a r e solved. If we now want
to r e p r e s e n t whenever XUV and YUV hold, ZUV holds we can use

Xuv Λ Yuv ^>u, v Zuv

provided we have the conjunction Λ. If, however, we want to leave open the
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possibility of defining Λ in terms of Ξ and other notions (as in [4]) we have
to have some other way of representing this.

We therefore introduce a version kΈn of Ξ that generalizes it in two
ways. These are brought out in the following rule:

Rule*Ξw kZnX1 . . .XkY.X.U, . . . Un, . . .9XhUι . . . Un hYU, . . . Un.

where k and n are non-negative integers.

We show below that with axioms similar to those given for Ξ in [3], we
can prove a Deduction Theorem for kΈn similar to that proved for Ξ in [3].

Rule kΈn and the Deduction Theorem for kΈn We should note that as it
stands we have not only generalized Rule Ξ (which is Rule Ξw with
k = n = 1) to cases where k ^ 1 and n ^ 1, but also to °ΞW, a generalized
universal generality (°Έι corresponds to Π in [l]) and to Ξ°, a generalized
implication CΈ° corresponds to P in [1]). In most systems we will not need
a Rule kΈn for each k, neN. If we have Rule kΈn for k and n sufficiently
large we can define:

'SΓ1 = \xx . . . λXiλy 'Z'iKxd . (KxMKy)1

and

' " ' Ξ 7 ' = λx1 . . . λXi^λy iΈjx1 . . . Xi-AKi. . . (KT) . . .))y

where there are j Ks in (K(. . . (KT) . . .)) and where T is any theorem.

These with Rule kΈn will give us Rule *Ξ7 for i ^ k and j ^ n.

Given a small number of axioms for Ξ, and either H ("HX" represents
"X is a proposition") or L ("LX" represents "X is a first order
predicate"), Rule Ξ can be reversed as follows, (see [3] and [5]):

The Deduction Theorem for Ξ. If Δ, XU \-YU where Δ is any sequence of
obs and U is an indeterminate not free in Δ, X, or Y, then Δ, LX i-ΈXY.

If we write "LnX" for "X is an rc-ary predicate", we can set up
similar axioms to prove the following Deduction Theorem for Έn:

The Deduction Theorem for^Ξ". If Δ, Xx U1 . . . Un, . . ., Xk Ux . . . Un H YUι

. . . Un where Ul9 . . ., Un are indeterminates not free inΔ,Xu . . ., Xk or Y
and Δ H LnX{ for l^i^k, then Δ ^kΈnXι . . . XkY.

The axioms required for the proof of this (numbered as in [3]) are:

Axiom 2 HLWΛΓ1 D X I . . . LnXk ^χkxiuι . . . un, . . ., xkuγ . . . un

Ώul9...9Un

Xi^ ' Un2

1. K is a combinator with the property KXY - X for all X and Y.

2. For expressions involving D, DXι, ~5Uu...un

 e t c w e assume association to the right.
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Axiom 3 h-L^! 3 X l . . . Lxk ^x,kHy 3 y y D χlUl . . . un, . . ., xkux . . . un

Axiom 4 Hi.*,*! 3 X l . . . Lmxk 3*A(*iWi . . . un, . . ., ^ M J . . . un ^ t f l j... > W w

«Ί«l UnVχ . . . Vq, . . ., WίM1 . . . W^i . . . Vq ^>vu...fyVUI *Vl - *>*)
D «Ί,. . . ,^,y[{^l M i . W«, . ., * ^ l . . . M» ^ . . . ^ W l M i M»(*itti . . . «„)

. . . ( ^ ! . . . Un)}, . . ., {xιUι . . . Un9 . . ., tffc^ . . . MΛ \ , , , j t t / ί W 1 . . . Un

(tγUγ . . .Un) . . . (tqUl . . . Un)}Z>n^^tq{χιUι . . . tin, . . ., Λ ^ . . . ^
3 « ! , . . . , » n y « l «»(*i«l Un) (^Mi . . . Un)]

Axiom 6 \-x =)x HΛ:.

In [3] and [5] we also needed a universal class E to express these
axioms, here this is not necessary and so E and Q for equality (in [3] we
defined E to be WQ) become optional extras. If Q were included we could
add the following axioms to the above:

H W Q K , H W Q S , H W Q * Ξ Λ , H W Q Q , HWQL W ,

Axiom 1 \-\NQx D X \NQy ^y \NQ(xy).

Axiom 5 ^Lnxι =>Xl . . . Kxk ^>Xkxιuι . . . un, . . ., xkux . . . un

^ul9...9UnWQMufor l*i*k.

T h e f o l l o w i n g t h e o r e m s fo l low f r o m A x i o m s 2 , 3 , a n d 4 :

T h e o r e m 1 Lnxu . . ., Lnxk \-xιuι . . . « „ , . . . , xkuγ . . . un

Ώuu...,un

XiUi UnyfoΠ ^ t< k.

Theorem 2 Lnxl9 . . ., Lnxk, Y^xιuι . . . un, . . ., xku, . . . W n ^ , . . . , ^ F".

Theorem 3 LnΛrx, . . ., Lnxk, U i ^ . . . um . . ., xhuγ . . . ww^Ml,...,Mw

WιU1 . . . M ^ ^ M i . . . Un) . . ( ^ « i . . . ^ ) , . . . , ( Λ Γ ^ ! . . . « „ , . . . , ΛΓ f e W χ . . .

U n ' D u ι , . . . , U n W t U ι . . U n { t ι U ι . . . W « ) . . . ( ^ . . . U n ) ) , [ x ι U ι . . . ^ , . . . ,

*fe^ l W « D

M 1 , . ..,«,„ { « Ί « i Hz^i ^ , , ^ ^ i . tt»t>i . . ^
D n , . . . , ^ ^ i KVi . υq}]

Y - X ι U ι . . . U n , . . . , X A ί έ 1 . . . M n Z > « 1 , . . . , u f , 3 « * i U n { t ι U ι . . . W « ) . . .

( ^ ^ 1 . . . Un).

(With w = k = 1 these are identical to Theorems 1,2, and 3 of [3]).

To prove Theorem 1 from Axiom 2 we require only Rule ltZι, to prove
Theorem 2 we need Rule ΐ 1 , Rule 1Ξ° (i.e., Rule P) and Axiom 6, but to
prove Theorem 3 we need Rules ltEι, 1 Ξ ί + 1 , and'Ξ*.

Proof of the Deduction Theorem for kΈn: Let there be p steps YιUγ . . .
Un, . . ., YpU1 . . . Un = YUi . . . Un in the proof of YUι . . . Un from Δ and
X1U1 . . . ϋn9 . . ,9 XkUx . . . Un. We show by induction on m that provided

Δ H LWX* , for 1 ^ i ^ fe,
Δ h έ Ξ % . . . XkYM, for 1 ^ m ^ p. (1)

There are five cases to consider (assuming f-WQί/ is included):
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1. Ym is Xi for some 1 ̂  i ^ k,
2. YmUι . . . Un is a constant (wrt Uιy . . ., ί/w), i.e., an axiom or a part
of Δ,
3. YJJγ. . . ί/wisWQί/,,
4. F ^ . . . Un is obtained from F ^ . . . Un by Rule Eq.,
5. Ymϋ1 . . . Un is obtained from F ^ . . . ί/w, . . ., FZ/ί/j . . . Un and
Fyί/i . . . ϋn by Rule 'Ξw where iι . . . z,, j < m.

Cases 1, 2, and 3 involve no inductive hypotheses and so take care of
the m = 1 step, but they are also applicable when m > 1. In the inductive
step the theorem is assumed for Yt with t<m. Cases 1 and 2 are given
directly by Theorems 1 and 2 and Case 3 follows from Axiom 5 by applying
Rule 1 Ξ 1 k times.

Case 4: If Δ H Ymϋι . . . ϋn follows from Δ H YιUι . . . Un and

YMϋι . . . Ur = Yιϋι . . .Ur(0*r*n),

then it follows that Ym = Yι so that:

Xιuι . . . un, . . ., Xkux . . . un ^uι,,,Un Yιux . . . un = Xιuι . . . un, . . .,

-XjfeWl Un^Ul...un

YmUl Un\

the result follows.

Case 5: Let Ymϋι . . . Un be obtained from F ^ . . . ί/w, . . ., F ^ ^ . . . Un

and FyC/x . . . Un by Rule *Έq3 (with z1? . . ., it9 j < m, t ^ k, and g **ή). Then
YjUi . . . Un must have the form

W1Uι . . . ί/^i . . . ̂ , . . . , ^ 1 / ! . . . Unυι . . . vq^VlmmaVq.ZU1 . . . Unv1 . . .vq

where

WpC/i . . . UnVι . . . Vq = F^C/i . . . C/w for some
Vl9 . . .,Vq a n d a l l / ) , l*zp**t,

(N.B. each Vr may involve Ui . . . Un) and

Ztfi . . . UnV, . . . F, = F^C/! . . . Un.

By the inductive hypothesis we have:

Δ \rXlUl . . . Un, . . ., X ^ i . . . Un ̂ >Uι...un

 Wp^ι ^nVi . . Vq9

for 1 ̂  p ^ t

and

Δo \-Xιuι . . .un, . . ., Xfê i . . . un ^>Uu^Un

(WlUι . . . UnVι . . . Vq, . . ., W^! . . . UnVι . . . Vq

Ώvlm..vq

Zul ' ' ^ l * «^)

3. If ^A^ for ί < A; and ςr < n is defined in terms of kΈn in the way suggested above, we need only

consider uses of Rule kΈn itself.
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Thus taking Theorem 3 with Vr for tru1 . . . un (1 ^ r *? q) and Z for Y
we obtain (1).

Note that in proving this deduction theorem we have used Rule *Ξ7 only
for i ^ k and j ^ n except perhaps in the proof of Theorem 3 where we used
1 Ξ ί + 1 where t *z k. If we have Rule kΈn for all non-negative integers k and n
we clearly also have the Deduction Theorem for Έn for all k and n. If we
have Rule *Ξ7 only for i ^ k and j ^ n where k < n we can prove the
Deduction Theorem for ίΞ7 for alH ^ k and j ^ n. If, however, k ^ n we can
only prove the Deduction Theorem for ίΞ7 for i ^ n - 1 and j ^ n because of
our need of Rule ιΈt+1 for t ^ i.

Also note that L̂  has been left completely unspecified in the axioms. It
could represent the class of w-ary predicates ranging over individuals, i.e.,
ln = FWA . . . AH, over other predicates, e.g., Ln = FW(FAH)(F2AAH) . . . H,
over propositions, i.e., Lrt = FWH . . . H, over functions, e.g., L̂  =
FW(FAA.)(F2AAA) . . . H or over any combination of these, e.g., Ln =
F*H(FAA)(F2AAH) . . . H.

Thus as soon as we decide on a definition of L,w in Axioms 2, 3, 4
(and 5) we have a deduction theorem for Έn in terms of that Ln. Of course
certain choices of Lw will lead to an inconsistency (such as Curry's
paradox for L̂  = WQ—see [1]). It is also possible, as it was in [3], to do
without Axiom 2, but this would be at the cost of complicating Axiom 3
somewhat.
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