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QUANTUM LOGIC WITH IMPLICATION

J. JAY ZEMAN

The non-classical nature of quantum theory has led to a number of
efforts to formalize the logic of statements whose universe of discourse is
the subatomic (see, for example, [3], [6], [8], and [10]). It might be hoped
that ideally the fruit of such efforts would be a formalism not totally
divorced from the classical logic, but incorporating or incorporated in it
in such a manner as to unify the logic of the micro- and the macro-worlds.
Indeed, this has been the general direction taken by these efforts, including
that which we principally examine and expand upon here.* Josef Jauch, [6],
pp. 67-89, developed a "propositional calculus of quantum mechanics". He
objected to calling a system like his a "logic of quantum mechanics";
however, our use of 'logic' here is not, I think, the use to which Jauch
objected. A logic, for our present purposes, is a mathematical formalism
having a reasonable interpretation as a theory of deduction; its actual
application as normative of argumentation in reality is a matter of
empirical judgment. This seems close to the way Jauch wished to use
"propositional calculus" but more general, allowing for extension to a
quantification theory of quantum mechanics, for example.

Although Jauch's presentation of a propositional calculus of quantum
mechanics is mathematically interesting and suggestive, there are a
number of problems connected with it. It is our purpose to engage some of
these problems and to present a rigorously defined formalism intended to
come close to doing the job intended by Jauch for his logic. The success or
lack of success of this effort as related to actual application of this
formalism in the foundations of quantum theory is, I think, a matter for the
physicists to decide; the empirical judgment involved in this application is
not in the scope of this paper.

If a formalism is to have a reasonable interpretation as a theory of
deduction, it seems clear that it must include a relation which, when it
holds between two elements of the formalism, may be reasonably inter-
preted as expressing that one of the elements 'follows from' the other, in

•The author wishes to thank Robert Piziak for advice and comments in the course of research
for this paper.
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some sense of 'follows from'. Such a relation may be termed, in general,
an implication relation. To be a logic, then, a formalism must possess an
implication relation. Jauch recognised this, but unfortunately identified
what he calls 'implication' with the partial-ordering relation in the lattice-
theoretical presentation of his logic. This will not do, for implication is a
propositional connective and so is the same kind of linguistic object as are
other propositional connectives, such as conjunction, disjunction, negation.
These last-named connectives correspond respectively to the meet, join,
and complementation of a lattice-theoretical presentation, and so the object
in the lattice-theoretical presentation corresponding to implication should
be the same sort of object as are meet and join, that is, it should form
elements from elements of the lattice. The partial-ordering relation,
however, forms statements from elements of the lattice, and so is a
different breed of cat, corresponding to the metatheoretical deduction
relation (commonly expressed by the turnstile: h). The identification of
implication with partial-order ing, then, amounts to a violation of the
metalanguage/object-language distinction.

It may be objected that we are splitting hairs here, since the deduction
relation and implication are commonly thought of as being rather intimately
associated; indeed, if implication is considered as it is most commonly
understood, the statement

(1) a, Γhβif f ΓHCα/3

(where Γ is any set of statements) holds. It might seem, then, that all that
is needed to correct this problem is to introduce a new operator into
Jauch's lattice; call it the implication operator 'ID', and let a^> b be an
element when a and b are. As an additional axiom to the lattice-theoretical
presentation we would then add the correlate of (1):

(2) CΛfl^ b iff c^a => b.

Simple as this seems, it will not do for this case. The result of adding (2)
to a lattice is an implicative lattice and, as noted in [4], p. 144, for
example, every implicative lattice is distributive. Distributivity is one of
the properties which it is generally agreed a quantum logic should lack, and
so (2) cannot be part of a lattice which is to be employed as a quantum
logic.

Now (1) or (2) is sufficient as a postulate for pure positive implication,
which means that even intuitionistic (and a fortiori classical) implication is
too strong for a quantum logic. A number of pure implicational calculi
weaker than or independent from positive implication are available (see,
for example, [2], [5], and [11]); is it possible that one of them can provide a
basis for quantum implication? We find a clue in Jauch's brief semantical
discussion of quantum conjunction in terms of "filters" constructed from
"yes-no experiments" (experiments which assign a truth-value—true or
false—to a given statement) [6], pp. 72-5. He noted that in quantum, as
opposed to classical, physical systems, it may make sense to ask about
either of a pair of statements p and q considered separately, but no
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sense to ask about the truth or falsity of the statement which is the
conjunction of p and q, since the measurement used to determine the
truth-value of p may so modify conditions as to affect the subsequent
measurement of the truth-value of q. Jauch proposed that the difficulty be
handled by using not just one pair of yes-no experiments (one for p and one
for q) as a "filter" for the conjunction of p and q, but an infinite sequence
of yes-no experiments, alternating for p and q as a filter for Kpq. Kpq
would then be judged true iff both p and q "passed" the compound filter,
that is, received true as their values in all the component yes-no experi-
ments.

This idea is immediately suggestive of Kripke-style semantics for
modal logic [7]. Each pair of yes-no experiments for p and q can be
considered located in a 'possible world' (an element of a Kripke model-
structure), with the accessibility relation between these possible worlds
being determined by the order of the experiments in the sequence; if one
p/q pair of experiments occurs before another, then the 'world' of the first
has access to that of the second. Kpq is then true on Jauch's interpretation
in a given world iff p and q are true in every world to which that one has
access, i.e., in every succeeding pair of yes-no experiments. From this
point of view, it is clear that Jauch's condition for the truth of Kpq is
actually too strong; it has the effect of making quantum conjunction into
necessary conjunction. Jauch's logic is a lattice, and so every element will
be identical to its meet with itself, and so CpKpp must hold. But it cannot,
given the "filter" suggested for K, for suppose p and q are to be tested in
this manner, and suppose that p comes out true in the first yes-no experi-
ment, but q alters conditions so that p later comes out false. Kpp would
then, on the necessity interpretation, come out false in the world of the
first pair of yes-no experiments, while p would be true there, making
CpKpp false.

The concept of conjunction (and so also of disjunction, defined in terms
of K and N) as somehow "modalized" is interesting. If conjunction is a
kind of necessity and disjunction a kind of possibility, CKpAqrAKpqr, which
introduces the distributive laws, becomes closely analogous to CLMpMLp
(L for necessity, M for possibility) which fails in the systems contained in
S5. But the modalization of K would also have to be of a sort which would
leave provable CpKpp, whose modal analog would be CpLp. The modal
interpretation of conjunction is, then, far from straightforward, but perhaps
the suggestion of modality can provide us with some insight into the
properties of other possible connectives of quantum logic. We intend to
emphasize implication, and shall apply some of Jauch's insights to it. The
implication Cpq is regarded as coming out false iff q is false while p is
true. If we wish to apply the 'compound filter' concept to the truth of Cpq
we shall say that Cpq comes out false in a world (filter) w iff in some world
accessible to w (as determined by the sequence of the compound filter set
up to test p and q) q comes out false while p is true. C in this case would
acquire the properties of a necessary (or 'strict') implication. We note that
the properties of the accessibility relation as determined by the sequence
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of experiments include at least transitivity and reflexivity—which are the
properties of this relation in frames characteristic of the system S4. This
suggests the possibility that one of the implications appropriate to quantum
logic might have properties of the strict implication of S4. We shall then
investigate the addition of S4 strict implication to the general orthomodular
lattice (OML).

Strict implications, OML's, and modularity A number of approaches are
available here. In Hacking's [5], S4 with strict implication primitive is
discussed; note that the basic Hubert-style axiomatization there employs
an explicit statement of distributivity:

DIST ®KpAqrAKpqKpr

(<£ = strict implication). Lattice-theoretically, the weakened distributivity
that is orthomodularity may be added to an orthocomplemented (OC) lattice
(i! as orthocomplement) by the OM law:

If x *ζ y, then y ^ (xι Λ y)vx.

This suggests replacing DIST in Hacking's formulation by

OM <&®pq®qAKNpqp

Another approach would be to add to a formulation sufficient for an
OML (W,4 a function 3 : Wx W-> W, defined by

Dl: />Λ(/>3 a) ^q

32: If r*p ^ q, then r ^ p 3 q, provided r is a meet of implications.

The result of either of these equivalent approaches is to define S4 strict
implication on the general OML. That S4 strict implication does not make
the distributive laws provable here is easily established; in fact, we may
achieve a more general result. First, replacing 32 by

32': If r λ f < q, then r ^p^> q, provided every component of r which
names an element of the lattice is in
the scope of an implication

gives a base for S5 strict implication. With the sign of necessity, L,
defined as usual by Lp = 1 3 ρ9 we have, for S5's 3 and r as in 32':

(3) r = Lr.

Consider now the OML L10, the smallest non-modular OML:
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In L10, let p 3 q = 1 iff p ^ q, = φ otherwise. With 3 thus, 31 holds:
if p ̂  q, then p 3 q = 1 and 31 is /> < q; if £ ̂  #, then p^> q -φ and 31 is
Φ ^ q. So far as 32' is concerned, we have, by definition of L, Lr = 1 iff
r = 1, = β otherwise. But as we have noted, for S5's 3 and r as in 32',
Lr = r; if r = 1 and rAp^q, then /> ̂  # making p z> q = 1 and so r ^ p z> q.
It r Φ ly then by r = Lr we have r = (Z) and so r ^ p D q under any circum-
stances. But then 31 and 32 f obtain for L10 with 3 as indicated above.
Since L10 is a non-modular OML, it then follows that the definition of S5
strict implication (or any strict implication included in S5) does not induce
modularity and so a fortiori does not induce distributivity on an OML.

Strict implication and compatibility A central concept in OM theory is
compatibility. We follow [10], p. 52 in saying that elements p and q are
compatible in an orthocomplemented poset—/x^tf—provided:

COMP: There is an element e of the poset such that e ̂  p, e ̂  q, and
pAβ1 ^ q1.

We are dealing with lattices, and so may convert the above to a condition
which is very expressive of the logical issues involved. Suppose p Oq\ then
the e whose existence is specified is such that e^pΛq, and in an OC
lattice, (p*q)1 ^e1. Thus we may transform p*eL ^ qL to pΛ (p A a)ι ^qL.
On the other hand, suppose that p Λ (p Λ a)1 ^ qx. Since />Λ q ̂  p, ̂  q, p A q is
itself the e specified in COMP, and so we have pθq iff p A (p A q)L ^ q1. But
in an OML, pθq iff p&q1; by the above we have pθq iff pθqι iff
p A (p A q1)1 ^ q; this latter is p A (pι v q) ̂  q. Our definition of compatibility
then may be put:

COMP': pOqiίipAiφ1 s,q)^q.

We may use this lattice-theoretical fact as the basis of definition for a
binary logical function expressing compatibility:

Paβ is defined as (SKaANaββ.

Ppq is, of course, a classical thesis, but won't hold in general in quantum
logic; it asserts, effectively, that classical modus ponens "works" for p
and q and is a very appropriate logical definition of compatibility.

Let us conclude by establishing an interesting fact regarding com-
patibility and S4 modality: when S4 strict implication is defined on an OML,
all such implications (and so all S4 modal functions) will be center-valued,
i .e., universally compatible. F i r s t note that from tA(t 3 γ) ^ γ and
s Λ (s 3 r) ̂  r we may move, by the proper t ie s of meet and join, to

(4) (t 3 r) Λ (s 3 γ) A (s v t) ** r.

Taking t = r (since r 3 γ = 1) this becomes

(5) (s 3 r) A (s v r) ̂  r.

With s = (po q)1 this gives

(6) ((p^q)1 ^r)A((p z>q)lvr)^r.
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But in S4 we have

(7) p^ q^(p^ q)L -Dr

which with (6) gives

(8) (p^ΛtίfD^vr)^.

This is (p^> q) Or and, since r may be any element, this gives the center-

valuation of implications. QED
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