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ON FULL CYLINDRIC SET ALGEBRAS

THOMAS A. SUDKAMP

By a full cylindric set algebra of dimension a, full CSA,, where a is an
ordinal number, we mean a system

A= (A, U, N, ~, 0, uU, Ci, DK)\)K,)\<(!

where U is a non-empty set, A is the power set of °U, 0 is the empty set,
U, N, and ~ are the set theoretic union, intersection and complement on A,
and for all k, A < @, C, is a unary operation on A and Dy, is a constant
defined as follows:

C«X ={y: ye “U and for some xe X we have x, = y, for all A # k}
for every X € A,

and
Din={y: ye“Uand y.= y\}

(¢f. 1.1.5, [2]). In section 1 we give an axiom system for a subclass of
cylindric algebras, which we call strong cylindric algebras, and show that
A is a strong CA,, a < w, if, and only if, A is isomorphic to a full CSA.

In section 2 we restrict our attention to the theory of strong CA, and
show that it is definitionally equivalent to the theory of a subclass of
relation algebras axiomatized by McKinsey [3].

The notation of [1] is used, and a familiarity with chapter 1 of that book
is assumed.

1 Strong cylindrvic algebvas  We begin by introducing a piece of notation
which will prove to be convenient.

Definition 1.1 If Wis a CA,, a < w, and ¢ < a, then
cix = C(aN‘w}Dx.

Definition 1.2 By a strong cylindric algebra of dimension a, where a is an
ordinal number less than w, we mean a structure

A =4, +,, -, 0, 1, &, di) n<ie
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such that 0, 1 and di) are distinguished elements of A (for all k, x < a),
- and ¢y are unary operations on A (for x < a), + and - are binary opera-
tions on A, and such that the following postulates are satisfied for any
x,yeAand any k, A, u < a:

(Co) (A, +, -, -,0,1)is a complete and atomic BA
(C) e0=0
(C)) x<ox
(Cs) k(- cky) = Cx - CYy
(Ca) cyerx = ergyx
(Cs) dlmc =1
(Co) if k # A, u, then dyy= cy(dy-dyp)
(Cq) if k # 1, then ¢, (dy- %) - ci(dir- %) = 0
(Co) if x+ 0, then c'(a)x =1
(Co) ifx,eAtM,i=0,1,..., a-1,then l;lc!i'xi-e At

In the two preceding definitions we are using the notion of generalized
cylindrifications as defined in 1], pp. 205-207. That is, if ['={a,,a,,...,a,}
is a subset of a, by ¢ryx¥ we mean €q,Co, - . ., CaX. Similarly, we define the
generalized diagonal elements d as

ol

deigo-

f=1

Note that if T' = {k}, then ¢ = ¢« and if T = {k, A}, then dr = dy,.

(Co) through (C,) are the standard cylindric algebra axioms with the
exception of complete and atomic in (Cy). (Cg) guarantees that a strong CA,
will be simple in the universal algebraic sense (see 2.3.14,[1]). We will
show that every strong CAy is isomorphic to a full CSA,. Clearly, every
full CSA, satisfies (C,) through (C,).

Let A, be an arbitrary, but fixed, strong CA,. We now list several
fundamental results from the theory of cylindric algebras which will be
used in the sequel, the proofs of which can be found in [1].

Lemma 1.3 din-ckx =0 iff x = 0.
Lemma 1.4 c¢ix ¢y = cl(ckx - Cky).
We now let I and A be non-empty (finite) subsets of a.
Lemma 1.5 For any sequence {I'y: k < B) of subsets of a, the structure
A, + +-,0,1, c(‘pw)),mﬁ
is a diagonal-free CA.
Lemma 1.6 ¢myx-y =04f¢gry-x=0.
Lemma 1.7 IfT C A, then ¢iry(da-x -¥) = ¢y (da- %) - ey (da- ).
Lemma 1.8 IfT'NA #0, thendp-dj = drya.
Lemma 1.9 ¢y ‘djp = dp~p.

Lemma 1.10 If xe A, then x = I1 ¢’x.
i<l
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Proof: By 1.5, x < ¢’x for all i < a, hence H ¢’x > x and equality follows
from (Cy). '

Henkin and Tarski have shown ([2], pp. 100-101) that any CA, which
satisfies 1.10 is representable.

Our goal now is to find a way to uniquely express each atom in terms
of the atoms which are less than the generalized diagonal element d,.

Lemma 1.11 Ifx, ye At and x < ¢y, then ¢'x = ¢’y.
Proof: By 1.6 and our hypothesis we see that y - ¢’x # 0.
Since y is an atom we get y < ¢’x and, by 1.5,

ciy < cicix = c'x.
The other inequality is obtained similarly using the fact that x < cfy.
Theorem 1.12  If x, ye At and x, y < do, then ¢ix < ¢’y implies x = y.
Proof: By hypotheses 1.5 and 1.7,

0 # ¢'x = ¢ix. ¢’y = ¢'(x-9),

x and y being atoms yields the result.

Theorem 1.13 If xe At and i < a, then theve is a y e AfY such that y <d,
and ¢’x = ¢'y.
Proof: We show this for i = @ - 1. Construct a sequence y; as follows

Yo = CoX-doq-,

Y1= €Yo dia1 = €,(CoX *dogy) - digs

€1CoX - dogy - dig
V2 = €)1 Uy = €2€160% dogr bigor “Uagny

Yoz = €V % - .
By an argument similar to 1.12 each y; is an atom, thus, by 1.5 and 1.9
¥ ypp = €M (e a0 dg) = ¢ M
and y,., < dy as desired.

Corollary 1.14 If xe AtN, then there exist Yy, Vi, . . ., Ya1€ At Such that
y; <dg and Tl cty; = x.
1

Proof: By 1.13, for each 7 < a there is a y;€ At, ¥; < dy such that
ciy; = ¢’x, so by 1.10 x = [[ ¢’x = [T ciy;,.

i i
Lemma 1.15  If %5, %, . . ., X4, € At¥W and j < a, then

c’(H c"xi) = ¢'x;.

1<a

Proof: We note that I;[ ¢’x; # 0. Now by 1.4 and 1.5
1#]
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(H cx ) = ¢ (cu’x, H c'x, )
=c ( ’x, c,(nc x,)) = crjxi . c"‘c,,-‘(igﬁ c'ixi) .

Now (C,) implies c!""q,'(_];[.c: fx,.) =1
171

Theqrem 1'16 If Xos X1 « + s Xa-15 Yos Y15+ -« Vo-1€ At Xis Vi Sd’a and
Excl"xi = I-;I c’y;, then x; = y; for all i < a.
¥ i<l

Proof: For each j< a, by 1.15,
cfx,- = cﬂi"(];l ctixi) = c|’ (1:[ C'i&i) = °i3’i,

and so, by 1.12, x; = i
Theorem 1.17 Let B= | A, y = |dy- AtU/|, then B = 1%

P'roof Let D =dg* AtU. For each %, x,, . .., %,.,€ D we assign the atom
H c’x;. By 1.16 thls map is one to one and 1.14 shows that it is onto.
Hence B=1°D|=

Now let %, B be two strong CA,'s, D = At -d, and D' = AtB -d,.
Theorem 1,18 If |D|= |D'|, then % ~ B.
Proof: Since | D| = |D'|, there is a one-to-one map ¢, from D onto D'. Now

we extend ¢, to a map from ArY onto At®. For x, x,, ..., Xq €D,
x4, %%, . . ., x4.1€ D' such that ¢,(x;) = x/ we define ¢, as follows:

2 (l_[ d%) = [Tcix..

By 1.14 and 1.16 this map is one to one from At onto At®S and ¢,'D = ¢,.
Now we extend to a function ¢: A — B by additivity, that is, for xe A, x'e B

¢(x) = x' iff (i) if y ¢ AW and y < x, then there exists
¥'e AtB such that y' < x' and ¢,(y) =y’
(ii) if y'e AtB and y' < x', then there exists
¥ € A1 such that ¥y < x and ¢,(y) = y'

¢ is one to one and onto since W and B are complete and atomic BA’s.
Clearly ¢ is a BA isomorphism. To show ¢ is a CA isomorphism it is
sufficient to show that for any xe AtY, ¢(c;x) = c;(¢(x)) = ¢;x'. The result
then follows by the complete additivity of ¢;.

By 1.14 there exists %,, x|, . . ., %4-,€ D, x4, x}, . . ., x{., € D' such that
¢(x;) = x}, x = l'I cf’x,, x'= H cix! and ¢(x) = x'. By 1.4, 1.5 and (Cy),

cix = c,‘(H c!""x;) = H c"”'x‘v.
' i i

Let y <d,, then
; il
z= ;'!1;!,'1 c'xi ey < cx

and z € At by (Cg). ¢(2) =2'= E.c!"'x,! -ofiy’ < cjx', where y' = ¢(y).
il
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Now let z be any atom such that z < ¢;x, and we show that z is obtained
in the above manner. We know that z = H c’y; for some Yo, ¥y, - -« V16D,
hence !

z=1[l¢ly, < Cjx = IT cix.
i ’ i#]

So, for any m # j < a, by 1.15,
c¢"z=¢c" (I:[ c'iy,») = ¢y, < c""(H c-"xi) = ¢™x,,.

i'#lf
By 1.12, x,, = ¥, and z = I;I clx; - c!iy as desired. So we have shown that for
L]

every atom z < ¢jx, ¢(z) < ci{¢(x)). By an analogous argument we obtain that
if ¢(») is an atom, ¢(¥) < cj(¢(x)), then y < ¢;x, which completes the proof.

Theorem 1.19  Every strong CA, is isomovphic to a full CSA,.

Proof: Let M be a strong CA,, 8= |D|. Let %' be a full CSA, generated by
a set of cardinality 3, hence 8 = |At' -d,| so, by 1.18, u =~ A’.

Let 8 and o be cardinal numbers, from set theory we know that, with
the assumption of the generalized continuum hypothesis, 28 = 27 implies
B=y.

Theorem 1.20 (GCH) If % and B are two strong CA,'s such that |A| = |B],
then W =~ B.

Proof: Since ¥ and B are complete and atomic BA’s, |A| = 2fand |B| = 27
for some cardinals § and y, where 8 = |At%| and y = | At8|. By the GCH we
see that B = 5. By 1.17, B = B%and y = y&¥ where y, = |D'| and 8, = |D|.
Hence B, = y,, and so 1.18 yields % = B.

The independence of these additional two axioms can be exhibited by
considering the following two CSA,’s. Let U represent the cylindric set
algebra of all subsets of K%, the real plane. The Cartesian product % x '
satisfies all the axioms except (Cg), since, for any non-empty set x in ‘Rz,
(%, 0)) = (K?, 0). Now let B be the complete atomic subalgebra of %
generated by lines of slope 1. 8 satisfies ¢;x = 1 for all x, hence (Cg) holds
but (C,) is falsified for any atom.

2 Strong CA, and velation algebras In [3] McKinsey gave an axiomatiza-
tion of a subclass of relation algebras which we will denote by MRA. We
show that the theory of MRA is definitionally equivalent to the theory of
strong CA,.

Definition 2.1 By an MRA we mean an algebraic structure
2‘=<A’ + 0 7 O: 1) ,>

such that 0 and 1 are distinguished elements of A, + - and | are binary
operations on A, - is an unary operation on A, and such that for any x, vy, u,
v e A, the following postulates are satisfied:
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M,) (A, + -, -, 0, 1)is a complete and atomic BA

M) xl@lz) = (xly)lz

M) Ifx<uandy<v,thenx|y <ulv

(Mg) Ifx +0, then 1|(x|1) =1

(M) If ze A, and z < x|y, then there exist x' y'e At such that x'< x,
y' <y and such that z = x'|y"'

M) Ifx, v, zeAtU, x|y #0,y|x #0, x|z # 0and z|x # 0, then y = z.

The relational operation converse and the constant 1’ can be defined in
this system and need not be taken as primitives. McKinsey has shown
((3], Thm. B, p. 94) that each MRA is isomorphic to a system where A
is the full power set of U x U, for some non-empty set U, and | is the
standard relative product on A.

We know that given any relation algebra

A=(A,+ --,01,/ 19
the system
cA=(A4, + -, -, 0, 1, ¢k, did),ncz
where the non-Boolean operations are defined as follows:
coX = 1]x, ¢ ¥ =x|1, dyx = 1 and dip = 1’ for k # A

is a CA,. By McKinsey’s result it follows that if % is an MRA, then ¢ as
defined above is a strong CA,.
Now let % be an arbitrary, but fixed, strong CA,.

Theorem 2.2 If xe AtU, then theve exists a unique ye AtW such that
Co¥ - €y <dg, and ¢yy-c X <d,,.

Proof: First we show the existence of such an atom. By 1.14, there exists
X9, %€ At such that x,, x,<d;, and ¢ox,-€¢,x, = x. Lety = cyox,- €%, By
1.5, (Cg) and 1.10, ¢ox - €, = €o(CoXp  €1X 1) « €,(CoX 1 - €1%p) = CoXg - €, Xp = Xo < dy;.
Similarly, cgy-¢,x = x, <d,,.

Now assume y and y’ have the desired property. By (C,) there are
atoms z and z' such that z = ¢ox-¢,9, 2' = ¢y -€,y" and 2, 2' <d,;. 1.4 and
(Cs) imply €02 = co2' and we conclude, by 1.12, z = 2'. Now by (C3) and (C,)

ay=¢z2=cz2'=cy'
Similarly ¢,y = ¢,y' and, by 1.10, y = y'.

Remark. If we replace (Cg) by 2.2 in the axiom system for strong CA,’s we
obtain an equivalent theory.

Now we define a binary operation | on A as follows:
Definition 2.3 For x, ye AtN,
0, if cpx-c,y-dg; =0

xly =
CoY - €, X, otherwise.
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For x,y€A, let X = {u: u<x and ue Atd}, and Y = {v: v <y and v e AtN}.
Then

xly =20 22 (ulv).
veY ueX

Lemma 2.4 Ifx, ye A, then x|y = 0 iff cox - €,y -dg, = 0.

Proof: Sufficiency follows from 2.3. If x|y = 0, then ¢x-c,y-d,, = 0 or
Cy- ¢, x =0. Butcyy-c,x =0 implies ¢ex - ¢,y = 0 and hence ¢yx - ¢y -dy, = 0.

We show that the resulting system
mU=(A4, +, -0, 1,])

is an MRA. (M,) follows from (C,), (M,) and (M,) follow from the additive
definition of |.

Lemma 2.5 Ifx,veAtd, x|y # 0 and y|x # 0, then x|y < do, and y|x < do,.

Proof: By 2.4 and (Cg), x|y # 0 implies c,x ¢,y -dy, # 0. Hence, since
ylx#0, v|x =cox ¢,y <dp,. Similarly, x|y < d,,.

Theorem 2.6 If x, 5y, Ze AtYM, x|y #0, y|x #0, x|z2+0 and z|x + 0, then
y =z,

Proof: By 2.5, cpx ¢,y <dg;, ¢oy-€,x <dg, cox-¢,2 <dg; and ¢z -¢,x <d,,.
Hence, by 2.2, y = z.

Theorem 2.6 shows us that the system m satisfies (M;). If we wish to
define the converse in this system for x ¢ AtN we define ¥ to be the unique
atom y such that cox - €,y < dg, and ¢y ¢, % < dy,.

Lemma 2.7 If xe AtU, then cyx -dy; € At.

Proof: Follows from 1.12.

Lemma 2.8 If xe AtM, then x|1 = ¢, x.

Proof: x|1= xl( 2 y) = 22 (x|y) = 20 € X-CoY < C,X.

yeAtA y € At eAtd
x|y =0 *|y#0

Now let z < ¢;x, ze AtN, and let y = cox-dy, € AtA. By (C,;) and 1.9,
CoV = Cox. Let w = c,(coy *doy) “€o2. we At by (Cg). So, by 1.3.9 [1],

Co¥ * € w "dy; = CoX - €,(CoY *dyy) - oy = CoX - €Y o, = ¥.

Hence x|w # 0, s0 x|w = g ¢,x = Cy2-C,x = 2, Since z < ¢,z and z < ¢, .
Hence z < x| 1 and the proof is complete.

Theorem 2.9 x|1=c¢,x.

Proof: By 2.8 and the additivity of | and ¢, .
Theorem 2.10 1[x = cyx.

Proof: Similar to 2.9.

Corollary 2.11 Ifx # 0, then 1|(x]1) = 1,
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Proof: If x # 0, then, by 2.9 and 2.10, 1|(x]1) = ¢,c,x = 1.

Now we show that | is associative, and therefore that m@ satisfies
(Mo)-(M,), and hence is an MRA.

Lemma 2.12 Ifx, v, ze AtY, then x|(y|z) = (x|y)]z.

Proof: Case 1. y|z = 0. Then x|(¥]2) = 0 and, by 2.4, ¢ ¥ -c,y -dy, = 0.
If x|y = 0, then (x|y)|z = 0 and we have equality. Assume x|y # 0, then
x|y =cgy- ¢, x. But

Co(€o¥ - €,X) - €,2 *dg; = €Y -€,2 -dg; = 0
so, by 2.4, (x|y)|z = 0.

Case 2. x|y =0. Then (x|y)|z =0 and, by an argument similar to Case 1,
x|(ylz) = 0.

Case 3. x[(y|2) = 0and y|z# 0. Then y|z = coz-c,y and, by 2.4,
0=c;x:co(€e2-C,Y) *dy; =Co¥-C, Y dy,.

So x|y = 0 and (x|y)]|z = 0.

Case 4. (x|9)|z=0and x|y # 0. Similar to Case 3.

Case 5. (x|y)|z+# 0and x|(y|2) #0. So x|y # 0 and y|z # 0, hence
(x]9)12z = ei(c, X €pY) - €CoZ = €, X - €42

and
x| (y]2) = €,% - colery - €2) = €1X - C2.

Theorem 2.13  x|(y]z) = (x]y)]z.

Proof: By 2.12 and the additivity of |.

Let % be a strong CA,, then m is an MRA and cm2 is a strong CA,.
Theorems 2.9 and 2.10 imply that % = cm. Now let A be an MRA. We
wish to show that % = mcA. By McKinsey’s result we know that % =~ B,
where

8=(B,UN -0 UxU,]/")

in which U is a non-empty set, B the power set of U x U, and | is the natural
relative product. If we show that 8 = me®B, then A = mcA. It is sufficient
to show x|y = x|'y, for x, y € At%. Any atom x € B is a set which consists of
a single ordered pair. Let x = {(s, #)} and y = {(, v)} be atoms of 8. Inc3

cox = {(z, t): z€ U} c.x ={(s, 2): ze U}

coy = {(z, v): ve U} ¢y = {(u, 2): z¢e U}
If x|y = 0, then ¢ # u, which implies ¢ox-¢,y-dy, = 0. Hence x|'y = 0.
If x|y+0, then =% and x|y = {(s, v)}. Then cox-¢,y-do, = {{t, )} # 0, so
xl'y =CyX -Coy = {(S, U>}
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We have now established a one-to-one correspondence between the
class of MRA and strong CA, and, since they are interdefinably related, we
conclude that the two theories are definitionally equivalent.
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