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A CLASS OF TWO-PLACE THREE-VALUED
UNARY GENERATORS

J. C. MUZIO and D. M. MILLER

1 Introduction A unary generator is a functor which may be used to
define any one-place functor by the substitution of its arguments from a
prescribed substitution set, the generator being used once in each definition
with no negation of its output. In this paper, we examine the class of two-
place three-valued functors which are unary generators relative to the sub-
stitution set consisting of the constants, the variable, and the Post negations
of the variable. Necessary and sufficient conditions for a functor to belong
to this class are established and it is shown the class consists of 216 func-
tors which are equivalent under a set of five transformations.

A universal decision element is one which may be used to define any of
the functors of one or two arguments by the substitution of variables or
constants in its arguments, the universal element being used exactly once
in each definition. Sobociήski [11] has shown that for the two-valued case
there exists such a functor with four arguments. The two-valued case has
been extensively studied (see [1], [4], [7], [8], [9]). Rose [10], Loader [2],
[3], and the authors [5] have presented three-valued universal decision ele-
ments. In a previous paper, the authors [6] have given a seven-place three-
valued functor which acts as a universal decision element. This functor is
a composition of a generalized condition disjunction and three identical
functors from the class considered in this paper. The same composition
applies to each member of the class resulting in a family of functors each
behaving as a three-valued universal decision element.

Loader [2] has presented an alternative definition of a universal deci-
sion element. The functors considered here are—in his terminology—first -
order universal decision elements of the third degree. Loader has shown
that for a two-place three-valued functor to be a unary generator the sub-
stitution set must contain at least two nontrivial one-place functors. He has
further shown, by ennumeration on a computer, that for a substitution set
with two nontrivial one-place functors, the Post negations result in 216
functors acting as unary generators as opposed to either zero or twelve for
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all other choices. Loader divided these 216 functors into eighteen equiva-
lence classes by identifying two of the transformations presented below.
There was no attempt to characterize the functors any further.

In the following discussion all functors and functions are three-valued.
We use the term unary generator to mean a two-place three-valued unary
generator relative to the substitution set consisting of the constants, the
variable, and the Post negations of the variable. 0, 1,2 denotes both the
three values and the three logical constants of the system. Let E = {θ, 1, 2}
be the value set. A unary function Kx such that K0 - p, Kl = q and K2 = r is
written Kx - (pqr). The Post negations are defined as Px = (120) and Qx =
(201). Note PPx = Qx, QQx = Px, PQx = QPx = x. A two-place function Dxy
is defined by the nine entries in the table.

Dxy 0 1 2

0 a b c
1 d e f
2 g h i

Let A = {a,b,c,d,e,f,g,h,i}. D is of type [no,n1,n2] if n0, nl9 and n2 are
respectively the number of occurrences of 0, 1, and 2 in A. The weight of a
set of elements B Q A is defined to be the number of distinct elements in B.
This is denoted ω(B) or, if B = {p,q,r}, ω{ρ,q,r}.

2 The Triples Generated by D The 24 nonconstant unary functions are
divided into the following 8 classes:

Ex ={(012), (120), (201)}
E2 = {(102), (021), (210)}
E3 = {(001), (010), (100)}
E4 = {(002), (020), (200)}
E5 = {(110), (101), (011)}
Eβ = {(112), (121), (211)}
EΪ = {(220), (202), (022)}
Eβ = {(221), (212), (122)}

Clearly if the table for D contains at least one entry of each of 0, 1, and 2
then (000), (111), and (222) may be defined directly. It suffices to investigate
the conditions under which D can generate at least one function from each
Ef , 1 ^i ^ 8, since if

Daιa2 = (pqr), p,q,r e {0,1, 2} and alfa2 e {0,1, 2,x,Px, Qx} ,

then

DaW - i«rp), where for , = 1, 2, a' - {p«< « £ < £ ^

and, similarly,

Da[>a>2> = (rpq), where a\> = j "l ff m € ί ° ' L' 2\ ,2 v ' \Qa{ if α ; e {x,Px,Qx\.



150 J. C. MUZIO.and D. M. MILLER

Since the functions in each Eι, need not be considered separately a common
notation is used. The triple (pqr) denotes any of the unary functions (pqr),
(qrp), and (rpq). Two triples are distinct iff the functions they denote are
in different E, classes.

There are nine triples generated by D as follows:

DOx = (abc)
Dlx = (def)
D2x = (ghί)
DxO = (adg)
Dxl = (beh)
Dx2 = (cfi)
Dxx = (aeί)

DxPx = (bfg)
DxQx = (cdh)

These nine triples are termed the generating set of D. The first three are
called row triples, the next three are called column triples, and the last
three are called diagonal triples. Clearly for D to be a unary generator its
generator set must include at least one triple from each E,, , 1 < i < 8.

3 Transformations of Unary Generators There are five elementary
transformations which when applied to a unary generator result in a unary
generator. These transformations are denoted Ti9 1 ^ i ^ 5, and are de-
fined as follows

TγΌxy = Dyx
T2Dxy = SDxy where S denotes some permutation operation over E
T3Dxy = DPxy or DQxy
T4Dxy = DxPy or DxQy
T5Dxy = DSxSy where S denotes some permutation operation over E.

It is straightforward to verify that the application of any of these transfor-
mations to a unary generator will result in a unary generator since the
generator set of the function is invariant under these transformations.

4 The Main Theorem Given the two-place three-valued function defined
by the table

Dxy 0 1 2

0 a b c
1 d e f
2 g h i

define U = {a,e,i}, V = {b,f,g}, W = {c,d,h}, X = {a,f,h}, Y = {b,d,i} and
Z ={c,e,g}.

Theorem Dxy is a unary generator if and only if: (i) it is of type [3, 3, 3];
(ii) ω(X) = ω(Y) = ω(Z) = 2; and (iii) ω(U) + ω(V) + ω(W) = 7.

The proof is by five lemmas. The first three establish the necessity of
these conditions while the fourth and fifth establish their sufficiency.
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Lemma 1 A unary generator is of type [3, 3, 3].

Proof: Suppose p e E only occurs twice in A. Any two of a, b, . . . , i only
occur together in at most one of the triples in the generator set. Conse-
quently, the generator set cannot include the two distinct triples that include
p twice. There must thus be at least 3 p's in A, hence a unary generator
must be of type [3,3,3]. QED

Lemma 2 A unary generator is such that ω(X) = ω(Y) = ω(Z) = 2.

Proof: It is easily shown that under the action of any of the elementary
transformations the set of values ω(X), ω(Y) and ω(Z) is invariant although
their order may change. Since the application of T3 and T4 transformations
can convert X to either Y or Z, it will suffice to prove that if ω(X) / 2 the
function cannot be a unary generator.

If OU(X) = 1 and a -f - h = p, p € E, then no triple containing a repeti-
tion of p can be generated since there can be no other occurrence of p in A
as the function must be of type [3,3,3].

If ω(Z) = 3 there is at least one p e E such that p occurs once in Xf

once in Y, and once in Z. Consequently the generator set contains either
three triples containing two p's and at most three triples containing a sin-
gle p, or one triple containing three p's and six triples containing a single
p. Neither case satisfies the definition of a unary generator since the gen-
erator set must contain at least four triples containing a single p and at
least two triples containing a pair oί p's. QED

Lemma 3 A unary generator is such that ω(U) + ω(V) + ω(W) = 7.

Proof: From Lemmas 1 and 2, we know a unary generator is of type
[3,3,3] and ω(X) = ω(Y) = ω(Z) = 2. Within these constraints there are three
possibilities:

1. ω(U) = ω(V) = ω{W) = 3
2. ω(U) = ω(V) = ω(W) = 2
3. one of U, V or W has weight 3 while the other two have weight 2,

hence ω(U) + ω(V) + ω(W) = 7.

Suppose ω(U) = ω(V) = ω(W) = 3. Since a unary generator must generate
six triples of weight two, and ω(U) = ω(V) - ω(W) = 3, each row and column
must have weight two. There must be a row with two p's and a column with
two £'s where one of the £'s is in common. By transformations T3 and T4

they may be transformed into the first row and the first column. Now a = p
and by Lemma 2, / = h. Also by Lemma 2, b = d - p or c = g - p since
ω(Y) = ω(Z) = 2 and p already occurs once in X. If b=d=p, c=g since
ω(U) = ω(V) = ω(W) = 3. Similarly if c =g = p, b =d. In either case the
function is symmetric and therefore is not a unary generator.

Suppose ω(U) = ω(V) = ω(W) = 2. Either a = e, a = i9 or e = i. By trans-
formation T5 we can arrange to have a = e. Suppose a - e = p, p e E. One
of {c,f,g, h} must take the value p. Suppose c = p. By Lemma 2, d = h =f
and thus b =g =i. (adg) = (beh) = (cfi) and the function is not a unary
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generator since a unary generator can generate only three triples of weight
three, and the triples of weight three generated cannot all be the same.
Suppose f - p. By Lemma 2, b = g = c and thus d = h = i. (adg) = (beh) =
(cfi) and as above the function is not a unary generator. By transformation
Tι, g = p or h = p lead to similar contradictions. QED

Lemma 4 Of the nine triples in the generating set of a functor of type
[3, 3, 3] such that ω(X) = ω(Y) = ω(Z) - 2, six have weight two and three have
weight three.

Proof*. Consider p e E. One of X, Y, or Z must contain exactly two p's
since ω(X) = ω(Y) = ω(Z) = 2 and each of 0, 1, 2 occurs exactly three times
in A. Every pair of elements from A is in X, Y, Z or one of the triples in
the generator set of the functor. Since exactly one pair of p's occurs in X,
Y or Z and there are three p's as the functor is of type [3, 3, 3], the genera-
tor set contains two triples containing two p's. This is true for p = 0, 1, or
2 and there are thus six triples of weight two in the generator set of the
functor. No triple in the generating set can contain three p's and hence be
of weight one, since two p's must occur in X, Y, or Z. The three remaining
triples in the generator set must thus be of weight three. QED

Lemma 5 A functor satisfying the conditions: (i) the functor is of type
[3, 3, 3]; (ii) ω(X) = ω(Y) = ω(Z) = 2; and (iii) ω(U) + ω(V) + ω(W) = 7; is a
unary generator.

Proof: From Lemma 4, the functor must generate six triples of weight two
and three triples of weight three. To show the functor is a unary generator
we must show no pair of triples of weight two are equal and the three tri-
ples of weight three are not all equal.

Suppose two triples of weight two are equal. There are three possibil-
ities: a row and a column triple; a row and a diagonal triple; a column and
a diagonal triple. The other choices of two rows, two diagonals, or two
columns violate the condition that the functor is of type [3, 3, 3].

Suppose a row and a column triple are equal. By transformations T3

and T4 they may be transformed into the first row and column. As a result
b = d and c = g. Also by Lemma 2, / = h. Thus ω(V) = ω(W) = 3 which is a
contradiction.

Suppose a row and a diagonal are equal. By transformations T3 and T4,
we need only consider the case where (abc) and (aei) are equal triples.
Either a = b = i = p or a - c - e - p. The cases a - b = e - p and a = c =
i = p are invalid since none of X, Y, or Z contain s two p's and hence at least
one does not have weight two. lίa = b = i=p,c = e and by Lemma 2, / = h.
By Lemma 2, c Φ e and c f g, hence f - g -h and c = d = e. This is a con-
tradiction since no diagonal has weight three. The case of a column and
diagonal being equal is equivalent to this case as a result of transformation
TV

Suppose the three triples of weight three are equal. Since one of these
triples must be a diagonal triple it follows that the others must be a row
triple and a column triple since if two rows (or two columns) have weight
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three the third must also and there can only be three triples of weight

three. By transformations T 3 and T 4 we need only consider (abc) = (adg) =

(aeί). Now b=d = e and c = g = i. Since the function is type [3,3,3],

a = f = h which is a contradiction of ω(X) = 2. QED

5 The Number of Two-Place Three-Valued Unary Generators There
9j

are = 1680 three-valued two-place functors of type [3,3,3]. For

o! 3! 3!

each of {a, f,h}, {b,d, i\, and {c, e,g} there are three choices for which pair

of elements are equal. The equal pair in {«,/, h} is either equal to the

singleton value in {b,d,i} or the singleton value m{c,e,g\. Finally there

are six choices for which values occur twice in {a,f, h}, {b,d, ί} and {c, e,g}.

This give 3 x 3 x 3 x 2 x 6 = 324 functors such that ω(X) = ω(Y) = ω(Z) = 2.

For these 324 functors there are three possibilities:

1. ω{U) = ω(V) = ω(W) = 2

2. ω(U) = ω(V) = ω(W) = 3

3. ω(U) = ω(V) = ω(W) = 7.

Given ω(U) = ω(V) = ω(W) = 3, ω(X) = 2, there are then 6 choices for U.

For each of these choices, there are 3 choices for/, 2 choices for h, and

the rest of the entries are then fixed. This yields 6 x 3 x 2 = 36 functors.

Given ω(U) = ω(V) = ω(W) = 2, ω(X) = 2, there are then 18 choices for

U. One of the elements of U, say a, is distinct from the other two. If / = h

it is not possible to assign c, b, d, and g so the only possibilities are a = /

or a = h. For each of these there are only two ways to assign c, b, d, and g.

This yields 18 x 2 x 2 = 72 functors. Clearly, there are 324 - 36 - 72 = 216

two-place three-valued unary generators.
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