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INFINITARY PROPOSITIONAL INTUITIONISTIC LOGIC

CRAIG KALICKI

In the first two chapters of his book, Fitting [3] gives an elegant
presentation of the semantics and proof theory of propositional intui-
tionistic logic. The semantics used is based on a notion of intuitionistic
models due to Kripke [5], which in the finitary case is shown to be
equivalent to the model theory of pseudo-Boolean algebras. The proof
theory is essentially the method of tableaus due to Beth [l], with modifica-
tions as presented in Smullyan [9]. The purpose of this paper* is to
generalize propositional intuitionistic logic to the infinitary language in
which we allow conjunctions and disjunctions over countable collections of
formulas.

Section 1 presents our semantics, which is that of complete pseudo-
Boolean algebras and homomorphisms. In the infinitary case, it is easy to
show that this semantics is not equivalent to the natural generalization of
the Kripke models. In 2, we present our proof theory, which we believe
combines the best features of the tableau system of Fitting [3] and the
system of block tableaus of Smullyan [9]. A proof is an ordered finite
branch tree in which a given point may have infinitely many immediate
successors. In 3, we first assign countable ordinals to proofs in a
straightforward way, and then use induction on the ordinal of a proof to
show that the proof theory is correct; i.e., that theorems are valid.
Section 4 shows the completeness of the system, using the infinitary
version of the Lindenbaum algebra. We show that the collection of
theorems is closed under modus ponens by proving a tableau version of
Gentzen's Hauptsatz. The latter is accomplished by combining elements of
the finitary classical proof in [9] with the infinitary proof for classical
Gentzen systems due to Feferman [2]. Once the Hauptsatz is obtained, it is
easy to generalize the completeness results of Rasiowa and Sikorski [7] to
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much of the direction for this work.
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the infinitary case. In the concluding remarks, we point out some problems
of interest for further investigations.

1 Semantics The language -£ that we use consists of the following
symbols: (i) An arbitrary collection of atomic formulas, which we denote
by A, B, C, . . ., and (ii) the connectives v, Λ, ~, and —».

Definition 1Λ The formulas of -£ are the members of the least class £Γ
such that

(i) A e / for each atomic formula A
(ii) if XecΓ, then -XecT
(iii) if Xe <T and Ye <T, then X — Ye <T
(iv) if Φ is a nonempty finite or countably infinite subset of <f, then

V Φ e ^ and ΛΦe cΓ'.

From this point on, we use the term "countable" to mean either
nonempty finite or countably infinite. We frequently use the symbols VX,
for VΦ and AX{ for ΛΦ when no confusion results.

Definition 1.2 Let XecΓ. We define Sub(X), the collection of sub-
formulas of X, inductively in the usual manner. We also define Subp(X),
the collection of proper subformulas of x> to be Sub(X) - {x}.

We note that to prove all formulas of £" have a property P, it suffices
to show that the collection of formulas satisfying P i s closed under (i)-(iv)
of Definition 1.1. The following propositions are immediate:

Proposition 1.1 For any Xe£", Sub(X) is countable.

Proposition 1.2 Let Xe<f and let Xo, Xu X2, - - . be a sequence in
Sub(X) such that for each i ^ 0, Xi+ie Subp(Xi). Then, the given sequence is
finite.

The previous result simply says that the relation Xe Subp(Y) is well-
founded.

We now turn to a description of the semantics we will use.

Definition 1.3 A pseudo-Boolean algebra is an ordered pair ( ^ , <),
where ^ is a nonempty set and ^ is a partial ordering on β/, such that for
any a, be fl/, the following elements of fl/ exist:

(i) the least upper bound flvδ
(ii) the greatest lower bound a Λ b
(iii) the pseudo-complement of a relative to b, a=$>b; i.e., the largest

Xe & such that a*x ^ b

(iv) the zero element 0.

For any ae ύl/, we denote the pseudo-complement of a by a' - a =Ξ>0,
and the unit element of ^ by 1 = 0". With few exceptions, all of the
properties of pseudo-Boolean algebras which we shall use are contained in
[7], pp. 58-62. Pseudo-Boolean algebras are also referred to in the
literature as Heyting algebras.
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Definition 1.4 We call a pseudo-Boolean algebra ff/ complete if for
every countable subset & of ££, & has a least upper bound and a greatest
lower bound i n ^ .

Definition 1.5 A homomorphism M s a function /z:^" —> ̂ , where ^ is a
complete pseudo-Boolean algebra, satisfying the following:

(i) ft(VΦ) = V{/*(X)|XeΦ}
(ii) fc(ΛΦ) = Λ{/*(X)|XeΦ}
(iii)M~X) = W
(iv) h(X-*Y) = h(X)=^k(Y).

It should be clear from (i)-(iv) that a homomorphism h is completely
determined by its values on atomic formulas.

Definition 1.6 A model is an ordered triple (φ, ^, h), where (β/, ^) is a
complete pseudo-Boolean algebra and h is a homomorphism from £* into
^ . For a given Xe < "̂, we say X is fαZzd in {d/, ^ , &> if MX) = 1. We say
X is z αZz'd if X is valid in all models.

In a given model (Cfr, **, h) we will usually denote h(X) by l|x|| when no
confusion will result. We call llxll the value of X in 61/.

2 Proof theory We now present our proof theory, which is a direct
generalization of the tableau systems of Fitting [3] and Smullyan [9]. The
reduction rules that we use are basically the same as the corresponding
finitary rules, with the exception of a special treatment of the infinitary
conjunction. Proofs may be infinite trees, allowing for application of
reduction rules to infinitary formulas, but we require that the finite branch
property holds, i.e., a tree may not contain an infinite sequence of
immediate successors.

Definition 2.1 A signed formula is an expression TX or FX for Xe <£Γ*
A block is a finite set of signed formulas.

We most frequently use the symbols S, U,Si, or U; for blocks. We also
find it convenient to use the symbol {S, H} in place of S U {H}, where H is a
signed formula.

Definition 2.2 If S is a block, let S τ = { TX\ TXe S} and SF = {FX\ FXe S}.

Definition 2.3 The following eight rules are the reduction rules:

TV: {S, TVΦ}/{{S, TX}|XeΦ}.

FV: {S, FVΦ}/{S, FX}for any XeΦ.

TΛ: {S, TΛΦ}/{S, TX} for any Xe Φ.

FA: (a) {S, FΛΦ}/{{S, FX}\Xe Φ} if Φ is finite.

(b) {S, FΛΦ}/{{ST, FX}\Xe Φ} if Φ is infinite.

Γ~: {S, T -X}/{S, FX}.

F~: {S, F -X}/{ST, TX}.
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T->: {S, T{X-> Y)}/{{S,FX}, {S, TY}}.

F->: {S,F(X - F)}/{ST, TX, FY\.

The intuition behind the rules in Definition 2.3 is well-documented, a
possible exception being rule FΛ(b). The reason for rule FΛ(b) is a direct
result of the semantics we have chosen, and an explanation is given in the
concluding remarks to this paper.

Definition 2 A Let U be a block. We say a rule R applies to U if by
appropriate choice of its members, we can write U as the block preceding
the line in the statement of rule R. By an application of a rule R to U, we
mean the following: R applies to U, and by writing U as the block preceding
the line, we proceed according to one of the following two cases:

Case 1. If R is FV, TΛ, T~, F~, or F—, we adjoin to U as its sole
immediate successor the block following the line in the statement of rule R.

Case 2. If R is TV, FΛ, or T—>, we adjoin to U an ordered sequence of
immediate successors comprised of all the blocks following the line in the
statement of rule R.

Example 2.1: Suppose U = {TX, FY} ΓVΦ}. TO apply rule TV to U, we may
choose any sequence (Z{ \i <μ>, where μ is finite or μ = ω, for the members
of Φ, and then write the diagram

{TX, FY, T V Φ }

{TX, FY, TZ0} {TX, FY, TZL} {TX, FY, TZ2} . . . .

When a rule R has been applied to a block U, we say that U has been
reduced by rule R. We note that the notation U = {S, H} is not meant to
exclude consideration of H as a member of S. Thus, applying rule T~ to
{TX,FY, T~Z}, for example, we may adjoin either {TX, FY, FZ} or
{TX, FY, T ~Z, FZ} as the immediate successor. Hence, duplication rules
are not necessary.

Definition 2.5 Let S be a block. By a tableau for S we mean an ordered
finite branch tree T such that

(i) the origin of T is S
(ii) the points of T are blocks
(iii) for any point U of T which is not an end point, the immediate

successors of U in T are the results of applying a reduction rule
ΛtoU.

We note that in a tableau T, a block may have infinitely many immedi-
ate successors, as in Example 2.1. The finite branch requirement,
however, means that any sequence U1? U2, U3, . . . in T, where each U,;+1 is
an immediate successor of U,, , must be finite. This property allows us to
assign countable ordinals to tableaus in a natural way and thus provides us
with the basis for induction proofs.
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Definition 2,6 A block S is closed if for some Xe <ϊ', both TXeS and
FXe S. A tableau T is closed if each end point of T is a closed block. A
block S is inconsistent if there exists a closed tableau for S. If no closed
tableau for S exists, S is consistent. X is a theorem if the block {FX} is
inconsistent. If X is a theorem, we write KX\ A closed tableau for {FX} is
called a proof of X.

We now present an example of an infinitary proof, where some obvious
simplifications have been made. (See Example 2.2 on facing page.)

3 Correctness To show that the tableau system of proof in 2 is correct
in the sense that only valid formulas are theorems, we must first establish
a basis for induction on tableaus.

Definition 3.1 Let Γ be a tableau for S, and let U be a block in T. By
the subtάbleau of U in T, we mean the subtree of T whose origin is U.

It is clear from Definition 2.5 that the subtableau of U in T is a tableau
for U, and if T is closed, the subtableau of U in T is closed.

The following definition is due essentially to Feferman [2], where he
introduces it for infinitary classical Gentzen systems.

Definition 3.2 Let T be a tableau for S. We define Od{T), the order of
T, as follows. Suppose U is a block in T. Then,

(i) if U is an end point of T, U is the subtableau of U in T, so we let
Od(\J) = 1.

(ii) if U is not an end point of T, let T' be the subtableau of U in T,
(UjU < μ) the sequence consisting of the immediate successors of
U in T, and for each i < μ , T* the subtableau of U* in T. Then, we
let

Od(T') = sup{Od(Tl) + 1).

Clearly, for any tableau T, Od(T) is a countable ordinal, and if T' is a
proper subtableau of T, Od{Tf) <Od(T). As examples, if T is the tableau
of Example 2.2, Od(T) = 9.

We now recall Definition 1.6, where we defined a model {&, ^,h). In
what follows, we denote h(X) by \\X II for each Xe ^ .

Definition 3.3 Let (fr, <, || ||) be a model. Then, for any block S =
{TXU . . ., TXm, FT,, . . ., FYn}, we define

IISII = Λllx,.||=* v || r, l l .

Now, in the proof of the following theorem, assume that (β/y <, II II) is
an arbitrary model.

Theorem 3.1 Ifϊ-X, then X is valid.

Proof: Suppose that H I , and let T be a closed tableau for {FX}. The proof
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is by induction on Od(T). We show that for each block U in T, Hull = 1,

where 1 is the unit of Cί/. Then, in p a r t i c u l a r , we have

|[{Fx}ll=i=Mlxll = i

and hence, | |x| | = 1.

(i) Suppose U = {TXl9 . . ., TXm, FYU . . ., FYn] is an end point of T.
Then, U is closed, so for some i, 1 < i < m, and some j , 1 ̂  j ^ n, we have
Xi = Yj = Z. Thus,

Hull = .Λ||xJ=#v||r; l|

> ||z||=Φ.vJ|Fy||

* II^II^Kll
= 1,

and so, ||U|| = 1.

(ii) There are nine cases to consider, one for each of the reduction
rules of Definition 2.3. Since each rule has the form

U/<U,|t <μ>

when applied, we must show that if I|U,|| = 1 for each i <μ, then ||U|| = 1.
We provide proofs for three of the cases, the others being similar.

Case 1. U = {S, ΓVJsΓ,-}.

Then, ||{S, ΓX,}|| = 1 for each i
- | |S T IU| |x , . | |=H|S F U=lforeachi
- ||Sτl|A||A- f-||«||S'Fl|foreachi
- y(IISTIUIlA-J)*l|sl'l|
- isrIUy||xt-NIISFll

- IISTHΛUW, N I I S F I I
- IISΓIIΛI|VX, ||=MS F U = I
- II {S, rvx t }|| = l.

Case 2a. U = {S, F ( X l Λ X 2 ) } .

Then, | | {S,FX, }| |= 1 f o r t = 1, 2

- | | S Γ | | = » ||SFII v \\Xi 11=1 for i = 1,2

- l | S τ l l « l ! S F l | v l l x , | | f o r J = l , 2

- IISTII<(II8FIIVI|X1||)A(I|SFIIVIIX2II)

-> iisηi^nsHivdix.iiΛiixji)
- IIS τll«IISFllvllx l Λχ2ll
- ||STH=MsFllv||x lAx2||=i
- ||{S,F(XlΛX2)}ll= 1.

Case 2b. U = {S, FAX{}, where FAXi is infinitary.

Then, ||{Sτ, FXi}\\ = 1 for each i
- ||SΓII=^I|X,-II= lfor eachί
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- | |S T | | ^ l l x j f o r each/

-> I(STIN A\\XΛ

- I I S T N I I Λ X , ||

- iiSτIUIISFHv||ΛxJ
-> I I S τ H ^ i l S F | | v | | Λ ^ | | = i

- || {S, FΛXi}\\= 1.

Case 3. U = {S, F~X}.

Then, || {Sτ, TX}|| = 1

- | | S T I I Λ | | X | | = Φ O = I

- | | S T | | Λ | | X | | = O

- ||STIU llxll- = ll~x||
- ιisτiNiisFιiviμχiι
_ ιisrιι=ΦiιsFιiviμχiι = i
- H{S,F~X}|| = I .
We may thus show that Hull = 1 for each block U in T, and so | |x | | = 1. QED

4 Completeness To prove the completeness of our proof theory, we

first establish that the class of theorems is closed under modus ponens:

i.e., if \-X and \-X —* Y, then ι-y, We accomplish this by proving a tableau

version of Gentzen's Hauptsatz. More specifically, we show that for any

block S and any Xe J~, if both {S, TX] and {S, FX] are inconsistent, then S

is inconsistent. The proof is constructive in nature and does not use any

semantical notions.

For any block U, we say U closes if U is inconsistent; i.e., if there is a

closed tableau for U. We say U closes via H if there exists a closed tableau

T for U in which He U is the first member to which a reduction rule R is

applied. We say U closes with Od - y if there exists a closed tableau T for

U with Od{T) = γ.

Now, it is well-known that for any countable ordinal γ, we may write

uniquely

y = ωeιnι + ωe2n2 + . . . + ωekrik ,

where eγ > e2 > . . . > e& ^ 0 and each m is finite. This expression is

referred to as the normal expansion of y. The following definition is due to

Feferman [2].

Definition 4.1 Let γ and δ be countable ordinals. Then, using the normal

expansions, we define the linear sum of γ and δ to be

y Θ δ = ωei(nι + mj + ωβ2(n2 + m2) + . . . + ωeίk(nk + mk) ,

where either w; Φ 0 or πij Φ 0 for 1 ^ j < k.

The linear sum is easily seen to be commutative and an increasing

function of either argument. These facts are important for the proof of

Theorem 4.1.

Definition 4.2 Let UL and U2 be blocks. Suppose that \}γ closes with
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Od = γ and U2 closes with Od = δ, and let a = y Θ δ. Then, we say that l ^

and U2 close with combined order a. Let XeJ" and let a be a countable

ordinal. We say that X is a-eliminable if for any block S, if {S, TX} and

{S, FX} close with combined order α, then S closes. We say that X is

eliminable if X is α-eliminable for all a.

We now prove the Hauptsatz in the following form:

Theorem 4.1 For every Xe *f, X is eliminable.

Proof: Let l e ^ Γ and let a be a countable ordinal. We prove that X is

α-eliminable by a double induction argument on formulas and on a. The

induction hypothesis is as follows:

(A) For each Ye Subp(X), Y is eliminable

(B) For each β <a, X is β-eliminable.

Now suppose that for some block S, {S, TX} closes with Od = y, {S, FX}

closes with Od = δ, and y θ δ = α. We must show that S closes.

Suppose either {S, TX} or {S, FX} is closed (i.e., y = 1 or δ = 1.) If

{$, TX} is closed, then either S is closed or F X e S , in which case

{S, FX} = S and S closes. The argument is the same for {S, FX}.

The body of the proof consists of exhausting the cases in which either

{S, TX} or {S, FX} closes via He S, and, then, those in which {S, TX} closes

via TX and {S, FX} closes via FX. Since the arguments in many of these

cases are virtually identical, we include only a few representative cases

here.

Case 1. {S, TX} closes v i a # = ΓVX, .

Suppose that {S, TX} closes via H. Then, for each i, {S, TX{, TX}

closes with Od <γ. But {S, TX{, FX} closes with Od ^ δ for each i9 so by

(B), {S, TX{} closes for each i. Thus, S closes v i a # .

Case 2. {S, TX} closes via /ί = F ~ Y and {S, FX} closes via FX.

Subcase 2.1. X = \ΛYf . Suppose that {S, ΓVX f } closes via # e S , and

{S, FVX4} closes viaFVX,-. Then, {Sτ, TF, TVX,} closes with Od <y and

for some i, {S, FVXiy FX{} closes with 06? < δ.

Now, s u p p o s e first that δ > 2. Then, {S, FVXif TXt] closes

with Od = 2 < δ. But {$, TWX{, TXi} closes with Od < y so by (B),

{S, TXf.} closes. Also, {S, TVXiy FX{} closes with Od ^ y, so again by (B),

{S, FXi) closes. Since we have that both {S, TX{} and {S, FX{} close, it

follows from (A) that S closes.

Finally, suppose that δ = 2. Then, {S, FVX, , FX,} is closed. We must

have ΓX e S . But then, TX{ e S τ , so {SΓ, TY, F V X j closes with Od = δ.

Thus, by (B), {Sτ, TY} closes, and so S closes via Ή.

Subcase 2.2 X = ΛXZ , finitary. It suffices to assume X = XL*X2. Suppose

that {S, T(XιΛX2)}closes via He S, and {S, F(X1 ΛX2)} closes via F ( X l Λ X2).

Then, {S r, TY, T ( X 1 Λ X 2 ) } closes with Od < γ, and {S, F{Xι A X2), FXd}

closes with Od < δ for z = 1, 2.
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Now, suppose first that δ > 2. Then, { S , F ( I l Λ I 2 ) , TXU TX2} closes
with Od = 2 < δ. Since {S, T{XY^X2), TXly TX2} closes with Od ^ y, we
have by (B) that {S, TXl9 TX2} closes. Also, {S, T(X1*X2), FX{} closes with
Od ^ γ for i = 1, 2, so {S, FX{} closes for i = 1, 2 by (B). Now, since
{S, FX2} closes, {S, FX2, TXj} closes, so by (A), {S, TXj closes. But
{S, FXi] closes, so again by (A), it follows that S closes.

Finally, suppose δ = 2. Then, {S, F(X1AX2)9 FXi} is closed for i = 1, 2.
We must have TXV e S and TX2 e S, so TXι e Sr~ and TX2 e S r . Then,
{Sτ, TY, FiX.ΛXj} closes with Od = δ. Recalling that {Sr, TY, T(X,ΛX2)}

closes with Od <y, we have by (B) that {Sτ, TY} closes. Hence, S closes
v ia#.

Subcase 2.3 X = ΛX{, infinitary. Suppose that{S, TAX{} closes via#e S,
and {S, FAX{} closes via FAX,. We have then that {Sτ, TY, TAX{} closes
with Od < y, and {Sτ, FX^ closes with Od < δ for each i. But clearly,
{SΓ, TY, FAX{} closes with Od ^ δ, so by (B), {Sτ, TY} closes. Thus, S
closes via H.

Case 3. {S, TX} closes via TX and {S, FX} closes via FX.

Subcase 3.1 X = Y -> Z. Suppose that {S, T(Y -> Z)} closes via T(Y-> Z),
and {S, F( Y -» Zj) closes via F(Y — Z). Then, both {S, T(Y — Z), FY} and
{S, T(F — Z), TZ} close with Od <y, and {Sτ, TY, FZ} closes with Od < δ.

First, we note that {S, ,F(r-> Z), FF} closes with Od ^ δ, so by (B),
{S, FY} closes. But also, {S, F(Y -* Z), TZ} closes with Od ^ δ, so again
by (B), {S, TZ} closes. Now, since {Sτ, TY, FZ} closes, {S, TY, FZ}
closes, and since {S, TZ} closes, {S, TY, TZ} closes. Hence, by (A),
{S, TY} closes. But we already know {S, FY} closes, so again by (A), S
must close.

Subcase 3.2 X = AX{, infinitary. Suppose that {S, TAX,-} closes via
TAX{, and {S,FAX{} closes via FAX{. Then, {S, TAX{, TXj} closes with
Od <γ for some j , and {S7, FX{} closes with Od < δ for each i. Now, {S,
FAXi, TXj} closes with Od ^ y, so by (B), {S, TXj} closes. But also,
{S, FXj} closes, since {SΓ, FXj} does. Thus, by (A), S closes.

We may thus show that, in any case, S closes. QED
The next result follows from Theorem 4.1 by exactly the same

argument as [9], p. 115, for the finitary classical version.

Corollary 4.1 (Modus Ponens) If \-X and \-X -> F, then \-Y.

It is now a straightforward matter to show that our tableau system is
complete. It is well-known that the Lindenbaum algebra Cfr0 of finitary
intuitionistic logic is a pseudo-Boolean algebra, and that v-X if and only if
\X\ = 1, the unit element of # Ό (see [7], IX, 2.2). We may define d/0 for the
collection of theorems in 4ί in the same manner as in [7] and use the
argument there to show that CI/Q is a pseudo-Boolean algebra. Since by
Corollary 4.1, the class of theorems is closed under modus ponens, we
have the following exactly as in the finitary case:
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Theorem 4.2 \-X if and only if \X \ = 1 in &0.

It remains to show that: (i) &0 is nondegenerate, and (ii) d/Q is com-
plete. The former is trivial.

Theorem 4.3 fl/$ is nondegenerate.

Proof: Let A be any atomic formula of ^. Then, no closed tableau for
{FA} exists, so A is not a theorem. Hence \A\ Φ 1 in CZ/0. QED

Theorem 4.4 d/^ is a complete pseudo-Boolean algebra. For any
countable subset Φ of ^',

V{|x| |Xe Φ} = I VΦ I
Λ{|x| |Xe Φ}= |ΛΦ| .

Proof: For convenience, we write VΦ = VXi. For any i9 we have that
\-χi -* yχt by the following closed tableau:

{F(Xi-+VXi)}

{TXi,FVXi}

{TXi9FWXi3FXi}.

Thus, \Xi\ ^ \\ZXi\ for each i. Suppose now that |x, | ^ \Y\ for each i.
Then, \-Xi -* F for each i, so there exists a closed tableau for {F(X,- —» F)}
for each i, and hence, for {TX, , FF}. But consider VXZ -^ F. If we begin a
tableau as follows:

{F(WXi ->F)}

{TXQ^F} {TXUFY} {TX2, FY\

we see that {F(VX, — F)} closes. Hence, t-VX; — F, and so \VX{ \ ̂  \γ\.
But this gives us that

V|A-f.|= \VXi\

so countable least upper bounds exist in β/Q.
Now, consider ΛΦ = AX{. For any z, we have hΛX^ —> Xt by the

following closed tableau:

{F(AX{ -+Xi)}

\TAXi9FXi}

{TΛX,,TX,,FXj.
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Thus, IΛX I ̂  \Xi\ for each i. Suppose now that | F | < \Xi I for each i.
Then, HF -* X{ for each i, so there exists a closed tableau for {F(Y -> X{)}
for each z, and hence, for {TY, FXti}. But consider Y —> ΛXf. If we begin a
tableau as follows:

{F(Y-*ΛXi)}

{TY,FAXi}

{TY, FX0} {TY, FX,} {TY, FX2}

we see that {F(Y — ΛXZ )} c l o s e s . Hence, H7-+ΛX,-, and so | F I < I Λ X , |.

But this gives us that
A\X{\= \ΛXi\ ,

so countable greatest lower bounds exist in d/^. Hence, CI/Q is complete.
QED

It is now easy to see that we have a canonical homomorphism

given by ho(X) = \x\ for each I e ^ , and so (<#Ό, ^, ̂ o) is a model in the
sense of Definition 1.6. This gives us our final result:

Theorem 4.5 If X is valid, then v-X.

Proof: Suppose X is not a theorem. Then, \x\ Φ 1 in &/Q. But this means
X is not valid in ^ Ό , so X is not valid. QED

Hence, we see that, as in the finitary case, the Lindenbaum algebra d/^
for our proof theory provides a countermodel for all nontheorems.

5 Concluding remarks There appear to be some directions in which
further investigation would prove interesting.

Fitting shows in [3] that in the finitary case, the algebraic semantics
and the Kripke semantics are equivalent. Hence, his tableau system is
shown to be complete for both semantics. In the infinitary case, however,
the reduction rules corresponding to the algebraic semantics we have used
are not the natural generalization of the reduction rules in Fitting.
Specifically, if we replaced the rule FA (b) in Definition 2.3 by the
following:

FΛ*: {S,F AΦ}/{{S,FX}\XeΦ} ,

which is the infinitary version of the FA rule in [3], we would get a stronger
proof system. It is not hard to construct a tableau proof of the formula

Y= Λ(XvIi) -»X v AXi
i i

in this stronger system, but Y is not valid in the algebraic semantics since
the inequality

Λ(αv ai) < a v Aai
i ί
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does not, in general, hold in all pseudo-Boolean algebras. For a counter-

example, see [7], p. 135.

It is easy to show that the stronger system described above yields

theorems which are valid in the Kripke semantics for infinitary proposi-

tional logic. Hence, it would be interesting to generalize the construction

of aHintikka collection, as in [3], to the infinitary case, and thus show the

stronger system is complete.

For the proof theory we have presented, it would likewise be interest-

ing to prove a stronger completeness theorem; i.e., to show that a countable

collection Φ of formulas is consistent if and only if it has a model. This

would necessitate, it appears, construction of an appropriate topological

space whose open sets would provide the model.

Since the submission of this paper, the above directions have been

taken by Nadel [6], and the reader is referred to his results.
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