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GENERAL COMPUTABILITY

THOMAS H. PAYNE

1 Introduction A theory of computability consists of a domain A of
cardinality greater than one and a definition of computability for multivari-
able partial functions from A into A. The class 9 of all partial functions
satisfying that definition is called the class of computable functions. In
this paper, we consider some properties of 9 which have been of im-
portance in various specific theories. In particular, we consider conjunc-
tions of the following properties:

(1) 9 is the closure of a family Q under composition.

(2) 9 is closed under piecewise composition.

(3) 9 is the closure of a family Q under composition and iteration
where the iterate/°° of a partial function/ is λx[fn(x)], where w
denotes μm [fm(x) =fm+ι(x)]

(4) Q is closed under piecewise composition.

(5) Q is finite.

(6) 9 contains the test function λw,x, y, z[x if w - z\ else y].

(7) 9 includes a pairing system, i.e., a set {p, σ, p} of partial func-
tions such that p(p(a, b)) - a and σ(p(a, b)) = b for all a and b in A.

(8) p, σ, and the members of Q are total functions on A.

(9) 9 has an indexing; i.e., 9 is closed under composition and contains
a partial function * such that every member of 9 is of the form:

λx,, . . ., xn [(. . . (a *Xj) * . . . *xn)]

for some a in A.

(10) 9 has a uniform indexing in the sense that 9 has an indexing *
such that every member of 9 is of the form

λ#l, , Xn\g(Xγy - - , Xn-l) * Xn\

for some total g in 9.
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In this paper, we establish:

a. normal form characterizations for the members of 9 when 9
satisfies (1); (2); (1) & (7); (1) & (6) & (7) & (8); (3) & (4) & (7);
(3) & (5) & (6) & (7)

b. necessary and sufficient conditions for (9) and for (10)

c. the following implications: (3) & (5) & (6) & (7)<=#>(3) & (6) & (10)<^=
(6) & (10) => (7) & (9) ==> (10) ==> (9) ==> (1) & (5)

d. that (2) is implied by (6) & (9), by (1) & (6) & (8), and by (3) &
(4) & (7).

Many of our results and methods are extensions of those found in Wagner
[5], Strong [3], and Friedman [l], [2]. The theorem on indexability in this
paper is an abstract generalization of Kleene's normal-form theorem. It
gives a normal-form characterization for the members of the closure,
under composition and iteration, of any finite family of partial functions
that includes a pairing system and the test function. From this lemma, it
follows that such closures are uniformly indexable and that they are
exactly the uniformly reflexive structures (URS's) containing semicom-
putable splinters. It is also shown that there is no first-order axiomatic
characterization of such URS's; i.e., they do not constitute a generalized
elementary class. The existence of a URS having no semicomputable
splinter follows immediately. A more intricate proof of this fact is
outlined in [4].

2 Composition Henceforth, 9 will denote an arbitrary family of multi-
variable partial functions on an arbitrary set A. 9μ denotes the set
consisting of those members of 9 having exactly n arguments. We will
consider members of A to be 0-ary functions so that 9° is a subset of A.
We let V denote an infinite set disjoint from 9 U A. Its members will be
called variables. A function Θ from V into A will be called a valuation.

2.1 Definition We define the notions of J-term and 9-proposition and
their values at a valuation θ recursively as follows:

1. t is an 9 -term iff

a. t is a variable
b. t is of the form ftι . . . tn, where / is in 9n and tu . . ., tn are

3-terms
c. or M s a conditional; i.e., t is of the form (u) IF P; (v), where u

and v are J-terms and P is an ^7-proposition.

2. P is an .7-proposition iff P is an atom (i.e., of the form u = v or of
the form u Φ V where u and v are J-terms), or P is a conjunction, disjunc-
tion, or negation of 9-propositions.

We say that an 9-proposition has the value true or false at a given
valuation under the usual circumstances provided that the terms of its
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maximal atoms (those not part of other atoms) are defined at that valuation.
The value t[θ\ of an 9-term, at a valuation θ is

1. θ(x) if t is the variable x
2. /(^[G], . . ., tn[θ]) if Ms the term A . . . tn

3. u[θ] if P is true at 0; v[θ] if P is false at 0, in the case where t is
of the form (u) IF P; (v). (In such a case, t is undefined at θ iff P is
undefined, P is true and M is undefined, or P is false and v is undefined.)

9-terms and 9 -propositions are said to be simple iff they involve no
subterms of the form (u) IF P; (v).

2.2 Definition

1. K w > 0 then we often write

fit,, . . ., tn)

instead of the term

and when w = 2 we sometimes write

for the term

fuυ .

2. We will let

*L IF P,; ί2 IF P 2 ; . . . /n

represent the term

(ίx) IF P i ; ((ί2) IF P 2 ; (. . .; (tn) . . .))

3. Also we sometimes write

u IF P; ELSE v

or else

M IF P v OTHERWISE

instead of

(u) IF P; (v).

2.3 Definition Let %!, . . ., xn be variables and ί be any J - t e r m .
Suppose that t has the same value at θ and θf whenever θ and θ' assign the
same values to xl9 . . .,xn- Then

λxl9 . . ., xΛ[ί]

denotes that rc-ary partial function on A whose value at (al9 . . ., an) is ί[0]
where 0 is any valuation assigning the values al9 . . ., an to x1, . . ., xn9

respectively. We assume that this definition includes the case where n = 0,
so that λ[t] = a iff t[θ] = a for every valuation 0.
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2.4 Definition If u and υ a r e 9-terms or 9-propositions, we say that u

is equivalent to v (written u ~ υ) iff u and υ a r e defined at the s a m e

valuations and at such valuations they have the same value. It is easy to

show that if u ~ υ then . . . u . . . ~ . . . z; . . ., where . . . u . . . is any

.2-term or 9 -proposit ion involving u, and . . . z; . . . is the t e r m obtained

from it by replacing u by v. If u and υ a r e 9-terms then, c lear ly , u ~ υ iff

λxl9 . . ., xn[u\ = λxL, . . ., xn[v]

for all variables xl9 . . ., xn.

2.5 Definition An J- term or 9-proposition is total iff it is defined at

every valuation.

2.6 Definition A partial function / is a piecewise composite of 9 iff

/ = λxl9 . . .,#«[£] for some J-term t. If t is a simple J-term then we say

that / is a composite of F.

The following is an adaptation of a well-known result from recursion

theory.

2.7 Lemma / is a composite of 9 iff f is a member of the smallest set

Q such that:

(1) 9 is a subset of Q.

(2) λx[a] is inQ1 iff a is inQ°.

(3) λ ^ , . . ., xn[
χm] is in Q for every m and n.

(4) λxl9 . . ., Xn[g(fι(*ι, ., xn), - - , Λ»(*i, , **))] i s i n Q when-
ever g is in Qm andfly . . ., fm are in Qn.

Proof: #=: Visibly the composites of 9 satisfy (1) & (2) & (3) & (4) and

hence each member of Q is a composite of 9.

=φ: Let / be any composite of 9. Then/ = λxly . . ., xn[t] for some

variables xl9 . . ., xn and some simple J- term t. If t is a variable then / is

in Q by (3). Using induction we may suppose that ί is a simple 9-term of

the form g(tl9 . . ., tm) where g is in Qm and tlf . . ., tm are simple J- terms

such that λxl9 . . ., ^»l f̂ ] is in Q for i = 1, . . ., m. By letting// denote

λxί9 . . ., xn[ti] for i = 1, . . ., m9 we see that/ is in Q by (4) since

/ = \xlf . . ., ΛΓn[ί]

= \Xi9 . . ., Xn[g(ti, ., ίw)]

= XXL, . . ., Xn\g(fι(xί9 - - -, Xn), .,/βiUi, •> ^»))]

Thus, by induction, every composite of 9 is in Q. QED

2.8 Definition e will denote λw, ΛΓ, y, z[x \F w = z\ ELSE y].

2.9 Lemma Every 9-proposition is equivalent to an atom.

Proof: Suppose that P is an 9-proposition such that all shorter 9-

propositions are equivalent to atoms. If P is an atom or a negation then P

is obviously equivalent to an atom. If P is a conjunction then we obtain an
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equivalent atom by replacing its conjuncts by atoms (using our induction

hypothesis) and, then, applying one of the following general equivalences:

1. 5 = t & u = v ~ (u IF s = t\ s IF u = u; s) = (v IF s = t\ t IF υ - υ\ t)

2. s Φ t & Q ~ (s IF Q; t) Φ (t IF s = s; t).

If P is a disjunction it is equivalent to the negation of a conjunction by

De Morgan's law. Thus, in all possible cases P is equivalent to an atom.

QED

2.10 Definition An J-term in which every nonconditional subterm is

simple and every subproposition is a simple equation is said to be normal.

Note: It is easy to show that the normal 5-terms are the smallest class

including the simple J-terms and such that the term (s IF t = u; v) is

normal whenever t and u are simple and s and υ are normal.

2.11 Theorem Every 9-term can be normalized, i.e., is equivalent to a

normal 9-term.

Proof: Let t be any J-term. By the previous lemma we may assume that

every ^-proposition in t is atomic; and we may assume that these atoms

are equations by replacing conditional subterms of the form s IF t Φ U; V by

the equivalent term, υ IF t = u; s. If all of the proper subterms of t are

normal then we normalize t by induction on the number of misplaced

conditionals (those contained in subpropositions or in nonconditional

subterms). In such a case, if t is not normal then it is of the form

. . . (u IF P; v) . . .

where the term (u IF P; v) is a misplaced conditional of maximal length.

But then t is equivalent to the term

(. . .u . . .) IF P; (. . .v . . .).

By induction, we can normalize the subterms . . . u . . . and . . . v . . . .

The result can then be normalized by induction since the remaining

misplaced conditionals are those in P, fewer by at least one than those in t.

If the proper subterms of t are not normal, we can normalize them by

induction on length and the procedure just given. QED

2.12 Corollary Suppose that the members of 9 are total. Then the

piecewise composites of 9 are exactly the composites of 9 U {e}.

Proof: It is clear that e is a piecewise composite of 9 and, hence, every

composite of 9 U {e} is a piecewise composite of 9. Conversely, to obtain

an equivalent simple (9 U {^})-term from an 5-term, normalize it and

replace each conditional part, say (s IF t = u; v), by the equivalent simple

(9 U {e})-term, e(t, s, vy u). QED

Note: If the members of 9 are total then for every s, t, u, P, Q

(s IF P; t) IF Q; u - s IF P & Q; t IF P; u.
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2.13 Corollary If the members of 9 are total, then every 9-term is
equivalent to one of the form

tL IF P i ; . . .; tn IF Pn] tn+ι

where tiy . . ., tn+ι are simple and Pl9 . . ., Pn are conjunctions of simple
equations.

Proof: Let t be any J - t e r m . Normalize it. Then repeatedly replace
subterms of the form (s IF P; t) IF Q; u by the equivalent term s IF P & Q;
t IF P; u. This process terminates by induction on the number of such
subterms and the final result is clearly of the required form. QED

3 Pairing

3.1 Notation

(1) For any partial functions/ andg-, fg will denote

λχ[f(g(x))].

(2) t will denote Xx[#].

(3) fnwill denote i if n = 0; fn'Lf if n is positive.

(4) p will denote a fixed pairing function on A, i.e., a total one to one
function from A x A into A. (x, y) will denote p(x, y).

(5) p and σ will denote partial functions such that for all a and b in A,
p((a, b)) = a and σ((«, b)) = b.

(6) (xl9 . . .,*w) will denote xLif n= 1; <#i,#2> if w = 2; ((^1? . . .,#„_!>, #w>
if w > 2. It is undefined if n = 0; except that, if / is a constant function, say
/ = λΛr[#], then f{(xu . . ., xn)) will be defined to have the value a even when
n= 0.

(7) For any term t we let λ(*Ί, . . ., xn) [t] denote XΛΓ[Z/] where x is any
variable not occurring in t and where u is obtained from t by replacing each
occurrence of xι by the term pn(x), and Xi by the term σpn~ι(x) for
i - 2, . . ., n. Thus we obtain the following equivalence:

λfo, . . ., xn)[t\{(yu . . ., yn)) ~ λΛrl5 . . ., xn[t](yl9 . . ., yn).

(8) For every n-ary partial function^, we let ̂ ""denote:

λ<*i, , Xn)[g(xι, . , xn)]

so that we obtain the equivalence:

g*«ρcl9 . . ., xn)) ~g(xl9 . . ., xn).

If a is in ̂ 4, we let a" denote X#[a].

(9) δ will denote λx[(χ, x)].

(10) c will denote λ(χ, y)[(y, x)].
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(11) s will denote λ((x, y), z)[(x, (y, z))].

( 1 2 ) / x * will denote λ<*, y)[(f(x), g(y))].

Note that (Λ x gi)(f2 x g2) = (fj2) x (gιg2).

3.2 Theorem The composites of 9 U {p, σ, p} are the partial functions
on A of the form \xi9 . . ., xn[gι . . .gm((xιy . . ., xn))] where gl9 . . .,gm

are in {p, s, δ, c} U {/Λ x </. /zs m 9}.

Proof: Let £ be the set of all unary composites of {p, s, δ, c}u {/" x L:
/ is in 9}. Note that g" x i is in £ whenever g is in £ since:

1. (g x t) x t = cscsc(£* x t)s is in £ whenever g x ι is in £
2. ifg) x L = (/ x ι)(iΓ x i) is in Q whenever/ x i and g x i are in Q
3. p x i = cpcscs is in Q
4. δ x i = cscspcscsδ is in £
5. c x L = cspcscsscpcss(δ x ι) is in Q
6. s x L = (((pp) x i)c(((pc) x i) x ί.)δ) x i is in £.

Thus, if / andg are in Q, so is λx[(f(x), g(x))] = (/ x t )c(^ x ι)δ. And, in
general, \x[{gι(x)y . . ., ^«(^)>] is in Q whenever gl9 . . ., gm are in Q. Let
g1' denote {§*: ^^ is in Q\ which is the set of all functions that can be put into
the form given in the theorem. Clearly, f' is a family of composites of
9 U {p, σ, p) and includes 9 U {p, σ, />}. Thus we need only show that 9 is
closed under composition. This follows from Lemma 2.7 and the following
facts:

a. a is in (£')° iff λ*[«] is in (£ ' )\ since a r = λjv[α] and ^ = (Q'Ϋ and,
by definition, a is in ( f)° iff a~ is in ^ .

b. λ*!, . . ., ^[Xw] is in Q' for all m and w since ^ w = pcpn~m{(xu . . .,ΛΓW))

if m > 1 and ΛΓi = pw((xx, . . ., xn)).

c. If ^ is in (Q')m and/ 1 ? . . . , / „ , are in (£'Γ, then for some /z in ^,

λΛΓi, . . ., Xn\g(fι(Xι, , Xn)y ,/«(^l> •> ΛΓ»))]
= λX,, . . ., ΛΓn[^((/lΛ((^l, , Xn))> - Jm~((Xu , *«»»]
= λxl9 . . ., xn[h((xly . . ., xn))]
= h\

since ζ" is closed under unary composition and since whenever gu . . ., gm

are in Q then so is λx[(gΛx), . . ., ^ «(^)>]. QED

3.3 Corollary Let p, σ, and the members of 9 be total. Then the piece-
wise composites of 9 U {p, σ, />} αr# the functions on A of the form:

λxl7 . . ., xn[e*kgL . . . g fβKtfi, , xn))]

where gi9 . . ., gm are in {p, s, δ, c}U {/" x c: / z s in J } .

Proof: Since p, σ, p and the members of 3 are total, the piecewise
composites of 9 U {p, σ, />} are the composites of 9 U {p, σ, /?}U {̂ } which
by the previous theorem are of the form:

λ*i, , Xn[gι .^™«^i, , Xn))]
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where gl9 . . ., gm are in {p, s, δ, c}u {/" x i: / is in J } u {e " x ι}. To see
that these can be put into the required form it suffices to note that:

a. e A x L = e *h where h denotes

λ((v, w, x, y), z)[(v, (w, z), (x, z), y)]

which by the previous theorem is a simple composite of {p, s, δ, c}.

b. ge~ = e*h where h denotes λ(w, x, y, z)[{w, g(x), g(y)9 z)] which is a

simple composite of {p, s, δ, c, (g* x t)} and, hence, is a simple composite

of {p, s, δ, c}u {/Λ x i: / is in J } provided that g is such a composite. QED

4 Indexing In most theories of computability one can encode all com-

putable procedures into members of 9° in such away that λx, y[x * y] is

computable (i.e., in 9), where x * y denotes the result of applying to y the

procedure encoded into x. In this section, we characterize and study those

situations in which such encodings exist. Theorem 5.3 of the next section

will show why this includes most theories of computability.

4.1 Terminology Henceforth, we let * denote an arbitrary binary partial

function on A.

(1) For any 5-terms tu . . ., 4, we let tι * . . . * tn denote

(. . . ((t, * t2) * . . . * tn) . . .).

(2) A member a of A is a (uniform) *-index for/ iff

/ = λχl9 . . ., xn[a * x, * . . . * xn]

(and a * xγ * . . . * xn-L is total).

(3) For any subset B of A, we let J5* denote the family of all partial

functions on A having *-indices in B. Notice that b is the only *-index for

the 0-ary function b and, hence, (B*)° = B. It follows that B* = C* iff B = C.

(4) * is a (uniform) indexing of 9 iff (3 0)* is closed under composition

and equal to 9 (and every member of 9 has a uniform *-index in 9°).

Notice that * is an indexing of £ * iff B* is closed under composition.

Note: From the fact that (a * xγ * . . . * xn IF P; b * xι * . . . * xn) ~

(a IF P; b) * xL * . . . * xn it is easy to show that if 9 is indexable and

contains e then 9 is closed under piecewise composition.

The following theorem is an adaptation of some pertinent results from

combinatory logic and from Wagner [5].

4.2 Theorem

(I) * is an indexing of B* iff

(1) B is closed under *, i.e., a * b is in B whenever a * b is defined

and a and b are in B

(2) λx, y [x] has a * -index K in B

(3) λx, y, z [(ΛΓ * z) * (y * z)] has a * -index S in B.
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(II) In such a case the following are equivalent:

(a) * is a uniform indexing of B*

(b) λx, y, z [(x * z) * (y * z)] has a uniform *-index in B

(c) λx, y, z [x * y * z] has a uniform *-index J in B

(d) For every simple B*-term t whose variables are in {z, xu . . ., xn]

the circular definition

z * xL * . . . * xn ~ t

has a uniform solution in B in the sense that there exists b in B

such that δ * # ! * . . . * xn_γ is total and such that the above equiva-

lence holds when all occurrences of z are replaced by b.

Proof of (I):

=Φ: The implication is obvious.

<Ξ=: To prove the converse implication, we first show by induction on the

length of t that for every variable x and every simple (B U{*})-term t, the

term t is equivalent to a term tr * x where x does not occur in t'\

i. t ~ S * K * K * x if t is the variable x

ii. t~K*t*xτ£tis2i constant or another variable

iii. t~S*u'*v'*x if t is the term u * v.

It now follows, by a simple induction, that if the variables of t are among

xίf . . ., xn then t is equivalent to a term t" * xγ * . . . * xn where t" is a

simple (B U {S, K, *})-term containing no variables. Obviously, t" is in B

since S and K are in B and B is closed under *.

Proof of (II):

(d) =^ (c): by taking ί to be the term xv * x2 * # 3 in (d).

(b) => (a): by adding the hypothesis that V is total in the proof of (I) above.

(c) =#> (b): since any *-index for λx, y[j * (J * S * x) * y] is a uniform

* - i n d e x f o r λ x , y , z [ ( x * z ) * (y * z ) ] .

(a) =#> (d): Let t be any simple i?*-term whose variables are among

z, xl9 . . ., xn. Choose a in B to be a uniform *-index for λz, xly . . ., # n [ί ' ]

where V is obtained from t by replacing all occurrences of z by z * z.

Then a * a is in B and is a uniform solution to the circular definition

£ * # ! * . . . * # „ " * . QED

As a consequence of the above theorem one can show that if 9 is a subset of

Q and * is a (uniform) indexing of 9, then * is a (uniform) indexing of Q iff

Q is the closure of Q° U J under composition.

4.3 Theorem Suppose that * is a uniform indexing of B* and that B*

includes {p, σ, p}. Let tly . . ., tm be simple B*-terms whose variables are

among xl9 . . ., xn, zu . . ., zm. Then the following system of circular

definitions has a uniform solution:
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zi * xι * . . . * xn ~ tγ

zm * xL * . . . * xn ~ tm

in the sense that there exist bly . . ., bm in B such that b{ * xι * . . . * xn.γ is

total and b{ * xι * . . . * xn ~ tj for i = 1, . . ., m.

Proof: For j = 1, . . ., m let c; be a *-index for

\y, xl9 . . ., Xn[oρm'j{y * Xι * * *„)].

For z = 1, . . ., m let t( be obtained from U by replacing all occurrences of
Zj by c; * z for j = 1, . . ., m. Let β be a uniform solution to the circular
definition

Z * Xt* . . . * Xn ~ (Z, t[, . . ., % > .

Then c, * α * xι * . . . * xn is equivalent to t{ with all occurrences of zι
replaced by ς * α. Thus, it suffices to let b{ - c{ * a for i = 1, . . ., m.

QED

4.4 Theorem Suppose that 9 is closed under composition and includes
{p, σ, />} βftd that there exists a partial functions * and # in 92 such that
(J0)* includes {λx, y[f((x, y))]: f is in 9ι}and

(x, y) # z ~ x * (y, z).

Then # is a uniform indexing of 9.

Proof: It suffices to show, by induction on n, that if / is in 9n+1 then there
exists a total g in 9n such that

/ = \X19 . . ., Xn+ι [g(Xy, . . ., Xn) # ^ Λ + 1 ] .

We do this by letting g = λxl9 . . ., xn\g'({xu xj, x3, , χn)} where g' is
chosen, by induction, such that^ ' is total and

g'(xu ., Xn-ι) # Xn ~ fip(Xi), v(Xi), *2, - , ̂ «)

In case n = 1, we letg = λΛ;[(α, #)] where β is a *-index for λ(x, y)[f((x, y))]
and, hence, g(x) # y ~ (a, x) # y ~ a * (x, y) ~ f(x, y). QED

4.5 Corollary Suppose that 9 includes {p, σ, p}and that * is an indexing

of 9. Then λx, y [p(x) * (o(x), y)] is a uniform indexing of 9.

5 Iteration

5.1 Definition For any function /, f°° denotes λx[fn(x)], where n
denotes μm[fm(x) = fm+ι(x)]- /°°is called the iterate of /. 9 is said to be
closed under iteration iff /°° is in 9 whenever / is in 9. The closure of 9
under composition and iteration is called the iterative closure of 9 and its
members are called iterative composites of 9.

5.2 Theorem Suppose that 9 includes {p, σ, p} and is closed under
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piecewise composition. Then the iterative composites of 9 are closed
under piecewise composition and are of the form:

λxl} . . ., xn[σlΓy({xl9 . . ., xn))]

where h is in 9ι and y denotes λx[(x, x9 x, x9 xf x)].

Proof: To show that the iterative composites are of the required form, we
use the Theorem 3.2 and the following facts:

1. / = σh°°γ where h denotes

λ(u, v, w, x, y, z)[(u, v, w, x, y,f(y)) IF z Φ f(y)

(u, v, w, x, y, z) OTHERWISE ]

2. (σ/°°y)(σg ooy) = σh°°y where h denotes

λ(u, v, w, x, y, z)[(u, y(u), γ(u), x, y, z) IF υ φy{u)

(u, υ, g(w), x, y, z) IF w Φ g(w)
(u, v, w, yσ(w), γσ(w), z) IF x Φ γσ(w)
(u, v, w, x,f(y), z) IF y φf(y)
(u, υ, w, x, y, σ(y)) IF z Φ σ(y)
(u, υy w, x, y, z) OTHERWISE ]

3. (σ/^y)00 = σh°°y where h denotes

λ(u, υ, w, x, y, z)[(u, v, w, y(w), y(w), z) IF x Φ y(w)

(u, v, w, x,f(y), z) IF y φf(y)
(u, v, w, x, y, σ(y)) IF z Φ σ(y)
(u, υf z, x, y, z) OTHERWISE ].

To show that the iterative composites are closed under piecewise composi-
tion, consider a conditional term t over the iterative closure of 9. We may
assume that it is of the form:

t, IF t2 = t3) tA

where t{ ~ offy{{xu . . ., xn)) and /,- is in 9ι for i = 1, 2, 3, 4. Then t is
equivalent to oh^y((xv, . . ., xn)) where h denotes

λ(u, v, w, x, y, z) [{u, y{u), γ(u), y(u), y(u), z) IF υ Φ y(u)
(u, v,fι(w),f4(x), y, z) IF w φf^w) OR x φfA{x)
(u, υ, w, x, f2iy), z) IF σ(w) = σ(x) AND y Φf2(y)
(u, υ, w, x, My), z) IF σ(w) Φ σ(x) AND y φf3iy)
(u, v, w, x, y, σ(y)) IF z Φ σ(y)
(u, υ, w, x, y, z) OTHERWISE ] . Q E D

5.3 Theorem on indexability There is a composite q of {e, p, σ, p}such
that for any subset B of A and any partial functions fu . . ., fkon A

λx,y[σp((Lχ(frx. . . x Λ Λ ) ) ^ Γ ( ^ , y»]

is a uniform indexing of the iterative closure 9 of B U {e, p, σ, p} U
{fl9 . . ., fk}provided that 9° contains more than one member and intersects
the domain of f^ x . . . x fk*.
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Proof: Since 9° has more than one element and δ is in 9 then 9° has

infinitely many members, e.g., (a, δ), δ((α, b)), δδ((a, b)), . . . where a and

b are distinct members of 9°. By way of notation, we let p', c', s', δ', e',

/ ' , d, r, 6, Δ, V, σ(V) be distinct members of 9°. We l e t / denote/^ x

. . . x fk* and let a be any member of 9° Π Dom / . We let # denote

λx, y[σp((ί xf)q)°°((x, y))] and let * denote λx, y[(x, ρ(y)) # σ(y)] so that

(#, y) # z ~ x * (y, 2>. We will construct <? in such a way that

a. ({V, £-', Δ), V) * (x, y) ~ £•«*, y)) if g is in {p, c, s, δ, e}

b. ((V, b, d, Δ>, V) * <ΛΓ, y> ~ 6 if 6 is in J °

c. ((V, Δ, / ' , Δ), V) * (x,y) ~ LX /«*, y»

d. ((V, r, fll7 . . ., an, b, Δ>, V) * (#, y) - g°°((x, y)) if

((V, αx, . . ., an, Δ), V) * (x, y) - g((x, y))

e. ((V, «!, . . ., an, bly . . ., bm, Δ>, V) * (ΛΓ, 3;) - gh((x, y)) if

«V, «!, . . ., an, Δ), V) * (x, y) - g((x, y)) and

((V, 6,, . . ., bm, Δ), V) * <*, y) ~ Λ«ΛΓ, y».

Then # is a uniform indexing of 9 by Theorem 4.4, Theorem 3.2, and the

fact that 9 is the closure of B U {/, £, p, σ, /?} under composition and

iteration.

Specifically, we define q to be: (an explanation follows)

λ(υ, w, x, y)[(p(v), w, e*{x), a) IF σ(v) = ef

(p(υ), w, ρ(x), a) IF σ(v) = p'

(ρ(υ), w, s(x), a) IF σ(υ) = s'

(ρ(υ), w, δ(x), a) IF σ(v) = δ'

(p(υ), w, c(x), a) IF σ(υ) = cf

(p(v), w, p(x), σ(x)) IF σ(v) = / '

(p(v), w, (x, y)9 a) IF σ(υ) = Δ

(pp(v), w, σp(v), a) IF σ(v) = d

(p(v), (w, p(v), x), x, a) IF σ(v) = b

(p(w), (p(w), x)9 x, a) IF σ(v) = r AND x Φ σ(w)

(p(v), pp(v), x, a) IF σ(v) = r AND x = σ(w)

(υ, w, x, a) OTHERWISE ],

so that

q(((al9 . . ., α»>, <w, (bl9 . . ., bm), t), x, y)) -

«α x , . . ., an^)y (u, (bιy . . ., bm), ί>, ^(ΛΓ), «) if αw = ̂ ' is in{β f , p ' , s ' , δ ' , c'}

««!, . . ., «„.,), <M, (bL, . . ., 6 J , t), p(x), σ(x)) if «w = / '

<(«!, . . ., αw-L), <w, <6L, . . ., bm), t), (x, y), a) if an.= Δ

((al9 . . ., ^ . 2 ) , <w, <&!, . . ., δ j , ί>, αn_L, α> if an = d

« « ! , . . ., «„.!>, <^, <&!, . . ., bm), t, (a,, . . ., «„_!>, Λ:>, x, α) if an = b

<(δi> •> O > (w, <&i, ., bm), x), x, a) if an = r and # ^ ί
««!, . . ., an^), (w>, ΛΓ, «) if βw = r and x = f

««!, . . ., αw), <M, (bl9 . . ., 6OT), t), x, a) otherwise.
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From the above definition it is obvious that q is a c o m p o s i t e of
{e, p, σ, p, p', c', sr, δ', er,f, d, b, r, Δ, V, σ(V), a}. However, we have
made our choices of p', c', s', δ', ef,f, d, bf r, Δ, V, σ(V), a fixed only to
simplify the construction. We may consider them to be additional parame-
ters of q in which case q is in the closure of {e, p, σ, p] under composition.

In considering the construction of q, it helps to imagine a machine
(v, w, x, y) consisting of an instruction stack v, a loop-control stack w, a
main register x, and a special register y, and having (uxf)q as its next-
state function. The stack u has σ(u) as its top item, σp(u) as its second,
etc.; the same holds for w. V serves as a null value; and σ(V) serves as a
halt instruction, p', s', δ', c'9 er serve as instructions to perform the
corresponding operation (function) on the content of the main register, d is
an instruction to delete the next item (any constant) from the instruction
stack and load it into the main register, b initializes for a loop by pushing
the content of the instruction stack and then the main register onto the
loop-control stack, r is a conditional-repeat instruction that tests whether
the content of main register is the same at the end of the current iteration
as at the end of the last (top item of loop-control stack). If so, it deletes
the top two items from the loop-control stack. If not, it replaces the top
item of the loop-control stack by the content of the main register and
copies the second item of the loop-control stack (the content of the instruc-
tion stack upon entering the loop) into the instruction stack. Δ combines the
contents of the main and special registers into a pair and loads it into the
main register. Because the next-state function is (i x f)q, / i s applied to
the special register on each step. / ' loads the first and second components
of the content of the main register into the main and special registers,
respectively. Other instructions load the value a into the special register
so that (i xf)q((v, w, x, y)) will be defined. QED

6 Axiomatic characterization Wagner [5] has shown that * is a uniform
indexing of A* and A* contains e iff (A, *) satisfies the following first-
order axiom:

There exist S and E such that

(1) SΦE

(2) and for all x, y, and z there exists w such that S * x * y - w and
for all v, w * x = υ iff υ = (x * z) * (y * z) (i.e., S is a uniform
* - i n d e x f o r λχ} yt z[(x * z) * (y * z)])

(3) a n d f o r a l l w, x, y, a n d z, E * w * x * y * z = x if w = z; a n d

E*w*x*y*z=y if w Φ z (i.e., E is a *-index for e).

This follows, as in Strong [3], from the characterization of uniform
indexings by noting that in such a case λχf y[x] has a *-index, namely
K = S * (E* E) * I w h e r e / d e n o t e s S*(E*S*E)*(S*S*S*S) w h i c h

is a *-index for i. In such a case, (A, *) is said to be a uniformly reflexive
structure. For the sake of generality and notational convenience, we extend
this notion to include families J where 9° is a proper subset of A, by
means of the following definition.
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6.1 Definition 9 is a uniformly reflexive structure (URS) iff 9 is
uniformly indexable and contains e.

Wagner [5] has shown that every URS includes a pairing system, e.g.,
{λx, y[E * a * x * y], λx[x * a], λx[x * b]} where a and b are distinct
members of A and E is a *-index for e.

6.2 Definition If g is in 9ι and a is in J ° and T = {#, g (α), gg{a), . . .}
is infinite then T is said to be an J-splinter.

For example, if 9 contains δ and a constant a - (b, c) where b Φ C then
{a, δ(a), δδ(a), . . .} is an J-splinter.

6.3 Definition A set B included in A is said to be semicomputable in 9
iff it is the domain of a member of 9ι.

6.4 Theorem Let T = {a, g(a), gg(a), . . .} be any 9-splinter. Then the
following are equivalent:

(1) There is a pairing system {p, σ, p} and a partial function h on A
whose domain intersects 9° such that 9 is the iterative closure of
9° U {A, e, p, σ, p}.

(2) 9 is a URS closed under iteration.

(3) 9 is a URS closed under minimization in the sense that if f is in 9ι

then 9ι contains

λx[gn(a) where n = μm[f(gm(a), x) = a]].

(4) 9 is a URS and T is semicomputable.

(5) There is a pairing system {ρr σ, p} and a partial function h on A
whose domain intersects 9° such that 9 is the closure of 9° U
{h, e, p, σ, p} under composition and DO-UNTIL constructions, in
the sense that if P is an 9-proposition and f is in 9ι then 9ι also
contains the partial function DO/ UNTIL P which is defined to be:
Π{h:h= λx[x IF P; hf(x) OTHERWISE]}.

Proof:

(1) =M2): Note that 9° includes T which is infinite. Hence, (2) follows
from (1) by the theorem on indexability.

(2) =M3): Let / be any member of 9ι. Let h denote λ(w, x)[(w, x) IF
f(w, x) = a; (g(w), x) OTHERWISE]. Let h' denote λy[(a, y)]. Then h°°h'(y) =
gn(a) where n = μm[f(gm(a), y) - a].

(3) =^(4): λχ[gn(a) where n = μm[e(gm(a), a, x, x) = a]] is the identity
function on T and is clearly in 9 if (3) holds.

(4) =$> (5): Suppose that (4) holds and that T = Dom h where h is in 9. Then
it is obvious that 9 is generated under composition alone by 9° U {*} where
* is any indexing of 9. So it remains only to show that 9 is closed under
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DO-UNTIL constructions. We do so by noting that for every / in 9\
DO/ UNTIL P is equal to

λx[σf'((a, x))]

where / ' is defined circularly as follows:

f'((w, x)) ~ (wf x) IF (h(w) = h(w)) & P; ELSE f'((g{w)J(x))).

(5)=Φ(1): Suppose that (5) holds and that / is in J 1 . Then f°° is in
{k: h = λx[x IF x =/(*); hf(x) OTHERWISE]}. To show that it is the smallest
member of this set, note that for any such h, if fn(x) = fn+ι(x) then
h(x) =fn(x) by induction onw. QED

Friedman has shown that there exists a URS having no semicomputable
splinter (see Strong [4]). The following theorem extends his result by
showing that any first-order extension of the axioms for URS's will have a
model containing no semicomputable splinter.

6.5 Theorem Uniformly reflexive structures are finitely axiomatizable
while URS's containing a semicomputable splinter are not determined by
any set of first-order axioms.

Proof: Let B be any subset of A and let * be a binary partial function on A.
By our characterization of uniform indexings, it is clear that JB* is a URS
iff (A, B, *) satisfies the following first-order statements:

1. There exist x and y such that x Φ y.
2. There exists S in B such that for all x, y, and z there exists w such

that S * x * y - w and for all υ, v = w * z iff v - (x * z) * (y * z).
3. There exists E in B such that for all w, x, y, and z, either

E*w*x*y*z=x and w = z or E*w*x*y*z = y and w Φ z.
4. For all χt y, and z, if x and y are in B and x * y = z then z is in B.

Let Γ be any set of first-order statements including the four above and
having a model M. Let (A, B, *) be a δ-incomplete ultrapower of M. Then
(A, B, *) is a model for Γ and is ^-saturated, in the sense that if
{φi(χ)> Φ2M5 •} i s a finitely satisfiable family of formulas in the
language of Γ then it is simultaneously satisfiable; i.e., there exists a in A
such that (A, B, *) satisfies 0, (β) for i = 1, 2, . . .. But if T = {b * d,
b * δ * d, . . .} is a B*-splinter included in the domain of some member of
2?*1, say λ#[c * x], then the set of all formulas of the form

# ^ 5 * . . . * 6 * < i & (for some y, y = c * x)

is countable and finitely satisfiable. Thus, there exists a in the domain of

λx[c * x] such that a is not in {b * d, 6 * b * d, . . .} and hence Γ is not

the domain of λx[c * x], QED
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