Notre Dame Journal of Formal Logic Volume XXI, Number 2, April 1980 NDJFAM

A NATURAL DEDUCTION SYSTEM OF INDEXICAL LOGIC

ROLF SCHOCK

In a previous study,¹ a system L of indexical logic sound and complete with respect to a certain semantic theory was developed. However, L is an axiomatic logic. As usual, or perhaps even more than usual because of the complexity of indexical reasoning, the logic is unintuitively cumbersome since it is of the axiomatic type. For wrestling with problems of situational dependence in an adequate way, a natural deduction system of indexical logic is therefore needed. So far, no such system seems to exist in the literature. The present study consists of a formulation of the rules of a natural deduction system N of indexical logic and of a proof that N and Lare equivalent.

1 The system **N** is an improved and extended version of the system **N** of [1]. S is the auxiliary word "Show". It is assumed that no variable or constant occurs in S. A show line is a sequence SF and a line is either a show line or a formula. Crossing out the "Show" in front of F gives us F; that is, \$F = F. Given a finite sequence p of lines, the conjunction of p is the c such that c is $F \to F$ with F the first sentential constant if no line of p is a formula, F if F is the only line of p which is a formula, and the result of conjoining in order those lines of p which are formulas otherwise. p consists of a show line just in case the only line of p is a show line. If q is also a finite sequence of lines, then the following terminology is assumed:

1. q is obtainable from p by adding a show line just when q is p with a show line added at its end.

2. q is obtainable from p by adding an assumption just when there are formulas F_1 and F_2 such that the last line of p is SF_1 , q is p with F_2 added at its end, and one of the following holds (each clause is prefixed with its notation, name, and diagram):

a Rule of assumption for the proof of conditionals and disjunctions

$$\frac{\mathsf{S}F \to G}{F} \xrightarrow{\mathsf{S} \land F \lor G}, \ \frac{\mathsf{S}F \lor G}{\land F}.$$

Received May 20, 1976

For some F and G, either $F_1 = F \rightarrow G$ and $F_2 = F$ or $F_1 = F \lor G$ and F_2 and F are contrary $(F_2 = \lor F \text{ or } F = \lor F_2)$.

ca Rule of contrary assumption

$$\frac{SF}{G}F$$
 and G contrary.
 F_1 and F_2 are contrary.

3. q is obtainable from p by an inference rule just when there are formulas F_1 through F_5 such that F_1 through F_4 are lines of p, q is p with F_5 added at its end, and one of the following holds:

ei Existential instantiation

$$\frac{\sqrt{xF}}{\sqrt[x]{yF}} y \text{ a new variable.}$$

For some x, y, and F such that y does not occur in p, $F_1 = \forall xF$ and $F_5 = {}_y^x F$.

si Simplification of implications or modus ponens

$$\frac{F \xrightarrow{F} G}{G}$$

$$F_1 = F_2 \rightarrow F_5.$$

c Conjunction

SC'

$$\frac{F}{G} \\
\frac{G}{F \wedge G} \\
F_5 = F_1 \wedge F_2.$$

Simplification of conjunctions

$$\frac{F \wedge G \quad G \wedge F}{F}.$$

There is a G such that F_1 is one of $F_5 \wedge G$ and $G \wedge F_5$.

sd Simplification of disjunctions

$$\frac{F \lor G \lor F}{G}, \frac{G \lor F}{G}, \frac{\lor F \lor G \lor \lor F}{G}$$

There is a G such that F_1 is one of $G \lor F_5$ and $F_5 \lor G$, but F_5 and G are contrary.

se Simplification of equivalences

$$\frac{F \leftrightarrow G}{G} \xrightarrow{F} G \leftrightarrow F}{G}.$$

 F_1 is one of $F_2 \leftrightarrow F_5$ and $F_5 \leftrightarrow F_2$.

ex General existence $rule^2$

$$\frac{t \text{I} u \text{ } u \text{I} t \text{ } t \text{ } A \text{ } t \text{B} \text{ } t \text{M} \text{ } t \vdash F \text{ } t \vdash u \text{E}}{t \text{E}}, \frac{t \vdash u \text{A}}{t \vdash u \text{E}}, \frac{t \vdash u \text{A}}{t \vdash u \text{E}}.$$

There are t and u such that one of the following holds: i. F_1 is one of tIu, uIt, tA, tB, tM, $t \vdash F$, and $t \vdash uE$ and $F_5 = tE$. ii. F_1 is one of $t \vdash uA$ and $t \vdash uB$ and $F_5 = t \vdash uE$.

exv Existence rule for variables

$$\frac{\sqrt{\Lambda xF} \quad \forall xF \quad tE}{yE}.$$

There are x, F, t, and y such that F_1 is one of $\wedge \wedge xF$, $\forall xF$, and tE and F_5 is yE.

id Rule of the identity with something of existents

$$\frac{t \mathbf{E}}{\nabla x \ t \mathbf{I} x} x \text{ not free in } t.$$

There are t and x such that x is not free in t, $F_1 = tE$, and $F_5 = \sqrt{x} tIx$.

ui Universal instantiation

$$\frac{\langle y \rangle y \mathbf{M} \to y \vdash t \mathbf{I} t \rangle}{\frac{t \mathbf{E}}{\langle xF}} y \text{ not free in } t, \frac{z \mathbf{E}}{\langle xF} \mathbf{E}}{\frac{\langle xF}{zF}}.$$

For some x, t, and F, either t is a variable or there is a y not free in t such that $F_1 = \wedge y \langle yM \rightarrow y \sqcap t \mid t \rangle$, $F_2 = tE$, $F_3 = \wedge xF$, and $F_5 = {}^x_tF$.

eg Existential generalization

$$\frac{\langle y \langle y \mathbf{M} \to y \vdash t \mathbf{I} t \rangle}{\frac{t \mathbf{E}}{\frac{x F}{t F}}} y \text{ not free in } t, \frac{z \mathbf{E}}{\frac{z F}{\sqrt{x F}}}.$$

For some x, t, and F, either t is a variable or there is a y not free in t such that $F_1 = \bigwedge y \langle y M \rightarrow y \sqcap t \mid t \rangle$, $F_2 = t \in F_3 = {}^x_t F$, and $F_5 = \lor x F$.

pd Properness of existentialized descriptions

$$\frac{\mathbf{1} x F E}{\nabla y \wedge x \langle F \leftrightarrow x I y \rangle} y \neq x \text{ and not free in } F.$$

There are x, F and y such that $x \neq y$, y is not free in F, $F_1 = \mathbf{1}xFE$, and $F_5 = \forall y \land x \langle F \leftrightarrow xIy \rangle$.

int Interchangeability of coextensional terms and formulas

 $\begin{array}{c} \wedge t \mathbf{E} & t \mathbf{I} u \\ \wedge u \mathbf{E} & t \mathbf{I} u \\ \hline & \wedge y \langle y \mathbf{M} \to y \vdash \langle t \mathbf{E} \lor u \mathbf{E} \to t \mathbf{I} u \rangle \rangle \\ \hline & \frac{{}^{u} F}{F} & y \text{ not free in } t \text{ or } u, \\ \hline & & & \\ \end{pmatrix} \\ \hline & \frac{{}^{u} F}{F} & f & y \wedge y \langle y \mathbf{M} \to y \vdash \langle G \leftrightarrow H \rangle \rangle \\ \hline & \frac{{}^{v} F}{F} & f & f & \\ \hline & \frac{{}^{u} F}{F} & f & y \wedge y \langle y \mathbf{M} \to y \vdash \langle G \leftrightarrow H \rangle \rangle \\ \hline & \frac{{}^{u} F}{F} & f & f & y \wedge y \langle y \mathbf{M} \to y \vdash \langle G \leftrightarrow H \rangle \rangle \\ \hline & \frac{{}^{u} F}{F} & f & y \text{ not free in } G \text{ or } H, \\ \hline & t \mathbf{I} u & u \mathbf{I} t \\ \hline & \frac{t \mathbf{A}}{u \mathbf{A}} & \frac{t \mathbf{B}}{u \mathbf{B}} & \frac{t \mathbf{M}}{u \mathbf{M}} & \frac{t \mathbf{I} v & v \mathbf{I} t & v \mathbf{I} u \\ \hline & t \mathbf{I} v & v \mathbf{I} t & u \mathbf{I} t & v \vdash t \mathbf{I} u & v \vdash u \mathbf{I} t \\ \hline & \frac{t \ \nabla v \mathbf{E}}{t \ \nabla v \mathbf{I} u \ \nabla v, & \frac{u \ \nabla v \mathbf{E}}{t \ \nabla v \mathbf{I} u \ \nabla v, & \frac{v \vdash t \mathbf{A}}{v \vdash u \mathbf{A}}, & \frac{v \vdash t \mathbf{B}}{v \vdash u \mathbf{B}} \end{array} \right. .$

There are t, u, v, y, F, G, and H such that one of the following holds:

- i. y is not free in t or u, either t and u are variables or $F_1 = \bigwedge y \langle y \mathbf{M} \rightarrow y \vdash \langle t \mathbf{E} \lor u \mathbf{E} \rightarrow t \mathbf{I} u \rangle \rangle$, either F_2 and F_3 are $\wedge t \mathbf{E}$ and $\wedge u \mathbf{E}$ respectively or $F_2 = t \mathbf{I} u$, and $F_4 = {}^{u}_{t} F_5$.
- ii. y is not free in G or H, $F_1 = \wedge y \langle y\mathbf{M} \rightarrow y \vdash \langle G \leftrightarrow H \rangle \rangle$, $F_2 = G \leftrightarrow H$, and $F_4 = {}^{H}_{G}F_5$.
- iii. F_1 is one of tIu and uIt, F_2 is one of tA, tB, and tM, and F_5 is one of uA, uB, and uM respectively.
- iv. F_1 is one of tIu and uIt, F_2 is one of tIv and vIt, and F_5 is one of uIv, vIt, tIv, and vIu.
- v. F_1 is one of tIu and uIt, $F_2 = t \vdash F$, and $F_5 = u \vdash F$.
- vi. F_1 is one of tIu and uIt, F_2 is one of $t \sqcap vE$ and $u \sqcap vE$, and $F_5 = t \sqcap v \mid u \sqcap v$.
- vii. F_1 is one of $v \vdash tIu$ and $v \vdash uIt$, F_2 is one of $v \vdash tA$ and $v \vdash tB$, and F_5 is one of $v \vdash uA$ and $v \vdash uB$ respectively.
- intb Interchangeability of coextensional terms and formulas in variable binder expressions

 $\begin{array}{c} \wedge x_{1} \ldots \wedge x_{k} \left\langle \wedge y \left\langle y \mathbf{M} \rightarrow y \vdash \left\langle u \mathbf{E} \lor t_{i} \mathbf{E} \rightarrow u \mathbf{I} t_{i} \right\rangle \right\rangle \wedge \left\langle u \mathbf{E} \lor t_{i} \mathbf{E} \rightarrow u \mathbf{I} t_{i} \right\rangle \right\rangle \\ \hline \\ \end{pmatrix} \\ \begin{array}{c} h(xt) \\ h(xt$

In all these schemas, y is not free in a value of x, t, F, or $\langle uG \rangle$.

There are k, l, m, b, x, t, F, i, j, u, G, y, and v such that CNklmbxtF, $1 \le k$, there is no value of x or t or F or $\langle uG \rangle$ in which y is free, and one of the following holds:

i. b is formula-making, $1 \le i \le l$, $F_1 = C(\land x \land y \langle y M \rightarrow y \vdash \langle u E \lor t_i E \rightarrow u I t_i \rangle) \land \langle u E \lor t_i E \rightarrow u I t_i \rangle)$, and one of the following holds:

a.
$$F_2 = b(xtF)$$
 and $F_5 = b(xt\binom{i}{u}F)$ or vice versa
b. $F_2 = v \vdash b(xtF)$ and $F_5 = v \vdash b(xt\binom{i}{u}F)$ or vice versa

ii. b is formula-making, $1 \leq j \leq m$, $F_1 = C(\land x \land y \langle y \mathbf{M} \rightarrow y \vdash \langle G \leftrightarrow F_j \rangle) \land \langle G \leftrightarrow F_j \rangle)$, and one of the following holds:

a. $F_2 = b(xtF)$ and $F_5 = b(xtF(_G^j))$ or vice versa

b. $F_2 = v \vdash b(xtF)$ and $F_5 = v \vdash b(xtF(_G^j))$ or vice versa.

355

ROLF SCHOCK

- iii. *b* is term-making, $1 \le i \le l$, $F_1 = C(\land x \land y \land y \land M \rightarrow y \vdash \langle u \bowtie v t_i \bowtie v \rightarrow u \amalg t_i \rangle)$, $\land \langle u \bowtie v t_i \bowtie v \rightarrow u \amalg t_i \rangle)$, and one of the following holds:
 - a. F_2 is one of b(xtF)E and $b(xt\binom{i}{u}F)E$ and $F_5 = b(xt\binom{i}{u}F)$ I b(xtF)
 - b. F_2 is one of $v \vdash b(xtF)E$ and $v \vdash b(xt\binom{i}{u}F)E$ and $F_5 = v \vdash b(xt\binom{i}{u}F)$ I b(xtF).
- iv. b is term-making $1 \le j \le m$, $F_1 = C(\land x \land y \land y \land M \rightarrow y \land \langle G \leftrightarrow F_i \rangle)$, and one of the following holds:
 - a. F_2 is one of b(xtF)E and $b(xtF(_G^i))E$ and $F_5 = b(xtF(_G^i))I$ b(xtF)
 - b. F_2 is one of $v \vdash b(xtF)E$ and $v \vdash b(xtF(_G^j))E$ and $F_5 = v \vdash b(xtF(_G^j))$ I b(xtF).

rwr Rewriting of bound variables

$$\frac{b(xtF)}{b(x(\frac{i}{y}),\frac{x_{it}}{yt},\frac{x_{if}}{yF})}, \quad \frac{b(x(\frac{i}{y}),\frac{x_{it}}{y},\frac{x_{iF}}{yF})}{b(xtF)}, \quad \frac{v \vdash b(xtF)}{v \vdash b(x(\frac{i}{y}),\frac{x_{it}}{y},\frac{x_{iF}}{yF})},$$
$$\frac{v \vdash b(x(\frac{i}{y}),\frac{x_{it}}{y},\frac{x_{iF}}{yF})}{v \vdash b(xtF)}, \quad \frac{b(xtF) \vdash b(x(\frac{i}{y}),\frac{x_{it}}{y},\frac{x_{iF}}{yF}) \vdash b(xtF)}{b(x(\frac{i}{y}),\frac{x_{it}}{y},\frac{x_{iF}}{yF}) \vdash b(xtF)},$$
$$\frac{v \vdash b(xtF) \vdash v \vdash b(x(\frac{i}{y}),\frac{x_{iF}}{y},\frac{x_{iF}}{y}) \vdash b(xtF)}{v \vdash b(x(\frac{i}{y}),\frac{x_{iF}}{y},\frac{x_{iF}}{y}) \vdash b(xtF)}.$$

In all of these schemas, y is not free in a value of x, t, or F.

There are k, l, m, b, x, t, F, i, y, and v such that CNklmbxtF, $1 \le i \le k$, there is no value of x or t or F in which y is free, and one of the following holds:

i. *b* is formula making and one of the following holds:

a.
$$F_2 = b(xtF)$$
 and $F_5 = b(x(\stackrel{i}{y}) \stackrel{x_i}{yt} \stackrel{x_i}{y}F)$ or vice versa
b. $F_2 = v \vdash b(xtF)$ and $F_5 = v \vdash b(x(\stackrel{i}{y}) \stackrel{x_i}{y} \stackrel{x_i}{y} \stackrel{x_i}{y}F)$ or vice versa.

- ii. *b* is term making and one of the following holds:
 - a. F_2 is one of b(xtF)E and b(x(ⁱ_y) ^{x_i}_yt ^{x_i}_yF)E and $F_5 = b(x(ⁱ_y) ^{x_i}_yt ^{x_i}_yF)$ I b(xtF)
 - b. F_2 is one of $v \vdash b(xtF) \to and v \vdash b(x(\frac{i}{y}) \overset{x_i}{y}t \overset{x_i}{y}F) \to and F_5 = v \vdash b(x(\frac{i}{y}) \overset{x_i}{y}t \overset{x_i}{y}F) \to b(xtF).$

ipd Identification of proper descriptions³

 $\frac{\forall y \land x \langle F \leftrightarrow x \operatorname{Iy} \rangle}{\forall x \langle F \land \mathbf{1}xF \operatorname{Ix} \rangle} \ y \neq x \text{ and not free in } F.$

There are x, F, and y such that $x \neq y$, y is not free in F, $F_1 = \forall y \land x \langle F \leftrightarrow x Iy \rangle$, and $F_5 = \forall x \langle F \land \mathbf{1} x F I x \rangle$.

ac Actuality

$$\frac{t\mathbf{E}}{t\mathbf{A}}, \quad \frac{u \vdash t\mathbf{E}}{u \vdash l\mathbf{B}} \quad u \vdash t\mathbf{I}u}{u \vdash l\mathbf{A}}.$$

There are t and u such that one of the following holds:

- i. $F_1 = tE$, $F_2 = \wedge tB$, and $F_5 = tA$.
- ii. Either $F_1 = u \vdash tE$ and $F_2 = \wedge u \vdash tB$ or $F_2 = u \vdash tIu$. Also, $F_5 = u \vdash tA$.

sac Simplification of actuality

$$\frac{t\mathbf{A}}{\nabla t\mathbf{M} \quad \nabla t\mathbf{B}}, \quad \frac{u \vdash t\mathbf{A}}{\nabla u \vdash t\mathbf{B}}, \quad \frac{u \vdash t\mathbf{M}}{u \vdash t\mathbf{I} u}.$$

There are t and u such that one of the following holds:

i. $F_1 = tA$ and F_5 is one of $\wedge tM$ and $\wedge tB$. ii. $F_1 = u \vdash tA$ and $F_5 = \wedge u \vdash tB$. iii. $F_1 = u \vdash tA$, $F_2 = u \vdash tM$, and $F_5 = u \vdash tIu$.

mom Momenthood

 $\frac{t \vdash F \quad t \sqcap u \mathbf{E}}{t \mathbf{M}}.$

There are t, F, and u such that F_1 is one of $t \vdash F$ and $t \sqsubset u \to F$ and $F_5 = tM$.

inv Invariance of variables

$$\frac{t\,\mathbf{M}}{t\,\sqsubset\,x\,\mathbf{I}\,x}$$

There are t and x such that $F_1 = tM$ and $F_5 = t \sqcap xIx$.

idx Indexing

$$t\mathbf{M} \qquad t\mathbf{M} \qquad t \vdash F$$

$$\underbrace{ \wedge t \vdash F}_{t \vdash \wedge F}, \quad \underbrace{ \wedge t \vdash F}_{t \vdash \langle F \to G \rangle}, \quad \underbrace{ t \vdash G}_{t \vdash \langle F \wedge G \rangle}, \quad \underbrace{ t \vdash F}_{t \vdash \langle F \vee G \rangle}, \quad \underbrace{ t \vdash F}_{t \vdash \langle F \vee G \rangle},$$

 $\frac{t \operatorname{M}}{t \vdash \langle F \leftrightarrow f \rangle} \xrightarrow{x \operatorname{E}} x \operatorname{not} \qquad \frac{t \vdash F}{t \vdash \langle F \leftrightarrow G \rangle}, \quad \frac{\Lambda x \quad t \vdash F}{t \vdash \Lambda xF} \operatorname{x not} \\ \frac{t \vdash u \operatorname{E}}{t \vdash u \operatorname{E}}, \quad \frac{t \vdash u \operatorname{M}}{t \vdash u \operatorname{M}}, \quad \frac{t \vdash u \operatorname{I} t \vdash v}{t \vdash u \operatorname{I} v}, \quad \frac{\mathbf{1} x \ t \vdash F \operatorname{E}}{t \vdash \mathbf{1} xF} \operatorname{I} \operatorname{I} x \ t \vdash F \operatorname{E}} \operatorname{x not} \\ \operatorname{free in} t.$

There are t through v, F and G, and x such that x is not free in t and one of the following holds:

- i. $F_1 = tM$, $F_2 = Nt \vdash F$, and $F_5 = t \vdash NF$.
- ii. Either $F_1 = tM$ and $F_2 = nt \vdash F$ or $F_1 = t \vdash G$, and $F_5 = t \vdash \langle F \rightarrow G \rangle$.

iii. $F_1 = t \vdash F$, $F_2 = t \vdash G$, and $F_5 = t \vdash \langle F \land G \rangle$. iv. F_1 is one of $t \vdash F$ and $t \vdash G$ and $F_5 = t \vdash \langle F \lor G \rangle$. v. $F_1 = t\mathbf{M}$, $F_2 = t \vdash F \Leftrightarrow t \vdash G$, and $F_5 = t \vdash \langle F \Leftrightarrow G \rangle$. vi. $F_1 = x\mathbf{E}$, $F_2 = \wedge x \ t \vdash F$, and $F_5 = t \vdash \wedge xF$. vii. $F_1 = \forall x \ t \vdash F$ and $F_5 = t \vdash \forall xF$. viii. $F_1 = t \sqcap u$ E and $F_5 = t \vdash u$ E. ix. $F_1 = t \sqcap u$ M and $F_5 = t \vdash u$ M. x. $F_1 = t \sqcap u$ I $t \sqcap v$ and $F_5 = t \vdash u$ Iv. xi. F_1 is one of $\mathbf{1}x \ t \vdash F$ E and $t \sqcap \mathbf{1}xF$ E and $F_5 = t \sqcap \mathbf{1}xF$ I $\mathbf{1}x \ t \vdash F$.

sidx Simplification of indices

$$\begin{array}{c} t \vdash \langle F \rightarrow G \rangle \\ \frac{t \vdash \vee F}{\vee t \vdash F}, \quad \frac{t \vdash F}{t \vdash G}, \quad \frac{t \vdash \langle F \wedge G \rangle \quad t \vdash \langle G \wedge F \rangle}{t \vdash F}, \\ \frac{t \vdash \langle F \vee G \rangle \quad t \vdash \langle G \vee F \rangle \quad t \vdash \langle \wedge F \vee G \rangle \quad t \vdash \langle G \vee \wedge F \rangle}{t \vdash G}, \\ \frac{t \vdash F}{t \vdash G}, \quad \frac{t \vdash F}{t \vdash G}, \\ \frac{t \vdash F}{t \vdash G}, \quad \frac{t \vdash \wedge xF}{t \vdash G}, \\ \frac{t \vdash xF}{t \vdash G}, \quad \frac{t \vdash \wedge xF}{t \vdash F} \text{ free in } t, \\ \frac{t \vdash \forall xF}{\forall x t \vdash F} \text{ free in } t, \quad \frac{t \vdash uE}{t \vdash uE}, \quad \frac{t \vdash uM}{t \vdash uM}, \quad \frac{t \vdash uIv}{t \vdash uIt \vdash v} \end{array}$$

There are t through v, F and G, and x such that x is not free in t and one of the following holds:

- i. $F_1 = t \vdash \bigwedge F$ and $F_5 = \bigwedge t \vdash F$.
- ii. $F_1 = t \vdash \langle F \rightarrow G \rangle$, $F_2 = t \vdash F$, and $F_5 = t \vdash G$.
- iii. F_1 is one of $t \vdash \langle F \land G \rangle$ and $t \vdash \langle G \land F \rangle$ and $F_5 = t \vdash F$.
- iv. F_1 is one of $t \vdash \langle F \lor G \rangle$ and $t \vdash \langle G \lor F \rangle$, $F_2 = \wedge t \vdash F$, and $F_5 = t \vdash G$.
- v. F_1 is one of $t \vdash \langle n \lor F \lor G \rangle$ and $t \vdash \langle G \lor n \lor F \rangle$, $F_2 = t \vdash F$, and $F_5 = t \vdash G$.
- vi. F_1 is one of $t \vdash \langle F \leftrightarrow G \rangle$ and $t \vdash \langle G \leftrightarrow F \rangle$, $F_2 = t \vdash F$, and $F_5 = t \vdash G$.
- vii. $F_1 = t \vdash \wedge xF$ and $F_5 = \wedge x t \vdash F$.
- viii. $F_1 = t \vdash \forall xF$ and $F_5 = \forall x \ t \vdash F$.
- ix. $F_1 = t \vdash uE$ and $F_5 = t \sqsubset u E$.
- **x.** $F_1 = t \vdash u \mathbf{M}$ and $F_5 = t \sqsubset u \mathbf{M}$.
- xi. $F_1 = t \vdash uIv$ and $F_5 = t \sqcap u \ I \ t \sqcap v$.

aidx Association of indices

$$\frac{v \vdash t \vdash F}{v \vdash t \vdash F}, \quad \frac{v \vdash t \vdash F}{v \vdash t \vdash F}, \quad \frac{v \vdash \langle t \vdash u \rangle \to \langle v \vdash t \rangle \vdash u \to E}{v \vdash \langle t \vdash u \rangle \to \langle v \vdash t \rangle \vdash u}.$$

There are t through v and F such that one of the following holds:

- i. $F_1 = v \vdash t \vdash F$ and $F_5 = v \vdash t \vdash F$ or vice versa.
- ii. F_1 is one of $v \vdash \langle t \vdash u \rangle$ E and $\langle v \vdash t \rangle \vdash u$ E and $F_5 = v \vdash \langle t \vdash u \rangle$ I $\langle v \sqcap t \rangle \sqcap u$.

4. q is obtainable from p by a proof method just when there are an index mof p^4 and formulas F_1 through F_3 such that there is no index n of p greater than m such that p_m is a show line, F_1 and F_2 are lines of p, $p_m = S F_3$, $q = p_m$ cut off from the m^{th} line with $F_3 = q_m$ added at its end, and one of the following holds.

Direct proof⁵ р

$$\frac{F}{\not S F} \cdot \\ | \vdots \\ F_3 = F_1 \cdot$$

ip Indirect proof

$$\begin{array}{c} G\\ \stackrel{\mathcal{N}G}{\not s F} \\ | \\ \vdots \end{array}$$

 F_1 and F_2 are contrary.

Conditional proof ср

$$\frac{NF}{\cancel{5} F \rightarrow G} G \cdot \\ | \qquad \vdots$$

There are F and G such that F_1 is one of $\wedge F$ and G and F_3 = $F \rightarrow G$.

dp Disjunction proof

$$\frac{F \quad G}{\oint F \lor G}.$$

There are F and G such that F_1 is one of F and G and $F_3 = F \lor G$.

$$F \to G$$

$$\frac{G \to F}{\not S F \leftrightarrow G}$$

$$| \qquad \vdots$$

There are F and G such that $F_1 = F \rightarrow G$, $F_2 = G \rightarrow F$, and $F_3 = F \leftrightarrow G$.

up Universal proof

 $\frac{F}{\not{\beta} \wedge x_1 \dots \wedge x_i F} x_1 \text{ through } x_i \text{ not free above.}$

For some nonempty sequence x of variables, there is no index k of p smaller than m such that a value of x is free in the largest formula which occurs in p_k and $F_3 = C(\wedge xF_1)$.

The above clauses list the ways in which q is obtainable from p. A proof sequence is a nonempty and countable sequence s of finite sequences of lines such that s_1 consists of a show line and s_i is obtainable from s_{i-1} if i is an index of s. F is **N**-provable just when there exists a finite proof sequence whose last sequence of lines has F as its only line. That is, SF can be transformed into F by means of the rules and proof methods of **N**.

To make **N** applicable to an axiom set, the definition of obtainability can be extended by adding an additional axiom rule. Given finite sequences of lines p and q and a set A of formulas, q is obtainable from p by A just when either q is obtainable from p or the following holds:

ax Axiom rule

 $\frac{:}{G}$ G an axiom.

q is p with a member of A added at its end.

The proof sequences constructed by this more general notion of obtainability are the *proof sequences in A*. F is **N**-*provable in A* just when there exists a finite proof sequence in A whose last line sequence has F as its only line. Thus, F is **N**-provable just when F is **N**-provable in every set of formulas and so just when F is **N**-provable in the empty set.

It can be shown that no new formulas are N-provable in A even if lines sequences are allowed to be extended by adding formulas which follow from previous lines by means of provable formulas. That is, if p and q are finite sequences of lines and q is p with G added at its end, then the following inference rule is derivable in N applied to A.

t Theorems rule

 F_{1} : $F_{m} \text{ where } F_{1} \land \ldots \land F_{m} \land G_{1} \land \ldots \land G_{n} \to G$ and G_{1} through G_{n} are provable.

There are positive integers m and n and formulas $F_1 \ldots F_m$, $G_1 \ldots G_n$ such that F_1 through F_m are lines of p, G_1 through G_n are **N**-provable in A, and $F_1 \land \ldots \land F_m \land G_1 \land \ldots \land G_n \to G$ is **N**-provable in A. It is very useful to have the theorems rule among the inference rules even though it is redundant. In fact, the rules of N often overlap each other. This lack of economy is for the sake of ease and naturalness of application.

2 The equivalence of N with L

Lemma 1 Every axiom of L is N-provable.

Proof: The proof is through the construction of a proof sequence which has F as the only line of its last line sequence for any instance F of each of the schemas of L. All of the constructions are relatively simple. The following is an annotated line sequence designation which indicates a proof sequence for the main description principle of L. It is assumed that y is not free in F, t, or x and that the distinct y' and y'' do not occur in F through y.

1	$d + 1 = c = \frac{1}{2} $	<u>າ</u> 1	0	
1 2	$\begin{array}{l} \$ t \ \mathbf{I} \ 1 xF \leftrightarrow \forall y \langle \wedge x \langle F \leftrightarrow x \mathbf{I} y \rangle \wedge t \mathbf{I} y \rangle \\ \$ t \ \mathbf{I} \ 1 xF \rightarrow \forall y \langle \wedge x \langle F \leftrightarrow x \mathbf{I} y \rangle \wedge t \mathbf{I} y \rangle \end{array}$	2, 1		
1		1		ср
3			2	
4	1 x F E			ex
5	$ \bigvee y \land x \langle F \leftrightarrow x \mathrm{I} y \rangle $			pd
6	$\land x \langle F \leftrightarrow x I y' \rangle$		5	
7	$\forall x \langle F \land 1 x F 1 x \rangle$			ipd
8	$y_{ii} F \wedge 1 x F \mathbf{I} y''$		7	
9	$1 x F \mathbf{I} y''$		8	SC
10	у ″ Е		9	ex
11	$y''_{y''}F \leftrightarrow y'' \downarrow y'$	6, 1	0	ui
12	$\int_{\mathcal{Y}} \tilde{A}F$		8	SC
13	y" I y'	11, 1	12	se
14	$1 x F \mathbf{I} y'$	9, 1	13	int
15	tIy'	3, 1	4	int
16	$\wedge x \langle F \leftrightarrow x \mathbf{I} y' \rangle \wedge t \mathbf{I} y'$	6, 1	15	C
17	y'E	1	15	ex
18	$\forall y \langle \land x \langle F \leftrightarrow x \mathbf{I} y \rangle \land t \mathbf{I} y \rangle$	16, 1	17	eg
19	$\beta \lor y \langle \land x \langle F \leftrightarrow x I y \rangle \land t I y \rangle \rightarrow t I 1 x F$			ср
	$ \forall y \langle \land x \langle F \leftrightarrow x I y \rangle \land t I y \rangle$		19	
21	$\wedge x \langle F \leftrightarrow x \mathbf{I} y' \rangle \wedge t \mathbf{I} y'$		20	
22	$\land x \langle F \leftrightarrow x \mathbf{I} y' \rangle$	2	21	sc
23	v'E			exv
24	$\bigvee y \land x \langle F \leftrightarrow x \mathbf{I} y \rangle$	22, 2		
25	$\forall x \langle F \land 1 x F \mathbf{I} x \rangle$			ipd
26	$v_{\mu}^{x}F \wedge 1xF \downarrow y''$		25	
27	1_{xFI} y"		26	
28	v"E			ex
29	$\int_{y''}^{x} F \leftrightarrow y'' I y'$	22, 2		
30	viiF	· · ·	26	
31	$y'' \downarrow y''$	29, 3		
32	\mathbf{n}_{xFI}	27, 3		
33	$t_{I}y'$		21	
- 1	$t \mathbf{I} \mathbf{I} \mathbf{X} F$			int.
341		34, 8	50	mit .

Lemma 2 If F and $F \rightarrow G$ are N-provable, then G is N-provable.

Proof: Assume that there are proof sequences whose last line sequences are designated by & F and & F \rightarrow G. By means of **si** and **p**, these proof | : | :

sequences can be combined into a proof sequence whose structure is indicated by the following designation and shows that G is **N**-provable:

Lemma 3 If F is N-provable, then $\wedge xF$ is N-provable.

Proof: If there is a proof sequence whose last line sequence is designated by & F, it follows by up that there is a proof sequence whose structure is |:

indicated by $\beta \wedge xF$ and shows that $\wedge xF$ is **N**-provable.

Lemma 4 If s is a proof sequence, m is an index of s, $1 < l \le m$, and s_l is obtainable from s_{l-1} by a proof method, then the conjunction of $(s_l$ without its last line) \rightarrow the last line of s_l is **L**-provable.

Proof: Assume the antecedent. For any l and m, let Alm hold just when m is an index of s, $1 \le l \le m$, and s_l is obtainable from s_{l-1} by a proof method. Also, for any index l of s, let Cl hold just when the conjunction of $(s_l$ without its last line) \rightarrow the last line of s_l is **L**-provable. Let P be the set of all m such that, if m is an index of s, then, for any l, Alm only if Cl. 1 is in P since not Al1. So assume that m is in P and Alm + 1. Hence, m is an index of s and so Cl if Alm. If s_{m+1} is not obtainable from s_m by a proof method, then s_l is not longer than s_{l-1} while s_{m+1} is longer than s_m and so $l \ne m + 1$ and $l \le m$. That is, Alm and so Cl. Hence, assume that s_{m+1} is obtainable from s_m by a proof method. In other words, there is an index k of s_m and an F such that $(s_m)_k = SF$, there is no index n of s_m greater than k such that $(s_m)_k$ changed to F. If $l \ne m + 1$, $l \le m$ and Cl since Alm. Assume then that l = m + 1. Also, if $s_{m+1} = s_l$ is obtainable from $s_m = s_{l-1}$ by up and $F = \wedge x_1 \dots \wedge x_i G$ with i a positive integer, let H = G. Otherwise, H = F. Clearly,

a. the conjunction of $s_m \rightarrow H$ is **L**-provable,

for the formulas needed to obtain s_l from s_{l-1} by a proof method are present in the conjunction of s_m and tautologically imply *H*.

Let n = the largest index of s_m . By induction, it can be shown that

362

b. For any natural number z, if $z \le n - k$, then the conjunction of $(s_m \text{ cut off from the } (n+1) - z^{\text{th}} \text{ line}) \rightarrow H \text{ is } L\text{-provable.}$

By a, b holds for z = 0. For any natural number $z \le n - k$, let Kz = theconjunction of $(s_m \text{ cut off from the } (n+1) - z^{\text{th}} \text{ line})$. Assume both that z is a natural number such that $Kz \rightarrow H$ is **L**-provable if $z \leq n - k$ and that $z + 1 \leq n - k$. Since $z \leq n - k$, $Kz \rightarrow H$ is **L**-provable. Let $b = s_m$ cut off from the $(n + 1) - (z + 1) = n - z^{\text{th}}$ line and let $c = s_m$ cut off from the $(n + 1) - z = (n - z) + 1^{\text{th}}$ line. We must show that $Kz + 1 \rightarrow H$ is L-provable.

It is not possible that c is obtainable from b by adding a show line since then there is an index n of s_m greater than k such that $(s_m)_n$ is a show line.

Assume that c is obtainable from b by adding an assumption. If there are J and K such that $(s_m)_{n-z} = S J \rightarrow K$, then, since $(s_m)_k$ is the last show line of c, n-z = k. Hence, $H = J \rightarrow K$ and $(s_m)_{(n-z)+1} = J$. Since $Kz = Kz + 1 \wedge J$ and $K_Z \rightarrow \langle J \rightarrow K \rangle$ is L-provable by assumption, it follows by tautological implication that $K_z + 1 \rightarrow H$ is L-provable. Similarly, if $(s_m)_{n-z} = S J_V K$, $H = J \vee K$ and there is a G contrary to J such that $(s_m)_{(n-2)+1} = G$. Since $K_z = K_z + 1 \wedge G$ and $K_z \rightarrow J \vee K$ is **L**-provable by assumption, it follows again by tautological implication that $Kz + 1 \rightarrow H$ is L-provable. Finally, if there are contrary J and K such that $(s_m)_{n-z} = 5 J$ and $(s_m)_{(n-z)+1} = K$, H = J and $K_z + 1 \rightarrow H$ is L-provable by tautological implication since $K_z = K_z + 1 \wedge K$ and $Kz \rightarrow J$ is **L**-provable by assumption.

If c is obtainable from b by an inference rule other than **e**, $Kz + 1 \rightarrow Kz$ is clearly L-provable via the structure of L and Theorem 25 of [2]. Hence, $K_z \rightarrow H$ is as well by tautological implication. Assume then that c is obtainable from b by ei. Hence, for some G, x, and y, $\forall xG$ is a line of b, y does not occur in b, and $(s_m)_{(n-z)+1} = y^x G$. But y occurs in neither Kz + 1nor G nor H while $Kz = Kz + 1 \wedge {}^{x}G$ and $Kz \rightarrow H$ is L-provable by assumption. Hence, both $Kz + 1 \wedge {}_{y}^{x}G \rightarrow H$ and $Kz + 1 \rightarrow \forall xG$ are L-provable and so $K_z + 1 \rightarrow H$ is L-provable via Corollary 12 and Theorem 25 of [2].

Assume finally that there is an index j < m of s such that $c = s_{i+1}$ and c is obtainable from s_i by a proof method. Since $1 < j + 1 \le m$, Aj + 1mand so $C_{j} + 1$. This means that the conjunction of (c without its last line) \rightarrow the last line of c is L-provable. But $c = s_m$ cut off from the (n - z) + 1th line and the last line of $c = (s_m)_{n-z} = J$ for some J. Hence, $Kz + 1 \rightarrow J$ is Lprovable while $Kz = Kz + 1 \land J$ and so $Kz + 1 \rightarrow H$ is again **L**-provable since $Kz \rightarrow H$ is.

This exhausts the ways in which c is obtainable from its predecessors and so b holds. Putting z = n - k in b, it follows that the conjunction of $(s_m \text{ cut off from the } k + 1^{\text{th}} \text{ line}) \rightarrow H \text{ is } L\text{-provable. Since } (s_m)_k \text{ is a show}$ line, the conjunction of $(s_m \text{ cut off from the } k + 1^{\text{th}} \text{ line}) = \text{the conjunction of}$ (s_m cut off from the k^{th} line). Also, s_m cut off from the k^{th} line = s_{m+1} without its last line and H = the last line of s_{m+1} . If J = the conjunction of $(s_{m+1} \text{ without its last line})$, it follows that $J \rightarrow H$ is **L**-provable. If s_{m+1} is obtainable from s_m by up, there are a positive integer i and x through x_i such that $F = \wedge x_1 \dots \wedge x_i$ H and none of x_1 through x_i is free in J. Since

363

 $J \to H$ is L-provable, it follows that $J \to F$ is by repeated applications of the axioms of L corresponding to Theorem 13 of [2]. On the other hand, if s_{m+1} is obtainable from s_m by a proof method other than up, F = H and $J \to F$ is again L-provable. Since l = m + 1, Cl. But then m + 1 is in P and the lemma holds.

Theorem 1 F is N-provable just when F is L-provable.

By Lemmas 1-3, every **L**-provable formula is **N**-provable. Assume then that there is a finite nonempty proof sequence s whose last line sequence has F as its only line. Let m be the greatest index of s. By analyzing cases, it is clear that s_m is only obtainable from s_{m-1} by a proof method. But then the conjunction of $(s_m$ without its last line) \rightarrow the last line of s_m is **L**-provable by Lemma 4. Since s_m has F as its only line, it follows that $(G \rightarrow G) \rightarrow F$ is **L**-provable where G is the first sentential constant and so F is **L**-provable by tautology and *modus ponens*.

Corollary 1 F is N-provable just when F is valid.

This follows from Theorem 1 together with Theorems 24 and 27 of [2].

NOTES

- See [2]. That study was summarized at the Royal Institute of Technology in Stockholm in May of 1973 and presented in full at the Salzburg Colloquium on Logic and Ontology in September of 1973. The terminology of [2] is here presupposed. The system N and Theorem 1 were also referred to in an abstract in The *Bulletin of the Section of Logic* 5, (1976), pp. 16-19.
- 2. Observe that the rule only implies that logical predicates and operation symbols are existence implying. This is because intensional predicates and operation symbols are allowed for in N and L. Observe also that $t \sqcap u$ E need not imply uE (for, like \vdash, \sqcap is intensional).
- 3. If the Hilbert selection variable binder e were included among the logical constants of N and L, it could be dealt with by rules like pd and ipd in N and by the corresponding axioms in L. For example, e xFE → VxF and VxF → Vx/F ∧ exF I x⟩ could be added to the schemas of L together with the absoluteness principle t □ exFE v ex t ⊢ F E → t □ exF I ex t ⊢ F (x not free in t). Notice that it is not one of the nonstandard existence rules for descriptions, but rather all of the usual substitution rules for descriptions which break down in indexical logics.
- 4. An index of a sequence is one of the objects in the domain of the sequence.
- 5. The line to the left of the schema indicates omission of the sequence below \$F.

REFERENCES

- [1] Schock, R., Logics Without Existence Assumptions, Almqvist and Wiksell, Stockholm, 1968.
- [2] Schock, R., "A complete system of indexical logic," *Notre Dame Journal of Formal Logic*, vol. XXI (1980), pp. 293-315.

Kungliga Tekniska Högskolan Stockholm, Sweden