Notre Dame Journal of Formal Logic
Volume XXI, Number 2, April 1980
NDJFAM

A NATURAL DEDUCTION SYSTEM OF INDEXICAL LOGIC

ROLF SCHOCK

In a previous study, ${ }^{1}$ a system \mathbf{L} of indexical logic sound and complete with respect to a certain semantic theory was developed. However, L is an axiomatic logic. As usual, or perhaps even more than usual because of the complexity of indexical reasoning, the logic is unintuitively cumbersome since it is of the axiomatic type. For wrestling with problems of situational dependence in an adequate way, a natural deduction system of indexical logic is therefore needed. So far, no such system seems to exist in the literature. The present study consists of a formulation of the rules of a natural deduction system \mathbf{N} of indexical logic and of a proof that \mathbf{N} and \mathbf{L} are equivalent.

1 The system $\mathbf{N} \quad \mathbf{N}$ is an improved and extended version of the system \mathbf{N} of [1]. S is the auxiliary word "Show'. It is assumed that no variable or constant occurs in S. A show line is a sequence $S F$ and a line is either a show line or a formula. Crossing out the "Show" in front of F gives us F; that is, $\$ F=F$. Given a finite sequence p of lines, the conjunction of p is the c such that c is $F \rightarrow F$ with F the first sentential constant if no line of p is a formula, F if F is the only line of p which is a formula, and the result of conjoining in order those lines of p which are formulas otherwise. p consists of a show line just in case the only line of p is a show line. If q is also a finite sequence of lines, then the following terminology is assumed:

1. q is obtainable from p by adding a show line just when q is p with a show line added at its end.
2. q is obtainable from p by adding an assumption just when there are formulas F_{1} and F_{2} such that the last line of p is $S F_{1}, q$ is p with F_{2} added at its end, and one of the following holds (each clause is prefixed with its notation, name, and diagram):
a Rule of assumption for the proof of conditionals and disjunctions

$$
\frac{S F \rightarrow G \quad S \sim F \vee G}{F} \frac{S F \vee G .}{N F}
$$

For some F and G, either $F_{1}=F \rightarrow G$ and $F_{2}=F$ or $F_{1}=F \vee G$ and F_{2} and F are contrary $\left(F_{2}=N F\right.$ or $\left.F=N F_{2}\right)$.
ca Rule of contrary assumption
$\frac{S F}{G} F$ and G contrary.
F_{1} and F_{2} are contrary.
3. q is obtainable from p by an inference rule just when there are formulas F_{1} through F_{5} such that F_{1} through F_{4} are lines of p, q is p with F_{5} added at its end, and one of the following holds:
ei Existential instantiation
$\frac{\bigvee x F}{{ }_{y}^{x} F} y$ a new variable.
For some x, y, and F such that y does not occur in $p, F_{1}=\vee x F$ and $F_{5}={ }_{y}^{x} F$.
si Simplification of implications or modus ponens
$\frac{F \vec{F} G}{G}$
$F_{1}=F_{2} \rightarrow F_{5}$.
C
Conjunction
F
$\frac{G}{F \wedge G}$.
$F_{5}=F_{1} \wedge F_{2}$.
sc Simplification of conjunctions
$\frac{F \wedge G \quad G \wedge F}{F}$.
There is a G such that F_{1} is one of $F_{5} \wedge G$ and $G \wedge F_{5}$.
sd Simplification of disjunctions
$\frac{F \vee G N F^{G \vee F}}{G}, \frac{\wedge F \vee G{ }_{F} G \vee \wedge F}{G}$.
There is a G such that F_{1} is one of $G \vee F_{5}$ and $F_{5} \vee G$, but F_{5} and G are contrary.
se Simplification of equivalences
$\frac{F \leftrightarrow G_{F} G \leftrightarrow F}{G}$.
F_{1} is one of $F_{2} \leftrightarrow F_{5}$ and $F_{5} \leftrightarrow F_{2}$.
ex General existence rule ${ }^{2}$
$\frac{t \mathrm{I} u u \mathrm{I} t t \mathrm{~A} t \mathrm{~B} t \mathrm{M} t \vdash F t\ulcorner u \mathrm{E}}{t \mathrm{E}}, \frac{t \vdash u \mathrm{~A} \quad t \vdash u \mathrm{~B}}{t \vdash u \mathrm{E}}$.
There are t and u such that one of the following holds:
i. $\quad F_{1}$ is one of $t \mathrm{I} u, u \mathrm{I} t, t \mathrm{~A}, t \mathrm{~B}, t \mathrm{M}, t \vdash F$, and $t\left\ulcorner u \mathrm{E}\right.$ and $F_{5}=t \mathrm{E}$.
ii. F_{1} is one of $t \vdash u \mathrm{~A}$ and $t \vdash u \mathrm{~B}$ and $F_{5}=t \vdash u \mathrm{E}$.
exv Existence rule for variables
$\frac{N \wedge x F \vee x F t \mathrm{E}}{y \mathrm{E}}$.
There are x, F, t, and y such that F_{1} is one of $\wedge \wedge x F, \vee x F$, and $t \mathrm{E}$ and F_{5} is $y \mathrm{E}$.
id Rule of the identity with something of existents
$\frac{t \mathrm{E}}{\mathrm{V} \times t \mathrm{I} x} x$ not free in t.
There are t and x such that x is not free in $t, F_{1}=t \mathrm{E}$, and $F_{5}=$ $\vee x t \mathrm{I} x$.
ui Universal instantiation
$\wedge y\langle y \mathrm{M} \rightarrow y\ulcorner t \mathrm{I} t\rangle$
$\frac{{ }_{\wedge x}^{t \mathrm{E}}}{{ }_{t}^{x} F} y$ not free in $t, \frac{{ }_{z} \mathrm{E} F}{{ }_{z}^{x} F}$.
For some x, t, and F, either t is a variable or there is a y not free in t such that $F_{1}=\wedge y\left\langle y \mathrm{M} \rightarrow y\ulcorner t \mathrm{I} t\rangle, F_{2}=t \mathrm{E}, F_{3}=\wedge x F\right.$, and $F_{5}={ }_{t}^{x} F$.
eg Existential generalization
$\wedge y\langle y \mathrm{M} \rightarrow y\ulcorner t \mathrm{I} t\rangle$
$\frac{\substack{t \mathrm{E} \\ x \\ t}}{\mathrm{~V} x F} y$ not free in $t, \frac{\substack{z \mathrm{E} \\ x \\ V}}{\mathrm{~V} x F}$.
For some x, t, and F, either t is a variable or there is a y not free in t such that $F_{1}=\wedge y\left\langle y \mathrm{M} \rightarrow y\ulcorner t \mathrm{I} t\rangle, F_{2}=t \mathrm{E}, F_{3}={ }_{t}^{x} F\right.$, and $F_{5}=\vee x F$.
pd Properness of existentialized descriptions
$\frac{\boldsymbol{\top} x F \mathrm{E}}{\mathrm{V} y \wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle} y \neq x$ and not free in F.
There are x, F and y such that $x \neq y, y$ is not free in $F, F_{1}=$ $१ x F \mathrm{E}$, and $F_{5}=\vee y \wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle$.
int Interchangeability of coextensional terms and formulas
$N t$ E
$\mathrm{Nu} \mathrm{E} \quad t \mathrm{I} u$
$\wedge y\langle y \mathrm{M} \rightarrow y \vdash\langle t \mathrm{E} \vee u \mathrm{E} \rightarrow t \mathrm{I} u\rangle\rangle$
$\frac{{ }_{t}^{u_{F}} F}{F} y$ not free in t or u,
$\sim x \mathrm{E} \quad G \leftrightarrow H$

$t \mathrm{I} u \quad u \mathrm{I} t \quad t \mathrm{I} u \quad u \mathrm{I} t$
$\frac{t \mathrm{~A}}{u \mathrm{~A}}, \frac{t \mathrm{~B}}{u \mathrm{~B}}, \frac{t \mathrm{M}}{u \mathrm{M}}, \frac{t \mathrm{I} v}{u \mathrm{I} v \quad v \mathrm{I} t \quad t \mathrm{I} v \quad v \mathrm{I} u}, \frac{t \vdash F}{u \vdash F}$,
$t \mathrm{I} u \quad u \mathrm{I} t \quad t \mathrm{I} u \quad u \mathrm{I} t \quad v \vdash t \mathrm{I} u \quad v \vdash u \mathrm{I} t \quad v \vdash t \mathrm{I} u \quad v \vdash u \mathrm{I} t$
$\frac{t\ulcorner v \mathrm{E}}{t\ulcorner v \mathrm{I} u\ulcorner v}, \frac{u\ulcorner v \mathrm{E}}{t\ulcorner v \mathrm{I} u\ulcorner v}, \frac{v \vdash t \mathrm{~A}}{v \vdash u \mathrm{~A}}, \frac{v \vdash t \mathrm{~B}}{v \vdash u \mathrm{~B}}$.
There are t, u, v, y, F, G, and H such that one of the following holds:
i. $\quad y$ is not free in t or u, either t and u are variables or $F_{1}=$ $\wedge y\langle y \mathrm{M} \rightarrow y \vdash\langle t \mathrm{E} \vee u \mathrm{E} \rightarrow t \mathrm{I} u\rangle\rangle$, either F_{2} and F_{3} are $\wedge t \mathrm{E}$ and $\wedge u \mathrm{E}$ respectively or $F_{2}=t \mathrm{I} u$, and $F_{4}={ }_{t}^{u} F_{5}$.
ii. y is not free in G or $H, F_{1}=\wedge y\langle y \mathrm{M} \rightarrow y \vdash\langle G \leftrightarrow H\rangle\rangle, F_{2}=$ $G \leftrightarrow H$, and $F_{4}={ }_{G}^{H} F_{5}$.
iii. F_{1} is one of $t \mathrm{I} u$ and $u \mathrm{I} t, F_{2}$ is one of $t \mathrm{~A}, t \mathrm{~B}$, and $t \mathrm{M}$, and F_{5} is one of $u \mathrm{~A}, u \mathrm{~B}$, and $u \mathrm{M}$ respectively.
iv. $\quad F_{1}$ is one of $t \mathrm{I} u$ and $u \mathrm{I} t, F_{2}$ is one of $t \mathrm{I} v$ and $v \mathrm{I} t$, and F_{5} is one of $u \mathrm{I} v, v \mathrm{I} t, t \mathrm{I} v$, and $v \mathrm{I} u$.
v. $\quad F_{1}$ is one of $t \mathrm{I} u$ and $u \mathrm{I} t, F_{2}=t \vdash F$, and $F_{5}=u \vdash F$.
vi. $\quad F_{1}$ is one of $t \mathrm{I} u$ and $u \mathrm{I} t, F_{2}$ is one of $t\ulcorner v \mathrm{E}$ and $u\ulcorner v \mathrm{E}$, and $F_{5}=t\ulcorner v \mathrm{I} u\ulcorner v$.
vii. F_{1} is one of $v \vdash t \mathrm{I} u$ and $v \vdash u \mathrm{I} t, F_{2}$ is one of $v \vdash t \mathrm{~A}$ and $v \vdash t \mathrm{~B}$, and F_{5} is one of $v \vdash u \mathrm{~A}$ and $v \vdash u \mathrm{~B}$ respectively.
intb Interchangeability of coextensional terms and formulas in variable binder expressions

$$
\frac{\begin{array}{c}
\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle \wedge\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle \\
b(x t F)
\end{array}}{b\left(x t\binom{i}{u} F\right)},
$$

$$
\wedge x_{1} . . \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle \wedge\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle
$$

$$
\frac{b(x t(i) F)}{b(x t F)},
$$

$\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle \wedge\left\langle u \mathrm{E} v t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle$
$\frac{v \vdash b(x t F)}{v \vdash b\left(x t{ }_{\left({ }_{u}^{i}\right)}\right) F} \quad$,

```
\(\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle \wedge\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle\)
    \(\frac{v \vdash b\left(x t\binom{i}{u} F\right)}{v \vdash b(x t F)}\)
\(\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle \wedge\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle\)
\(\frac{b(x t F)}{b\left(x t F\left(\frac{j}{G}\right)\right)}\),
\(\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle \wedge\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle\)
\(\frac{b\left(x t F\binom{j}{G}\right)}{b(x+F)}\),
\(\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle \wedge\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle\)
\(\frac{v \vdash b(x t F)}{v \vdash b\left(x t F\left({ }_{G}^{j}\right)\right)}\),
\(\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle \wedge\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle\)
\(\frac{v \vdash b\left(x t F\left({ }_{G}^{j}\right)\right)}{v \vdash b(x+F)}\),
    \(b(x t F) \mathrm{E} \quad b\left(x t\binom{i}{u} F\right) \mathrm{E}\)
\(\frac{\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle \wedge\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle}{\left.b\left(x t{ }_{\left({ }_{u}^{i}\right)}\right) F\right) \mathrm{I} b(x t F)}\),
    \(v \vdash b(x t F) \mathrm{E} \quad v \vdash b\left(x t\binom{i}{u} F\right) \mathrm{E}\)
\(\frac{\wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle \wedge\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle}{v \vdash b\left(x t\binom{i}{u} F\right) \mathrm{I} b(x t F)}\),
    \(\begin{array}{cc}b(x t F) \mathrm{E} & b\left(x t F\left({ }_{G}^{j}\right)\right) \mathrm{E} \\ \wedge x_{1} \ldots \wedge x_{k}\left\langle\wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle \wedge\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle \\ b\left(x t F\left({ }_{G}^{j}\right)\right) \mathrm{I} b(x t F)\end{array}\),
```

In all these schemas, y is not free in a value of x, t, F, or $\langle u G\rangle$.
There are $k, l, m, b, x, t, F, i, j, u, G, y$, and v such that CNklmbxtF, $1 \leqslant k$, there is no value of x or t or F or $\langle u G\rangle$ in which y is free, and one of the following holds:
i. b is formula-making, $1 \leqslant i \leqslant l, F_{1}=C(\wedge x \wedge y\langle y \mathrm{M} \rightarrow y \vdash$ $\left.\left\langle u \mathrm{E} v t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right\rangle \wedge\left\langle u \mathrm{E} v t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle$), and one of the following holds:
a. $F_{2}=b(x t F)$ and $F_{5}=b\left(x t\binom{i}{u} F\right)$ or vice versa
b. $F_{2}=v \vdash b(x t F)$ and $F_{5}=v \vdash b\left(x t\left({ }_{u}^{i}\right) F\right)$ or vice versa.
ii. b is formula-making, $1 \leqslant j \leqslant m, F_{1}=C(\wedge x \wedge y\langle y \mathrm{M} \rightarrow y \vdash$ $\left.\left.\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle \wedge\left\langle G \leftrightarrow F_{j}\right\rangle\right)$, and one of the following holds:
a. $F_{2}=b(x t F)$ and $F_{5}=b\left(x t F\binom{j}{G}\right)$ or vice versa
b. $F_{2}=v \vdash b(x t F)$ and $F_{5}=v \vdash b\left(x t F\left({ }_{G}^{j}\right)\right)$ or vice versa.
iii. b is term-making, $1 \leqslant i \leqslant l, F_{1}=\mathrm{C}\left(\wedge x \wedge y\left\langle y \mathrm{M} \rightarrow y \vdash\left\langle u \mathrm{E} v t_{i} \mathrm{E} \rightarrow\right.\right.\right.$ $\left.\left.\left.u \mathrm{I} t_{i}\right\rangle\right\rangle \wedge\left\langle u \mathrm{E} \vee t_{i} \mathrm{E} \rightarrow u \mathrm{I} t_{i}\right\rangle\right)$, and one of the following holds:
a. F_{2} is one of $b(x t F) \mathrm{E}$ and $\left.b\left(x t{ }_{\left({ }_{u}^{i}\right)}\right) F\right) \mathrm{E}$ and $F_{5}=b\left(x t\left({ }_{u}^{i}\right) F\right) \mathrm{I}$ $b(x t F)$
b. F_{2} is one of $v \vdash b(x t F) \mathrm{E}$ and $v \vdash b\left(x t\binom{i}{u} F\right) \mathrm{E}$ and $F_{5}=$ $v \vdash b\left(x t\binom{i}{u} F\right)$ I $b(x t F)$.
iv. b is term-making $1 \leqslant j \leqslant m, \quad F_{1}=C(\wedge x \wedge y\langle y \mathrm{M} \rightarrow y \vdash$ $\left.\left.\left\langle G \leftrightarrow F_{j}\right\rangle\right\rangle \wedge\left\langle G \leftrightarrow F_{j}\right\rangle\right)$, and one of the following holds:
a. F_{2} is one of $b(x t F) \mathrm{E}$ and $b\left(x t F\left({ }_{G}^{j}\right)\right) \mathrm{E}$ and $F_{5}=b\left(x t F\left({ }_{G}^{j}\right)\right)$ I $b(x t F)$
b. F_{2} is one of $v \vdash b(x t F) \mathrm{E}$ and $v \vdash b\left(x t F\left({ }_{G}^{j}\right)\right) \mathrm{E}$ and $F_{5}=$ $v \vdash b\left(x t F\binom{j}{G}\right)$ I $b(x t F)$.
rwr Rewriting of bound variables
$\frac{b(x t F)}{b\left(x\binom{i}{y}_{y}^{x_{i}} t^{x_{i}} F\right)}, \frac{b\left(x\left(\begin{array}{c}i \\ y \\ y\end{array}\right){ }_{y}^{x_{i}} t{ }_{y}^{x_{i}} F\right)}{b(x t F)}, \frac{v \vdash b(x t F)}{v \vdash b\left(x\binom{i}{y}^{x_{i}}{ }_{y}{ }^{x_{i}}{ }_{y} F\right)}$,

In all of these schemas, y is not free in a value of x, t, or F.
There are $k, l, m, b, x, t, F, i, y$, and v such that $C N k l m b x t F$, $1 \leqslant i \leqslant k$, there is no value of x or t or F in which y is free, and one of the following holds:
i. $\quad b$ is formula making and one of the following holds:
a. $F_{2}=b(x t F)$ and $F_{5}=b\left(x\binom{i}{y}{ }_{y}^{x_{i}} t{ }_{y}^{x_{i}} F\right)$ or vice versa
b. $F_{2}=v \vdash b(x t F)$ and $F_{5}=v \vdash b\left(x\binom{i}{y}{ }_{y}^{x_{i}} t{ }_{y}^{x_{i}} F\right)$ or vice versa.
ii. b is term making and one of the following holds:
a. F_{2} is one of $b(x t F) \mathrm{E}$ and $b\left(x\binom{i}{y}{ }_{y}^{x_{i}}{ }_{y}{ }_{y}^{x_{i}} F\right) \mathrm{E}$ and $F_{5}=$ $b\left(x\binom{i}{y}{ }_{y}^{x_{i}} t^{x_{i}} F\right)$ I $b(x t F)$
b. F_{2} is one of $v \vdash b(x t F) \mathrm{E}$ and $v \vdash b\left(x\binom{i}{y}{ }_{y}^{x_{i}} t^{x_{i}} F\right) \mathrm{E}$ and $F_{5}=$ $v \vdash b\left(x\binom{i}{y}{ }_{y}^{x_{i}} t^{x}{ }_{y}{ }_{y} F\right)$ I $b(x t F)$.
ipd Identification of proper descriptions ${ }^{3}$
$\frac{\vee y \wedge x\langle F \leftrightarrow x I y\rangle}{V x\langle F \wedge \boldsymbol{\jmath} x F \mathrm{I} x\rangle} y \neq x$ and not free in F.
There are x, F, and y such that $x \neq y, y$ is not free in F, $F_{1}=\vee y \wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle$, and $F_{5}=\vee x\langle F \wedge \mathbf{\imath} x F \mathrm{I} x\rangle$.
$\begin{array}{cc}t \mathrm{E} \\ \frac{N t \mathrm{~B}}{t \mathrm{~A}}, & \begin{array}{c}u \vdash t \mathrm{E} \\ N u \vdash t \mathrm{~B}\end{array} \quad u\ulcorner t \mathrm{I} u \\ u \vdash l \mathrm{~A}\end{array}$.
There are t and u such that one of the following holds:
i. $\quad F_{1}=t \mathrm{E}, F_{2}=N t \mathrm{~B}$, and $F_{5}=t \mathrm{~A}$.
ii. Either $F_{1}=u \vdash t \mathrm{E}$ and $F_{2}=N u \vdash t \mathrm{~B}$ or $F_{2}=u\ulcorner t \mathrm{I} u$. Also, $F_{5}=u \vdash t \mathrm{~A}$.
sac Simplification of actuality
$\frac{t \mathrm{~A}}{N t \mathrm{M} N t \mathrm{~B}}, \frac{u \vdash t \mathrm{~A}}{N u \vdash t \mathrm{~B}}, \frac{\begin{array}{c}u \vdash t \mathrm{~A} \\ u \vdash t \mathrm{M}\end{array}}{u\ulcorner t \mathrm{I} u}$.
There are t and u such that one of the following holds:
i. $\quad F_{1}=t \mathrm{~A}$ and F_{5} is one of $N t \mathrm{M}$ and $\sim t \mathrm{~B}$.
ii. $F_{1}=u \vdash t \mathrm{~A}$ and $F_{5}=N u \vdash t \mathrm{~B}$.
iii. $F_{1}=u \vdash t \mathrm{~A}, F_{2}=u \vdash t \mathrm{M}$, and $F_{5}=u\ulcorner t \mathrm{I} u$.
mom Momenthood
$\frac{t \vdash F \quad t\ulcorner u \mathrm{E}}{t \mathrm{M}}$.
There are t, F, and u such that F_{1} is one of $t \vdash F$ and $t\ulcorner u \mathrm{E}$ and $F_{5}=t \mathrm{M}$.
inv Invariance of variables
$\frac{t \mathrm{M}}{t \Gamma x \mathrm{I} x}$.
There are t and x such that $F_{1}=t \mathrm{M}$ and $F_{5}=t \Gamma x \mathrm{I} x$.
idx Indexing

$$
\begin{aligned}
& t \mathrm{M} \quad t \mathrm{M} \quad t \vdash F \\
& \frac{N t \vdash F}{t \vdash N F}, \frac{N t \vdash F \quad t \vdash G}{t \vdash\langle F \rightarrow G\rangle}, \frac{t \vdash G}{t \vdash\langle F \wedge G\rangle}, \frac{t \vdash F \quad t \vdash G}{t \vdash\langle F \vee G\rangle}, \\
& t \mathrm{M} \\
& x \mathrm{E} \\
& \frac{t \vdash F \leftrightarrow t \vdash G}{t \vdash\langle F \leftrightarrow G\rangle}, \frac{\wedge x \quad t \vdash F}{t \vdash \wedge x F} \underset{\text { free in } t}{ }, \frac{\vee x \quad t \vdash F}{t \vdash \bigvee x F} \underset{\text { free in } t}{ }, \\
& \frac{t\ulcorner u \mathrm{E}}{t \vdash u \mathrm{E}}, \frac{t\ulcorner u \mathrm{M}}{t \vdash u \mathrm{M}}, \frac{t\ulcorner u \mathrm{I} t\ulcorner v}{t \vdash u \mathrm{I} v}, \frac{\mathbf{1} x t \vdash F \mathrm{E} t\ulcorner\mathbf{1} x F \mathrm{E} x}{t\ulcorner\mathbf{q} x F \mathrm{I} \boldsymbol{\eta} x t \vdash F} \underset{\text { free in } t}{ } .
\end{aligned}
$$

There are t through v, F and G, and x such that x is not free in t and one of the following holds:
i. $\quad F_{1}=t \mathrm{M}, F_{2}=N t \vdash F$, and $F_{5}=t \vdash N F$.
ii. Either $F_{1}=t \mathrm{M}$ and $F_{2}=N t \vdash F$ or $F_{1}=t \vdash G$, and $F_{5}=$ $t \vdash\langle F \rightarrow G\rangle$.
iii. $F_{1}=t \vdash F, F_{2}=t \vdash G$, and $F_{5}=t \vdash\langle F \wedge G\rangle$.
iv. $\quad F_{1}$ is one of $t \vdash F$ and $t \vdash G$ and $F_{5}=t \vdash\langle F \vee G\rangle$.
v. $\quad F_{1}=t \mathrm{M}, F_{2}=t \vdash F \leftrightarrow t \vdash G$, and $F_{5}=t \vdash\langle F \leftrightarrow G\rangle$.
vi. $F_{1}=x \mathrm{E}, F_{2}=\wedge x t \vdash F$, and $F_{5}=t \vdash \wedge x F$.
vii. $F_{1}=\vee x t \vdash F$ and $F_{5}=t \vdash \vee x F$.
viii. $F_{1}=t\left\ulcorner u \mathrm{E}\right.$ and $F_{5}=t \vdash u \mathrm{E}$.
ix. $\quad F_{1}=t\left\ulcorner u \mathrm{M}\right.$ and $F_{5}=t \vdash u \mathrm{M}$.
x. $\quad F_{1}=t\left\ulcorner u \mathrm{I} t\left\ulcorner v\right.\right.$ and $F_{5}=t \vdash u \mathrm{I} v$.
xi. $\quad F_{1}$ is one of $\boldsymbol{\imath} x t \vdash F \mathrm{E}$ and $t\left\ulcorner\boldsymbol{\imath} x F \mathrm{E}\right.$ and $F_{5}=t\ulcorner\boldsymbol{\eta} x F \mathrm{I}$ $\boldsymbol{1} \times t \vdash F$.
sidx Simplification of indices

$$
\begin{aligned}
& t \vdash\langle F \rightarrow G\rangle \\
& \frac{t \vdash N F}{N t \vdash F}, \frac{t \vdash F}{t \vdash G}, \frac{t \vdash\langle F \wedge G\rangle t \vdash\langle G \wedge F\rangle}{t \vdash F}, \\
& t \vdash\langle F \vee G\rangle \quad t \vdash\langle G \vee F\rangle \quad t \vdash\langle N F \vee G\rangle \quad t \vdash\langle G \vee N F\rangle \\
& \frac{N t \vdash F}{t \vdash G}, \frac{t \vdash F}{t \vdash G}, \\
& t \vdash\langle F \leftrightarrow G\rangle \quad t \vdash\langle G \leftrightarrow F\rangle \\
& \frac{t \vdash F}{t \vdash G}, \frac{t \vdash \wedge x F}{\wedge x \text { not }} \text { free in } t \text {, }
\end{aligned}
$$

$\frac{t \vdash \vee x F}{V x t \vdash F} x$ not \quad free in $t, \frac{t \vdash u \mathrm{E}}{t\ulcorner u \mathrm{E}}, \frac{t \vdash u \mathrm{M}}{t\ulcorner u \mathrm{M}}, \frac{t \vdash u \mathrm{I} v}{t\ulcorner u \mathrm{I} t \Gamma v}$.
There are t through v, F and G, and x such that x is not free in t and one of the following holds:
i. $\quad F_{1}=t \vdash N F$ and $F_{5}=N t \vdash F$.
ii. $\quad F_{1}=t \vdash\langle F \rightarrow G\rangle, F_{2}=t \vdash F$, and $F_{5}=t \vdash G$.
iii. $\quad F_{1}$ is one of $t \vdash\left\langle F_{\wedge} G\right\rangle$ and $t \vdash\langle G \wedge F\rangle$ and $F_{5}=t \vdash F$.
iv. $\quad F_{1}$ is one of $t \vdash\langle F \vee G\rangle$ and $t \vdash\langle G \vee F\rangle, F_{2}=N t \vdash F$, and $F_{5}=t \vdash G$.
v. $\quad F_{1}$ is one of $t \vdash\langle\sim F \vee G\rangle$ and $t \vdash\langle G \vee N F\rangle, F_{2}=t \vdash F$, and $F_{5}=t \vdash G$.
vi. $\quad F_{1}$ is one of $t \vdash\langle F \leftrightarrow G\rangle$ and $t \vdash\langle G \leftrightarrow F\rangle, F_{2}=t \vdash F$, and $F_{5}=t \vdash G$.
vii. $F_{1}=t \vdash \wedge x F$ and $F_{5}=\wedge x t \vdash F$.
viii. $F_{1}=t \vdash \vee x F$ and $F_{5}=\vee x t \vdash F$.
ix. $\quad F_{1}=t \vdash u \mathrm{E}$ and $F_{5}=t\ulcorner u$ E.
x. $\quad F_{1}=t \vdash u \mathrm{M}$ and $F_{5}=t\ulcorner u \mathrm{M}$.
xi. $\quad F_{1}=t \vdash u \mathrm{I} v$ and $F_{5}=t\ulcorner u \mathrm{I} t\ulcorner\cdot v$.
aidx Association of indices
$\frac{v \vdash t \vdash F}{v\ulcorner t \vdash F}, \frac{v\ulcorner t \vdash F}{v \vdash t \vdash F}, \frac{v\ulcorner\langle t\ulcorner u\rangle \mathrm{E}\langle v\ulcorner t\rangle\ulcorner u \mathrm{E}}{v\ulcorner\langle t\ulcorner u\rangle \mathrm{I}\langle v\ulcorner t\rangle\ulcorner u}$.
There are t through v and F such that one of the following holds:
i. $F_{1}=v \vdash t \vdash F$ and $F_{5}=v\ulcorner t \vdash F$ or vice versa.
ii. F_{1} is one of $v\left\ulcorner\left\langle t\ulcorner u\rangle \mathrm{E}\right.\right.$ and $\left\langle v\ulcorner t\rangle\left\ulcorner u \mathrm{E}\right.\right.$ and $F_{5}=v\ulcorner\langle t\ulcorner u\rangle \mathrm{I}$ $\langle v\ulcorner t\rangle\ulcorner u$.
4. q is obtainable from p by a proof method just when there are an index m of p^{4} and formulas F_{1} through F_{3} such that there is no index n of p greater than m such that p_{m} is a show line, F_{1} and F_{2} are lines of $p, p_{m}=S F_{3}$, $q=p_{m}$ cut off from the $m^{\text {th }}$ line with $F_{3}=q_{m}$ added at its end, and one of the following holds.
p \quad Direct proof ${ }^{5}$
$\frac{F}{\neq F}$.
$1 \vdots$
$F_{3}=F_{1}$.
ip Indirect proof
G
$\frac{N G}{\beta F}$.
$1:$
F_{1} and F_{2} are contrary.
cp Conditional proof
$\frac{N F \quad G}{\$ F \rightarrow G}$.
1 :
There are F and G such that F_{1} is one of $N F$ and G and $F_{3}=$ $F \rightarrow G$.
dp Disjunction proof
$\frac{F}{F} \quad G$
$\$ F \vee G$
\vdots
\vdots
There are F and G such that F_{1} is one of F and G and $F_{3}=F \vee G$.
ep Equivalence proof

$$
F \rightarrow G
$$

$\frac{G \rightarrow F}{\delta F \leftrightarrow G}$.
$1 \quad \vdots$
There are F and G such that $F_{1}=F \rightarrow G, F_{2}=G \rightarrow F$, and $F_{3}=F \leftrightarrow G$.

Universal proof
$\frac{F}{\$ \wedge x_{1} \ldots \wedge x_{i} F} x_{1}$ through x_{i} not free above.
For some nonempty sequence x of variables, there is no index k of p smaller than m such that a value of x is free in the largest formula which occurs in p_{k} and $F_{3}=C\left(\wedge x F_{1}\right)$.

The above clauses list the ways in which q is obtainable from p. A proof sequence is a nonempty and countable sequence s of finite sequences of lines such that s_{1} consists of a show line and s_{i} is obtainable from s_{i-1} if i is an index of $s . F$ is \mathbf{N}-provable just when there exists a finite proof sequence whose last sequence of lines has F as its only line. That is, $S F$ can be transformed into F by means of the rules and proof methods of \mathbf{N}.

To make N applicable to an axiom set, the definition of obtainability can be extended by adding an additional axiom rule. Given finite sequences of lines p and q and a set A of formulas, q is obtainable from p by A just when either q is obtainable from p or the following holds:
ax Axiom rule

```
:
¢
```

q is p with a member of A added at its end.
The proof sequences constructed by this more general notion of obtainability are the proof sequences in A. F is \mathbf{N}-provable in A just when there exists a finite proof sequence in A whose last line sequence has F as its only line. Thus, F is \mathbf{N}-provable just when F is \mathbf{N}-provable in every set of formulas and so just when F is \mathbf{N}-provable in the empty set.

It can be shown that no new formulas are \mathbf{N}-provable in A even if lines sequences are allowed to be extended by adding formulas which follow from previous lines by means of provable formulas. That is, if p and q are finite sequences of lines and q is p with G added at its end, then the following inference rule is derivable in \mathbf{N} applied to A.
t Theorems rule
F_{1}
\vdots
$\frac{F_{m}}{G}$ where $F_{1} \wedge \ldots \wedge F_{m} \wedge G_{1} \wedge \ldots \wedge G_{n} \rightarrow G$
and G_{1} through G_{n} are provable.
There are positive integers m and n and formulas $F_{1} \ldots F_{m}$, $G_{1} \ldots G_{n}$ such that F_{1} through F_{m} are lines of p, G_{1} through G_{n} are \mathbf{N}-provable in A, and $F_{1} \wedge \ldots \wedge F_{m} \wedge G_{1} \wedge \ldots \wedge G_{n} \rightarrow G$ is \mathbf{N}-provable in A.

It is very useful to have the theorems rule among the inference rules even though it is redundant. In fact, the rules of \mathbf{N} often overlap each other. This lack of economy is for the sake of ease and naturalness of application.

2 The equivalence of \mathbf{N} with \mathbf{L}

Lemma 1 Every axiom of \mathbf{L} is \mathbf{N}-provable.
Proof: The proof is through the construction of a proof sequence which has F as the only line of its last line sequence for any instance F of each of the schemas of L. All of the constructions are relatively simple. The following is an annotated line sequence designation which indicates a proof sequence for the main description principle of L. It is assumed that y is not free in F, t, or x and that the distinct y^{\prime} and $y^{\prime \prime}$ do not occur in F through y.

\& $t \mathrm{I} \mathbf{1} x F \leftrightarrow \vee y\langle\wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle \wedge t \mathrm{I} y\rangle$	2, 19 ep
$\delta t \mathrm{I} \mathbf{1} x F \rightarrow \vee y\langle\Lambda x\langle F \leftrightarrow x \mathrm{I} y\rangle \wedge t \mathrm{I} y\rangle$	18 cp
$t \mathrm{I} \backslash \times F$	2 a
$1 \times F \mathrm{E}$	3 ex
$\vee y \wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle$	4 pd
$\wedge x\left\langle F \leftrightarrow x \mathrm{I} y^{\prime}\right\rangle$	5 ei
$\vee x\langle F \wedge \mathbf{1} x F \mathrm{I} x\rangle$	5 ipd
	7 ei
$7 x F$ I $y^{\prime \prime}$	8 sc
$y^{\prime \prime} \mathrm{E}$	9 ex
${ }_{y}{ }^{x} F \leftrightarrow y^{\prime \prime} \mathrm{I} y^{\prime}$	6, 10 ui
${ }_{y}{ }^{x} F$	8 sc
$y^{\prime \prime} \mathrm{I} y^{\prime}$	11, 12 se
$1 \times F \mathrm{I} y^{\prime}$	9, 13 int
$t \mathrm{y} y^{\prime}$	3, 14 int
$\wedge x\left\langle F \leftrightarrow x \mathrm{I} y^{\prime}\right\rangle \wedge t \mathrm{I} y^{\prime}$	6,15 c
$y^{\prime} \mathrm{E}$	15 ex
$\vee y\langle\wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle \wedge t \mathrm{I} y\rangle$	16, 17 eg
\$ $\vee 1 y\langle\wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle \wedge t \mathrm{I} y\rangle \rightarrow t \mathrm{I} \mathbf{1} x F$	34 cp
$\vee y\langle\wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle \wedge t \mathrm{I} y\rangle$	19 a
$\wedge x\left\langle F \leftrightarrow x \mathrm{I} y^{\prime}\right\rangle \wedge t \mathrm{I} y^{\prime}$	20 ei
$\wedge x\left\langle F \leftrightarrow x \mathrm{I} y^{\prime}\right\rangle$	21 sc
$y^{\prime} \mathrm{E}$	20 exv
$\vee y \wedge x\langle F \leftrightarrow x \mathrm{I} y\rangle$	22, 23 eg
$\vee x\langle F \wedge 1 \times F \mathrm{I} x\rangle$	24 ipd
$y^{\prime}{ }^{\prime} F \wedge 1 x F \mathrm{I} y^{\prime \prime}$	25 ei
$1 \times F \mathrm{I} y^{\prime \prime}$	26 sc
$y^{\prime \prime} \mathrm{E}$	27 ex
${ }_{y^{\prime \prime}}^{\prime \prime} F \leftrightarrow y^{\prime \prime} \mathrm{I} y^{\prime}$	22,28 ui
${ }^{\prime}{ }^{x} F$	26 sc
$y^{\prime \prime} \mathrm{I} y^{\prime}$	29, 30 se
$1 \times F \mathrm{I} y^{\prime}$	27, 31 int
$t \mathrm{I} y^{\prime}$	21 sc
$t \mathrm{I} 1 \times F$	32, 33 int

Lemma 2 If F and $F \rightarrow G$ are \mathbf{N}-provable, then G is \mathbf{N}-provable.
Proof: Assume that there are proof sequences whose last line sequences are designated by $\$ F$ and $\$ F \rightarrow G$. By means of si and \mathbf{p}, these proof
sequences can be combined into a proof sequence whose structure is indicated by the following designation and shows that G is \mathbf{N}-provable:

Lemma 3 If F is \mathbf{N}-provable, then $\wedge x F$ is \mathbf{N}-provable.
Proof: If there is a proof sequence whose last line sequence is designated by $\$ F$, it follows by up that there is a proof sequence whose structure is 1 :
indicated by \& $\wedge x F$ and shows that $\wedge x F$ is \mathbf{N}-provable.
| $\begin{gathered}\delta F \\ \vdots\end{gathered}$
Lemma 4 If s is a proof sequence, m is an index of $s, 1<l \leqslant m$, and s_{l} is obtainable from s_{l-1} by a proof method, then the conjunction of (s_{l} without its last line) \rightarrow the last line of s_{l} is L-provable.

Proof: Assume the antecedent. For any l and m, let $\mathrm{A} l m$ hold just when m is an index of $s, 1<l \leqslant m$, and s_{l} is obtainable from s_{l-1} by a proof method. Also, for any index l of s, let $C l$ hold just when the conjunction of (s_{l} without its last line) \rightarrow the last line of s_{l} is \mathbf{L}-provable. Let P be the set of all m such that, if m is an index of s, then, for any l, A $l m$ only if Cl . 1 is in P since not A $l 1$. So assume that m is in P and A $l m+1$. Hence, m is an index of s and so Cl if Alm . If s_{m+1} is not obtainable from s_{m} by a proof method, then s_{l} is not longer than s_{l-1} while s_{m+1} is longer than s_{m} and so $l \neq m+1$ and $l \leqslant m$. That is, Alm and so Cl . Hence, assume that s_{m+1} is obtainable from s_{m} by a proof method. In other words, there is an index k of s_{m} and an F such that $\left(s_{m}\right)_{k}=S F$, there is no index n of s_{m} greater than k such that $\left(s_{m}\right)_{n}$ is a show line, and s_{m+1} is s_{m} cut off at the $k^{\text {th }}$ line with $\left(s_{m}\right)_{k}$ changed to F. If $l \neq m+1, l \leqslant m$ and Cl since Alm. Assume then that $l=m+1$. Also, if $s_{m+1}=s_{l}$ is obtainable from $s_{m}=s_{l-1}$ by up and $F=\wedge x_{1} \ldots \wedge x_{i} G$ with i a positive integer, let $H=G$. Otherwise, $H=F$. Clearly,
a. the conjunction of $s_{m} \rightarrow H$ is L-provable,
for the formulas needed to obtain s_{l} from s_{l-1} by a proof method are present in the conjunction of s_{m} and tautologically imply H.

Let $n=$ the largest index of s_{m}. By induction, it can be shown that
b. For any natural number z, if $z \leqslant n-k$, then the conjunction of (s_{m} cut off from the $(n+1)-z^{\text {th }}$ line) $\rightarrow H$ is \mathbf{L}-provable.

By a, b holds for $z=0$. For any natural number $z \leqslant n-k$, let $\mathrm{K} z=$ the conjunction of (s_{m} cut off from the $(n+1)-z^{\text {th }}$ line). Assume both that z is a natural number such that $\mathrm{K} z \rightarrow H$ is L -provable if $z \leqslant n-k$ and that $z+1 \leqslant n-k$. Since $z \leqslant n-k, \mathrm{~K} z \rightarrow H$ is L-provable. Let $b=s_{m}$ cut off from the $(n+1)-(z+1)=n-z^{\text {th }}$ line and let $c=s_{m}$ cut off from the $(n+1)-z=(n-z)+1^{\text {th }}$ line. We must show that $\mathrm{K} z+1 \rightarrow H$ is L-provable.

It is not possible that c is obtainable from b by adding a show line since then there is an index n of s_{m} greater than k such that $\left(s_{m}\right)_{n}$ is a show line.

Assume that c is obtainable from b by adding an assumption. If there are J and K such that $\left(s_{m}\right)_{n-z}=S J \rightarrow K$, then, since $\left(s_{m}\right)_{k}$ is the last show line of $c, n-z=k$. Hence, $H=J \rightarrow K$ and $\left(s_{m}\right)_{(n-z)+1}=J$. Since $K z=K z+1_{\wedge} J$ and $\mathrm{K} z \rightarrow\langle J \rightarrow K\rangle$ is L-provable by assumption, it follows by tautological implication that $\mathrm{K} z+1 \rightarrow H$ is L-provable. Similarly, if $\left(s_{m}\right)_{n-z}=S J \vee K$, $H=J_{\vee} K$ and there is a G contrary to J such that $\left(s_{m}\right)_{(n-z)+1}=G$. Since $\mathrm{K} z=\mathrm{K} z+1 \wedge G$ and $\mathrm{K} z \rightarrow J \vee K$ is L-provable by assumption, it follows again by tautological implication that $\mathrm{K} z+1 \rightarrow H$ is L -provable. Finally, if there are contrary J and K such that $\left(s_{m}\right)_{n-z}=S J$ and $\left(s_{m}\right)_{(n-z)+1}=K, H=J$ and $\mathrm{K} z+1 \rightarrow H$ is L -provable by tautological implication since $\mathrm{K} z=\mathrm{K} z+1_{\wedge} K$ and $\mathrm{K} z \rightarrow J$ is L-provable by assumption.

If c is obtainable from b by an inference rule other than $\mathbf{e i}, \mathrm{K} z+1 \rightarrow \mathrm{~K} z$ is clearly L-provable via the structure of L and Theorem 25 of [2]. Hence, $\mathrm{K} z \rightarrow H$ is as well by tautological implication. Assume then that c is obtainable from b by ei. Hence, for some G, x, and $y, \vee x G$ is a line of b, y does not occur in b, and $\left(s_{m}\right)_{(n-z)+1}={ }_{y}^{x} G$. But y occurs in neither $\mathrm{K} z+1$ nor G nor H while $\mathrm{K} z=\mathrm{K} z+1 \wedge{ }_{y}^{x} G$ and $\mathrm{K} z \rightarrow H$ is L-provable by assumption. Hence, both $\mathrm{K} z+1 \wedge{ }_{y}^{x} G \rightarrow H$ and $\mathrm{K} z+1 \rightarrow \vee x G$ are L-provable and so $\mathrm{K} z+1 \rightarrow H$ is L-provable via Corollary 12 and Theorem 25 of [2].

Assume finally that there is an index $j<m$ of s such that $c=s_{j+1}$ and c is obtainable from s_{j} by a proof method. Since $1<j+1 \leqslant m, \mathrm{~A} j+1 m$ and so $C j+1$. This means that the conjunction of (c without its last line) \rightarrow the last line of c is L-provable. But $c=s_{m}$ cut off from the $(n-z)+1^{\text {th }}$ line and the last line of $c=\left(s_{m}\right)_{n-z}=J$ for some J. Hence, $K z+1 \rightarrow J$ is Lprovable while $\mathrm{K} z=\mathrm{K} z+1 \wedge J$ and so $\mathrm{K} z+1 \rightarrow H$ is again L -provable since $\mathrm{K} z \rightarrow H$ is.

This exhausts the ways in which c is obtainable from its predecessors and so b holds. Putting $z=n-k$ in b , it follows that the conjunction of (s_{m} cut off from the $k+1^{\text {th }}$ line) $\rightarrow H$ is \mathbf{L}-provable. Since $\left(s_{m}\right)_{k}$ is a show line, the conjunction of (s_{m} cut off from the $k+1^{\text {th }}$ line) $=$ the conjunction of (s_{m} cut off from the $k^{\text {th }}$ line). Also, s_{m} cut off from the $k^{\text {th }}$ line $=s_{m+1}$ without its last line and $H=$ the last line of s_{m+1}. If $J=$ the conjunction of (s_{m+1} without its last line), it follows that $J \rightarrow H$ is L-provable. If s_{m+1} is obtainable from s_{m} by up, there are a positive integer i and x through x_{i} such that $F=\wedge x_{1} \ldots \wedge x_{i} H$ and none of x_{1} through x_{i} is free in J. Since
$J \rightarrow H$ is L-provable, it follows that $J \rightarrow F$ is by repeated applications of the axioms of L corresponding to Theorem 13 of [2]. On the other hand, if s_{m+1} is obtainable from s_{m} by a proof method other than up, $F=H$ and $J \rightarrow F$ is again L-provable. Since $l=m+1, \mathrm{Cl}$. But then $m+1$ is in P and the lemma holds.

Theorem 1 F is \mathbf{N}-provable just when F is \mathbf{L}-provable.
By Lemmas 1-3, every L-provable formula is \mathbf{N}-provable. Assume then that there is a finite nonempty proof sequence s whose last line sequence has F as its only line. Let m be the greatest index of s. By analyzing cases, it is clear that s_{m} is only obtainable from s_{m-1} by a proof method. But then the conjunction of (s_{m} without its last line) \rightarrow the last line of s_{m} is L-provable by Lemma 4. Since s_{m} has F as its only line, it follows that $(G \rightarrow G) \rightarrow F$ is L-provable where G is the first sentential constant and so F is L-provable by tautology and modus ponens.

Corollary $1 \quad F$ is \mathbf{N}-provable just when F is valid.
This follows from Theorem 1 together with Theorems 24 and 27 of [2].

NOTES

1. See [2]. That study was summarized at the Royal Institute of Technology in Stockholm in May of 1973 and presented in full at the Salzburg Colloquium on Logic and Ontology in September of 1973 . The terminology of [2] is here presupposed. The system \mathbf{N} and Theorem 1 were also referred to in an abstract in The Bulletin of the Section of Logic 5,(1976),pp. 16-19.
2. Observe that the rule only implies that logical predicates and operation symbols are existence implying. This is because intensional predicates and operation symbols are allowed for in \mathbf{N} and L . Observe also that $t \Gamma u \mathrm{E}$ need not imply $u \mathrm{E}$ (for, like \vdash, Γ is intensional).
3. If the Hilbert selection variable binder ϵ were included among the logical constants of \mathbf{N} and L , it could be dealt with by rules like $\mathbf{p d}$ and ipd in \mathbf{N} and by the corresponding axioms in \mathbf{L}. For example, $\epsilon x F \mathrm{E} \rightarrow \mathrm{V} x F$ and $\mathrm{V} x F \rightarrow \mathrm{~V}_{x}\langle F \wedge \epsilon x F \mathrm{I} x\rangle$ could be added to the schemas of L together with the absoluteness principle $t\ulcorner\epsilon x F \mathrm{E} v \epsilon x t \vdash F \mathrm{E} \rightarrow t \Gamma \epsilon x F \mathrm{I} \epsilon x t \vdash F(x$ not free in t). Notice that it is not one of the nonstandard existence rules for descriptions, but rather all of the usual substitution rules for descriptions which break down in indexical logics.
4. An index of a sequence is one of the objects in the domain of the sequence.
5. The line to the left of the schema indicates omission of the sequence below $\$ F$.

REFERENCES

[1] Schock, R., Logics Without Existence Assumptions, Almqvist and Wiksell, Stockholm, 1968.
[2] Schock, R., "A complete system of indexical logic," Notre Dame Journal of Formal Logic, vol. XXI (1980), pp. 293-315.

