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Automorphisms of w-Cubes

J. C. E. DEKKER

1 Preliminaries The word set is used for a collection of numbers, class for a
collection of sets. We write € for the set of all numbers, o for the empty set of
numbers, card I" for the cardinality of the collection I', and ’Pﬁn(a) for the class
of all finite subsets of a. If fis a function of n variables, i.e., a mapping from a
subcollection of €” into €, we denote its domain and range by &f and pf
respectively. A collection of functions is called a family. The image under f
of the number n is denoted by f,, or f(n), sometimes by both in the same
context. We write a ~ f for a equivalent to 8, a ~ 8 for a recursively equivalent
to B, and a ® f for the symmetric difference of o and 8. The collection of all
recursive equivalence types (RETs) is denoted by £2, that of all isols by A.
Moreover, Q4= Q2 = (0), Ag = A = (0), £o =€ — (0). The reader is referred to
{4] and [8] for the basic properties of RETs and isols. Let {p, be the canonical
enumeration of the class #,(€), i.e., let po =0 and

n+1=2204+ 4200,

(ay, . . ., ag), where
Pn+1=
ai, . . ., ax distinct.

Put r, = card p,, then r, is a recursive function. If ¢ is a finite set, can o denotes
the canonical index of o, i.e., the unique number i such that o0 = p;. Fora Cg,
i€E,

[oi]l =fxlpy Ca & re =i}, 2% = {xlpx C a} so that
o= B=(V)[legi]l = [B;i]], a~f=2%~2"

If f is a function of one variable, §f* = 2%/, £*(0) = 0 and
D+ 4200y =2fsD 4 4 2fe0),
for distinct elements ay, . . ., a; of 6f. Equivalently,

8f* = 2 prxcxy = f(ox).
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It is readily seen that
(D) fl-1=7r*1-1fFg=[f*+g* (fo)* = *g*.

We briefly review the material of [5] which is relevant to the present
paper. Note that the vertices of Q" = (0, 1)" can be interpreted as the char-
acteristic functions of subsets of (0, . .., n — 1), (1, ..., n) or any other finite
set of cardinality n. This suggests the possibility of defining Q" in terms of
Pun(v). With a nonempty set » we associate the (directed) cube Q" = (2¥, <),
where x <y <= p, C py, for x, y € 2; we call Q" the w-cube on the set ». An
isomorphism from Q* onto QY is a one-to-one mapping g from 2* onto 2” such
that x <y = g(x) <g(y), for x, y € 2¥ or equivalently, px C py, = Pgx) C Pg(y)>
for x, ¥ € 2*. An isomorphism is an w-isomorphism, if it has a partial recursive
one-to-one extension. The w-cubes Q* and Q” are isomorphic (w-isomorphic) if
there is at least one isomorphism (w-isomorphism) between them. These
equivalence relations are denoted by = and =_,. For N € §2, we define oV =g,
for any v € N. It can be proved that Q¥ = Q¥ <= u ~ », while Q¥ =, Q¥ <
w =~ v. Thus Q" is uniquely determined by N up to w-isomorphism, just as Q" is
uniquely determined by n up to isomorphism. We call n the dimension of Q"
and Q”, for card » = n; N is the w-dimension of Q" and Q¥, for Req v =N. In
symbols,

n=dim Q* =dim Q", forcardv=n, neg,,
N = dim,, Q* = dim,, QV, for Req v =N, N € Q.

We use the word graph in the sense of a simple, connected, countable
graph with at least one vertex. Such a graph will be represented by an ordered
pair G = {8, ), where 8 C & and n C [B; 2]; a vertex of G is therefore identified
with a number, while an edge of G is identified with the canonical index of the
set consisting of its endpoints. The relation can(p, q) € n between the vertices p
and q of G = (B, n is also written: p adj q. With a nonempty set v we associate
the graph Q, = (2%, n), where

n = {can(x, y) € [2”; 2]lcard(py ® p,) = 1} .

An isomorphism from Q, = (2 0) onto Q, = (2”, ) is a one-to-one mapping g
from 2* onto 2" such that can(x, y) € 0 implies can(gy, g,) € n, for x, y € 2%
An isomorphism is an w-isomorphism, if it has a partial recursive one-to-one
extension. The graphs O, and Q, are isomorphic (w-isomorphic), if there is at
least one isomorphism (w-isomorphism) between them. These equivalence
relations between graphs are denoted by = and =,,. For N € £, we define
Oy = Q,, for any v € N. It can be proved that Q, = Q, < u ~ v, while
0,=, Oy =>u=~vp. Thus Qp is uniquely determined by N up to w-isomorphism
just as @, is uniquely determined by n up to isomorphism. We call 27 the order
of Q, and Q,, for card v = n, and 2" the order of Qy and Q,, for Req v = N. In
symbols,

2" =0Q, =0Q,, forcard v=n, n €&y,
2V =0Q, = 0Qy, forRegv=N, N e Q,.

We shall need two propositions of [5].
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Proposition A1.1 ([5], P1.1) Let g be a one-to-one mapping from 2* onto
2. Then

(a) g is an isomorphism from Q" onto QViff g = f*, for some one-to-one func-
tion f from u onto v,

(b) g is an w-isomorphism from Q* onto Q' iff g = f*, for some one-to-one
function f from u onto v with a partial recursive one-to-one extension.

Proposition A1.2 ([5], P3.2) Let g be an isomorphism (w-isomorphism)
from Q, onto Q,. Then g is an isomorphism ( w-isomorphism) from Q* onto Q"

iff &(0) = 0.

For a function f(x) we define nf = {x € §f1f(x) # x}. Let f be a permuta-
tion of the set v. Then f is a finite permutation of v, if «f is finite; f is an
w-permutation of v, if it has a partial recursive one-to-one extension. We write
Per(v) for the family of all permutations of v, Per,(v) for the family of all
w-permutations of v, and P, for the family of all finite permutations of ». For
the groups under composition formed by these three families we have

P, < Per,(v) < Per(v).

If v is finite these three groups are the same. If v is denumerable we have
Per,(v) < Per(v), since card Per,(v) = Ny, while card Per(v) = c. We shall need a
characterization of the sets » for which P, = Per,(v). This clearly depends only
on Req v. An RET N is multiple-free, if every even predecessor of N is finite.
Trivially, every finite RET is multiple-free. Let R = Reqe. If A € 2 — A, we
have R < A, where R = 2R, hence A is not multiple-free. Thus every multiple-
free RET is an isol. There are exactly ¢ infinite isols which are not multiple-
free, since every infinite isol which is even or odd is not multiple-free. There
also are c¢ infinite isols which are multiple-free, e.g., all infinite, indecomposable
isols and every isol which is the sum of two incomparable indecomposable isols
([4]1, T49).

Proposition A1.3 ([2], P7, due to B. Cole) Let N = Reqv. Then P, =
Per ,(v) iff N is a multiple-free isol.

2 Automorphisms of Q¥ and Q, An automorphism of Q¥ (of Q,) is an
isomorphism g from Q¥ (from Q,) onto itself; g is an w-automorphism of Q¥
(of Q,), if it has a partial recursive one-to-one extension. We define:

Aut Q¥ = the family of all automorphisms of Q”,
Aut,, Q" = the family of all w-automorphisms of Q”,
Aut Q, = the family of all automorphisms of Q,,
Aut,, Q, = the family of all w-automorphisms of Q,.

These four families are groups under composition. In case v is finite we have
Aut, Q¥ = Aut Q¥ and Aut, Q, = Aut Q,, since every function with a finite
domain is partial recursive. For an elementary discussion of the relationship
between the groups Aut Q” and Aut Q, in the special case v = (1, . . ., n), see
[7], Ch. I Section 9. Henceforth the set » need not be finite, unless this is
explicitly stated. If we take u = » in Propositions A1.1 and A1.2 we obtain:

Proposition A2.1 Let g be a permutation of 2¥. Then
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(a) geAut QViffg =f*, for some f € Per(v),
(b) geAut,, QViffg=f*, for some f € Per (v).

Proposition A2.2 Let g € Aut Q, [or € Aut,, Q,]. Then g € Aut Q" [or €
Aut, Q"] iff g(0) = 0.

Remark: Let the mapping ¢ have Per(v) as domain and let ¢(f) = f*, ¢, =
¢l Per,,(v). Then we see by (1) and A2.1 that ¢ is an isomorphism from Per(v)
onto Aut Q°, while ¢, is an isomorphism from Per(v) onto Aut,, Q. The
mapping ¢, is effective in the sense that given any f € Per(v), say by a defini-
tion of a partial recursive one-to-one extension f of f, we can find a definition
of a partial recursive one-to-one extension of f*, namely f*.

We now turn to the question of how Aut,, Q, can be expressed in terms of
Aut,, Q. The identity function on € will be denoted by i.

Definition Foraee,

x + 2% fora ¢ py.
8c, =€, cp(x) =

x — 2% fora e py.
Note that ¢, is a recursive function, mc, = €, and c,cp = cpcy, fora,b e €.

Proposition A2.3 Let a e e. Then the function c, is a recursive permutation
of &, an involution and a recursive automorphism of the graph Q.

Proof: Let a ec. From now on we keep a fixed and write f = ¢,. The recursive
function f is an involution, since f2 = i and f(0) # 0; hence f is a recursive
permutation of €.

Assume x adj y, i.e., card(py ® p,) = 1. Then either: (1) px ® p, = (a) or
(2) px ® p, = (b), for some b # a. If (1) holds, px =p, U (a), where a ¢ p,, or
py = px U (a), where a ¢ p,. We may assume without loss of generality that
px =py U (a), where a ¢ py. Then x =y + 29, y = x — 2%, hence f(x) =y, f(y) =x
and f(x)adj f(y). Now assume (2) holds. Since px and p,, only differ in b, where
b #a we have: eithera € py N p, ora ¢ px Y p,. In the former case (px — (a)) ®
(oy — (a)) has cardinality 1, hence can(px - (a))adj can(p, — (a)), ie.,
f(Gx)adj f(»). In the latter case, (px U (a)) @ (0y U (@)) has cardinality 1, hence
can(py U (a))adj can(p, Y (a)), i.e., f(x)adj f(»).

Remark: Let a € v, f = ¢,12", then f € Aut,, Q,. However, f(0) = 2°, hence
fé Aut,, Q* by A2.2. Thus Aut,, Q* < Aut,, Q,, whenever v is nonempty.

Definition For a € Py (€).

i, ifa=o,
6y =€, Cq =
Ca(1)'- - -"Cak)y if F 0, card e =k, o= (ay, . . ., ax).
Proposition A2.4 For every finite set o, ¢, is a recursive permutation of €.

Moreover, cocg = Cqop, fOr o, B € ’Pﬁ,,(t:). Also, ¢, is an involution for o # o.

Proof: Let a € Pﬁ,,(s). The first statement follows immediately from the
definition of ¢,. Now assume «, § € ’Pﬁn(s), v = a N B. Then 7 is finite and
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CaCg = Ca-(p)Cs~(p)> fOr each p € v. We conclude that c,cg5 = c4—yCs-,, Where
a = v, B = vy are disjoint; then c,Cs = C(a—y)u@E~y) = Casg- Let a F o; then c# i
and ¢2 = Cyeq = ¢, = i. Thus ¢, is an involution.

Notations: If v is known from the context,

cl=c,l27, ca = ca|2" fora e, ae Pp(v),
=f{clae me(”)‘
Proposition A2.5 The mapping ¢(a) = ¢, from Pﬁ,,(e) onto Cg is an iso-
morphism from the group (Pf,(€), ® onto the group formed by Cg under

composition. Similarly, the mapping ¢(o) = c¥ is an isomorphism from the
group (’Pf,, ), ® onto the group formed by C, under composition.

Proof: Since ¢(o ® B) = c,cp it suffices to show that ¢ is one-to-one. For
a} ﬂ € Pﬁn(e))

AFEL=AOLFE 0= Cuop T 1= ColpF 1= Co 5 = 0o F 5.

Remark: If v is infinite, the Abelian group (#g, (), ® is isomorphic to Z;*O, ie.,
the direct sum of ¥, copies of Z,.

If H and K are subgroups of a group G with unit element i, we say that G
is the semidirect product of H by K (written: G =H XK),if HK=G, HN K =
(i), H<1G. We call G the direct product of H and K, if we also have K G, i.e.,
if both H and K are normal subgroups of G.

Proposition A2.6 Forv Ce,

(@) AutQ,=C,XAut Q",
(b) Aut,, Q,=C, X Aut,, Q".

Proof: To prove (a) it suffices to show:

(1) feAut Q,= @A) f=gh&geC, & he Aut Q"],
(2) G, NAut Q" =),
3) C,<AutQ,.

Re (1). Let f € Aut Q,, f(0) = b, = pp, then § € Pf;,(v) and cf € C,. Hence
cg'lf(O) =0, c;*-lfe Aut Q¥ and cf- c;”'lf is an expression of f in the desired
form.

Re(Q).feC,NAut @*=>f(0)=0& feC,=>f=cl=i

Re (3). We only need to show

(ciny'Cckh) C C,, for B € Pun(v), h € Aut Q”.

Since ch_IC,,c;'f= C,, it suffices to prove that A"'C,h C C,, for h € Aut Q”. Note
that c;*can(‘g’) = can(B @ &), for £ € 'Pﬁn(v). Assume 2 € Aut Q" and g € C,, say
h=f*,for fePer(v)and g = cf, for B e Phin(@). Put y = £71(B), then v € Ppp(v),
and for 0 € Pp, (v),

h'gh(can o) = (f*)'cff*(can 0) = (f )*cff*(can 0) =
(f H*cflcan f(o)] (f H*can(B GBf(O)]
can f[B fo(O)] = can[f(8) @ a] = can(y @ 0) = c¥(0).
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Thus #7'gh € C,. We have proved that #"'C,h C C,. We now consider (b). First
of all, C, consists of w-automorphisms of @Q,, hence C, < Aut,, Q,, while
Aut, Q¥ <Aut,, Q,. To finish the proof of (b) it suffices to show that

(1) feAut, Q,= (393 f=gh&geC, &heAut, Q"],

since the w-analogues (2') and (3') of (2) and (3) follow immediately from (2)
and (3). Let f € Aut, Q,, f(0) = b, § = pp. Then f= c;‘fﬁ , where cff € C,,
cé”f € Aut Q. Both c,’f and f have partial recursive one-to-one extensions, hence
5o has cjf. It follows that cjf e Aut,, Q.

Remark: If card v =2 2 the two semidirect products are not direct. First con-
sider the product in (a). Let p, ¢ € v, p # q, f the permutation of v which
interchanges p and g, and h = f* Put g = c;*, then g € C,, hence g € Aut Q,.
Since g = g'! we have ghg € g Aut Q"g”". However, ghg(0) = gh(2P) =g(2/(P) =
g(29) = 2P + 29 so that ghg(0) # 0 and ghg ¢ Aut Q"; thus Aut Q* < Aut Q, is
false. The functions g and % can also be used to show that Aut, Q* lAut, Q,!
is false.

3 w-Groups Consider countable groups G = ¥, g, where v C g, g is the
group operation and /(x) = x™!, for x € v. If such a group G is finite, i.e., if the
set v is finite, the functions g and 4 are partial recursive, but if G is denumer-
able, this need not be the case. The group G = &, g) is r.e., if v is r.e. and g is
partial recursive (hence so is #). We call G an w-group, if both g and ~ have
partial recursive extensions. Thus every r.e. group is an w-group and so is each
of its subgroups. w-groups were introduced by Hassett [6] and also studied by
Applebaum [1]-[3]. The order oG of the w-group G =<v, g) is defined as Req v;
thus oG has the usual meaning iff G is finite. An w-isomorphism from the
w-group G, ={v,, g, onto the w-group G, =(v,, g, is an isomorphism from G,
onto G, with a partial recursive one-to-one extension. G, is w-isomorphic to G,
(written: G, =, G,), if there is at least one w-isomorphism from G, onto G,.
Two finite groups are therefore cw-isomorphic iff they are isomorphic. Let
N € 4, v € N. In this section we shall show that the group P, of all finite
permutations of v can be represented by (i.e., is isomorphic to) an w-group P,
of order N!, while the group C, = {cZla € P, (¥)} can be represented by an
w-group Z,(») of order 2V. We first define a Godel-numbering for the family Py
of all finite permutations of €. Let i again denote the identity mapping on € and
let g,—; stand for the n'M odd prime number, for n > 1.

Notations: For fe P, v Ceg,
1, Jiff=1i,

~

1

2n+1n [q(xi)]fX(i)H’ iff#i mf=(xg . . ., Xp),
i=0

Pe =, p), where n =1f1fe P}, p(F B = fz,

P, =(P, p,), where = {fenlnf Cv}, p,=pl¥X¥.

Thus n is an infinite, recursive set, p a partial recursive function and Pg a
r.e. group isomorphic to P.. Moreover, for every choice of the set v, P, is an
w-group isomorphic to P,.
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In order to represent the group C¢ by a r.e. group it suffices by A2.5 to do
this for the group (P, (€), ®).

Notations: Forv C g,

Z,(e) =(2°, @), where g(x, ¥) = can (px ® py),
Z,(v) =(2*, g,), where g, = gl 2 X 2",

Clearly, 2° =¢ and Z,(g) is a r.e. group, while Z,(v) < Z,(¢), for v C&. More-
over, the group C, can be represented by the w-group Z,(v).

Proposition A3.1 Foru,vCeg,

(a) p=ve=P,=,P,,
(b) m=v=2Z,(u)=, Z,(»).

Proof: (a) The = part follows immediately from the definitions of the concepts
involved and of f. The < part is due to Applebaum ([3], Section 3). (b) Let
u =, say u C 8q, q(n) = v, where q is a partial recursive one-to-one function.
Put f = g*, then 2* C §f, f(2*) = 2%, where f is also a partial recursive one-to-one
function. Moreover, for x, y € &f,

glf(x), ()] = canlpsex) @ pr(y)] = canlpgx(xe) @ pg*(y)]
= can[q(px) ® q(py)] = can qlpx ® py] = can qpg(x,y)
= can pgxg(x,y) = 4%8(x, ¥) = fg(x, y).

Thus f is an isomorphism from Z,(8f) onto Z,(pf), while fI2* is an -
isomorphism from Z,(u) onto Z,(»).

Definition 2y =2Z,(v),Py=P, forveN, Ne S,
In view of A3.1 the w-groups ZY and Py are unique up to w-isomorphism.
Proposition A3.2 0ZY =2V and oPy = N!, for N € Q,.

Proof: Let for v e Pppu(€), () = xlpy C v}, ¥(v) ={fenlnf Cp}, then  and
V¥ are recursive, combinatorial operators inducing the functions 2" and n!
respectively. Hence for N = Req v, we have 0Z) = Req ®(v) = 2V and
oPy = Req ¥(v) =N!.

4 The main result
Theorem LetveNand N € Q4. Then

(@) Aut, Q,=C, X Aut,, Q" ie., Aut, Q, is the semidirect product of C, by
Autw QV)

(b) the group C, can be represented by the w-group 2 of order 2V,

(c) if N is a multiple-free isol, the group Aut,, Q" can be represented by the
w-group Py of order N!,

(d) if N is a multiple-free isol, the group Aut,, Q, can be represented by an
w-group of order 2V-N!

Proof: Parts (a), (b), and (c) follow from Al.3, A2.5, A2.6, A3.2 and the
Remark following A2.2. To prove (d) assume that N is a multiple-free isol. We
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shall use the recursive function j(x, y) =x + (x + y)(x + y + 1)/2. Define a set 8,
and a function 4, by:

B,=1i(a, lae 2" &fePy,
8h, = B,, hyj(a, f) = cZf*, where a = p,.

We claim: (i) 4, maps f§, one-to-one onto Aut,(Q,), and (ii) there is a group
operation ¢, on §, such that G, = (B, t,) is an w-group which is isomorphic
to Aut,, Q,. N

Re (i). Let j(a, f) € B,. Thena € 2°, a € Pin(w), ck e C,andfeP, feP,
f*eAut,, Q°. Thus cZf* e Aut,, Q, by A2.6. If a ranges over 2", then c¥ ranges
over C,. Also, if f ranges over P,, then f ranges over P, and since P, = P_,(v)
(N being multiple-free), f* ranges over Aut,, Q. Thus A, maps 8, onto Aut,, Q,.
The fact that C, N Aut,, Q” = (i) implies that each member of Aut, Q, can be
expressed in exactly one way as cZf*, with cZ e C, and f € P,; thus the function
h, is one-to-one.

Re (ii). Let for x, y € B, the unique element z € B, such that /,(z) = sy sy,
where s, = h,(x), s, = h,(y), be denoted by t,(x, y). Put G, = (B,, t,), then
G, = Aut,, Q,. In order to show that G, is an w-group we define B¢, kg, £¢ in
terms of € as we defined §,, &, £, in terms of v. Put Gg = (B, t¢), then G, < G¢
and it can be proved that G; is a r.e. group. Hence G, is an w-group. We note in
passing that g maps G¢ onto a proper subgroup of Aut, Q,, since Req € is not
multiple-free, hence Py C, P, (€). Clearly,

0G, = Req 8, = Req 2*- Req P, =2-N!

5 Concluding remarks (A) Uniformity. Let us call an w-group uniform, if
it is a subgroup of a r.e. group. Remmel [9] proved that an w-group need not
be uniform. Let v be a nonempty set. Then Z,(v) < Z,(¢) and P, < P¢, where
Z,(¢) and P, are r.e. groups, hence Z,(v) and P, are uniform w-groups. In view
of the proof of the theorem of Section 4 we conclude that the groups Aut,, Q"
and Aut,, Q¥ can be represented by uniform w-groups, for every nonzero,
multiple-free isol V.

(B) The simplex. The graph G = (8, n) is called an w-graph, if it has a
minimal path algorithm, i.e., if there is an effective procedure which enables us,
given any two distinct vertices of G, to find a shortest path between them. It
was proved in [5] that Q, is an w-graph for every nonempty set v. We briefly
indicate how one can associate with every nonempty set v an w-graph S, which
is related to a simplex as Q, is related to a cube. Put v* = {2x e elx e »} U (1).
Define S, = (v* 1), where n = [v*; 2], i.e., let S, be the complete graph on v*.
Clearly, u =~ v implies u* ~ v* and S, =, S,. There is only one minimal path
between two distinct vertices of S,, namely the edge joining them; thus S, is an
w-graph. Define Sy =S, forve N, N € £,, then the w-graph Sy is unique up to
w-isomorphism. We call N the w-dimension of S, and Sy. If S, = (v* 1) we have
Reqv* =N+ 1 and Reqn =[N + 1; 2], the canonical extension of the recur-
sive, combinatorial function n(n + 1)/2. Since n = [v*;2] we see that every
permutation of v* preserves adjacency, i.e., is an automorphism of S,. An
automorphism of S, is called an w-automorphism, if it has a partial recursive
one-to-one extension. Thus Aut S, = Per(v*) and Aut,, S, = Per,,(v*). We
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conclude that for v € N, N € Ag and N multiple-free, the group Aut,, S, can be
represented by the uniform w-group P,* of order (V + 1)!.

(C) Opposite vertices. Call the RET N = Req v finite, if the set v is finite,
but infinite, if the set v is infinite. Define the distance d(x, y) between the
vertices x and y of Q" as card(px ® p)), i.e., as the number of components in
which x and y differ, when they are interpreted as sequences of zeros and ones.
If v and N are finite, there is for every vertex x of Q" a unique opposite vertex
», i.e., a vertex y such that d(x, ) assumes its maximal value, namely N. On the
other hand, if v and N are infinite, we have {d(x, y) € €ly € 2"} = ¢, so that x
has no opposite vertex. If we define a diagonal of Q¥ as a ‘“‘line-segment’ whose
endpoints are vertices of QV, but not of any r-dimensional face of Q” with
r < N, then Q¥ has diagonals iff v is finite, i.e., iff N € €. In fact, if N is finite,
Q” has 2V! diagonals, since any two opposite vertices determine the same
diagonal.

REFERENCES

[1] Applebaum, C. H., “w-Homomorphisms and w-groups,” The Journal of Symbolic Logic,
vol. 36 (1971), pp. 55-65.

[2] Applebaum, C. H., “Isomorphisms of w-groups,” Notre Dame Journal of Formal Logic,
vol. 12 (1971), pp. 238-248.

[3] Applebaum, C. H., “A result for n-groups,” Zeitschrift fiir Mathematische Logik und
Grundlagen der Mathematik, vol. 19 (1973), pp. 33-35.

[4] Dekker, J. C. E. and J. Myhill, “Recursive equivalence types,” pp. 67-214 in University
of California Publications in Mathematics (N.S.), Vol. 3, 1960.

[5] Dekker, J. C. E., “Recursive equivalence types and cubes,” to appear in Proceedings of
the Conference: Aspects of Effective Algebra, held August 1-4, 1979 at Monash
University, Clayton, Victoria, Australia.

[6] Hassett, M. J., “Recursive equivalence types and groups,” The Journal of Symbolic
Logic, vol. 34 (1969), pp. 13-20.

[71 Hu, S., Mathematical Theory of Switching Circuits and Automata, University of
California Press, Berkeley and Los Angeles, 1968.

[8] Nerode, A., “Extensions to isols,” pp. 362-403 in Annals of Mathematics, Vol. 73,
1961.

[9] Remmel, J. B., “Effective structures not contained in recursively enumerable struc-
tures,” to appear in Proceedings of the Conference: Aspects of Effective Algebra, held
August 1-4, 1979 at Monash University, Clayton, Victoria, Australia.

Institute for Advanced Study
Princeton, New Jersey 08540

and

Rutgers University
New Brunswick, New Jersey 08903





