
169

Notre Dame Journal of Formal Logic
Volume XVIII, Number 1, January 1977
NDJFAM

REGRESSIVE ORDER-TYPES

JOHN L. HICKMAN

It is of course well-known that with respect to addition, ordinals
possess the property of left-cancellation, but that this property is not
shared by order-types in general. In this note* we introduce the property
of regressiveness, show that an order-type is regressive if and only if it
cannot be additively left-cancelled in general, and give a simple canonical
form for regressive order-types. We conclude by giving criteria for the
regressiveness of an order-type possessing a (nontrivial) ordinal right
divisor.

Lower-case Greek letters are used to denote order-types, and upper-
case Latin letters to denote (ordered) sets, and we usually suppress
mention of the order relation on a set. A is called a "representat ive" set
for a if a is the isomorphism type of A. The ordered union and ordered
product of sets A, B are respectively denoted by UA + B" and ((A x B". If
A = B + C +D, then B{D) is called an "initial (final) segment" of A, and C
is sometimes called an " interval" of A. The same terminology is used for
order-types, although we sometimes refer to a final segment of an
order-type as a remainder. A (strict) order-preserving map / : A —* B is
called an " isomorphism", and if B =f"A, then we write " / : A ^ B".

The first transfinite ordinal is denoted by " ω " : in general we use
" σ " , "τ", " p " for ordinals and " α " , "β", " y " , . . . for general order-
types, "i", "j", "k", . . . are used to denote finite ordinals. The con-
verse order-type of a is denoted by " α * " .

An elementary property of ordinals is that of left-cancellation: given
ordinals σ, r, p, if σ + r = σ + p, then τ = p. This property is not shared by
all order-types, since for example if η is the order-type of the rationale
under their usual ordering, we have.

η + (1 + η) = η = η +77, but not 1 + η = η.

*This paper was written whilst the author was a Research Fellow at the Australian
National University.
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We can see that even if we restrict the right-hand components to the
class of ordinals, the left-cancellation law is still not universally valid:
for example, we have ωα>* + ω = ωω* = ωω* + u>2, but not ω = ω2.

The left-cancellation law for ordinals in no way depends, however,
upon the right-hand components being ordinals. We give the proof of the
general case, not because it is novel or at all difficult, but because it gives
us the basic idea of "regressiveness".

Theorem 1 For any order-types a, β, and any ordinal σ, if σ + a = σ + β,
then a = β.

Proof: Let A, B, S be representative sets for a, β, σ respectively, and let
f : S + A ^ S + B be sen isomorphism. We claim that f" A = B, which of
course shows that A ^ B, i.e., a = β. Suppose that/"A Φ B. Then either
f(a)eS for some aeA, or f~ι{b) eS for some b e B. In the first case, the
restriction g = f\ S gives an isomorphism S <=* T, where T is some proper
initial segment of S, an obvious impossibility. In the second case, the
inverse g'1 gives a similar isomorphism.

Let us now define a few terms.

Definition 1 An order-type a is said to be left-cancellable (I.e.) if for any
order-types β, γ such that a + β = a + y, we have β = y.

At this point we note that an order-type may be I.e. amongst the
ordinals, i.e., when the right-hand components are ordinals, but still not
I.e. A case in point is η; as was seen above, η is not I.e., but if σ, τ are
any ordinals such that η + σ = η + r, then σ = T. The proof of this last
assertion is an easy modification of the proof of Theorem 1 above.

Definition 2 Given two order-types a, β, we write (ίa \ β" if a is a proper
initial segment of β, i.e., if β = a + γ for some nonzero order-type y.

If either a i β or a = β, then we write "a *. β". An order-type a is said to
be regressive if α \ a.

Although the binary relation * has a superficial resemblance to an
order relation, and in fact when we restrict the field of I to the class of
ordinals, \ becomes identical with the standard well-ordering of the
ordinals, it is not one. For firstly, since we have η \ η (as η + η = η), if \
were an order relation, it would have to be a reflexive order relation, and
thus be antisymmetric. However, since we have η ι η + 1 (obviously) and
η + 1 I η (from η + 1 +η = 77), antisymmetry would give the contradiction
η = η + 1. Thus I is not an order relation. In practice, trying to determine
whether or not a given order-type is I.e. directly from the definition can be
a little cumbersome, and it is easier to work with the related concept of
regressiveness.

The connection between these two concepts is very straightforward:

Theorem 2 An order-type is I.e. if and only if it is not regressive.
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Proof: Let a be an order-type, and assume that a is regressive. Thus
there is some order-type β Φ 0 such that a + β = a. Since of course a = a +
0, it follows immediately that a is not I.e. Now suppose that en is not I.e.;
then there are order-types β, γ such that β Φ γ but a + β = a + y. Let A, B,
C be representative sets for α, β, γ respectively, and let / : A + B ̂  A 4- C
be an isomorphism. Since β Φ γ, we cannot have f"B= C. Thus either
there is aeA with f(a) e C, or else there is aeA with f~1(a) e B: without
loss of generality, we may assume the latter. But now D = f"A is a proper
initial segment of A, from which it follows at once that a is regressive.

The simplest example of a regressive order-type is of course ω*:
ω* + 1 = ω*. We now show that ω* is in fact a paradigm example, which
can be said (in a certain sense) to generate the class of regressive order-
types.

Theorem 3 Let a be an order-type. Then a is regressive if and only if
a = β + yω* for some order-types β, γ with γ Φ 0.

Proof: If a = β + yω* for some order-types β, γ with y Φ 0, then we have
α + y = /3+yω*+y = /3 + yω* = α, and thus a \ α. Now suppose that a \ a,
i.e., a + γ = a for some order-type y Φ 0, and let A, C be representative
sets for a, γ respectively, and let/ : A + C ̂  A be an isomorphism.

Now for any positive integer n, the (n+ l)st iterate fn+1 of / has domain
A, and thus for any ce C and any n > 0, fn(c) is defined and is an element of
A. Put D= {fn(c) : ceC, n > θ}. We claim that D (under the ordering
induced by that of A) is a nonempty final segment of A with order-type
o(D) = yω*. Since C Φ 0, clearly D * 0. Take any deD, aeA withd^α;
then d = fn(c) for some n > 0 and some c € C. Let k be the smallest positive
integer such that/^(cf) ^ a for some cr e C. Then certainly/"^) is defined,
and/"^(α) ^ c f, whence/" (α) e C, and thus αeD. Hence D is a nonempty
final segment of A. It remains to show that o(D) = yω*. Let JV =
{1, 2, 3, . . .}, under the order <* defined by m <* n if n< m, be a
representative set for ω*, and consider the map g : D —> C x TV defined by
£•(/*(<?)) = (c,w). Since for any /w(c), fn\cf) e D we have fn(c) < fn'(c') if
either n > n' or else rc = rcf and c < cr, it is clear that g is an isomorphism:
D ^ Cx N. Thus o(JD) = o(C x iV) = yω*.

It is obvious from this last result that for any order-type a Φ 0 and any
ordinal σ ̂ ω , the order-type ασ* is regressive. It is perhaps not quite so
obvious that for each ordinal σ Φ 0, there is an order-type a such that α?σ is
regressive. We demonstrate this via a more restricted result of the same
kind.

Theorem 4 For each prime component σ, there is an order-type a such
that aσ is regressive.

Proof: For σ= 1 the claim is obvious; thus take σ> 1, and let S be a
representative set for σ. We need to construct a set A and an isomorphism
f: Ax S ̂  B, where B is some proper initial segment of Ax S. We define
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A to be the (lexicographically ordered) set of all σ-sequences a = {ciξ)ξ<σ

such that aξe{0,1} for each ξ < σ. For each ζ < σ, we define Aζ c A by

Aζ = {a 6 A; aζ = 0 and ^ = 1 for ξ < ζ}.

Clearly Aζ is an interval of A; we claim that Aζ ^ A. To show this, we
define a map g : Aζ —> A by setting, for each ae Aζ, g(a) to be the sequence
(aζ+ξ)ξ<σ. Since σ is a prime component and thus ζ + ξ < σ for each ξ <σ, £"
is well-defined. To show that g is surjective, we simply take at A and
construct the ζ + σ-sequence b by bξ = 1 for ξ < ζ, bζ = 0, and 6̂  = α̂ -cζ+i)
for ζ < ξ < ζ + σ. Again the fact that σ is a prime component tells us that
we have a σ-sequence, and so be Aζ. But obviously g(b) = a. Finally, it is
clear that g does not disturb the orderings, and is thus an isomorphism.
This establishes our claim that Aζ ̂  A.

For our representative set S for σ, we may simply take the set of all
ordinals r < σ. Now for each τeS, we let hr be the inverse g~ι of the
isomorphism g : AT ^ A defined above, and we define fi Ax S —> A by
/(α, r) = hτ(a). Since the Aτ form a partitioning of A, / is bijective; and
clearly / is order-preserving. Thus A x S ̂  A, and as S has a first
element and σ > 1, A is (isomorphic to) a proper initial segment of A x S,
thus showing that aσ is regressive.

Theorem 5 For any ordinal σ Φ 0, ί/z#re zs £m order-type a such that aσ is
regressive.

Proof: Express σ as the sum τ0 + τί + . . . + τn of a finite nonascending
sequence of prime components, and let a be an order-type such that
aτn I aτn. Then we have

aσ = aτ0 + aτx + . . . + ατw 4 aτ0 + αxi + . . . + ατw = aσ,

and thus α?σ is regressive.

We continue looking at order-types of the form α?σ, σ an ordinal.

Theorem 6 Let a be an order-type, and σ an ordinal. Then:

(a) If aσ is regressive, then a is regressive.

and

(b) If σ is a successor ordinal, then aσ is regressive if and only if a is
regressive.

Proof: (a) Assume that aσ is regressive but that a is not, and let
/ : A x S ̂  B be an isomorphism, where A, S are representative sets for a,
σ respectively and B is a proper initial segment of A x S. Clearly we have
S Φ φ. We define a map g : S —* S as follows:

g (s) = min{*eS;/'fCAx{s}) n (A x {*}) Φ 0}, seS.

Since S is well-ordered and J5 c A x S, g is certainly well-defined. We
claim that g(s) < s for some se S.
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Firstly, if σ is limit, then we must have B an initial segment of A x R
for some proper initial segment R of S, whence it follows of course that
g(s) < s for all s eS - R.

Secondly, if σ is successor, let s° be the last element of S: obviously
g(s°) ^ s°, and if we had£ (s°) = s°, then/ff(A x {s0}) would be a proper initial
segment of Ax {s0}, from which it follows at once that a is regressive.
This establishes our claim.

Put r = min {s e S; g(s) < s}. Then g(r) < r, and f(a, r) eA x {g(r)} for
some at A. But then the non-regressiveness of a implies that f"(A x
{g(r)}) ΠAx{t}φ0 for some teS with t<g(r). That i s , g(g{r)) < g(r),

contradicting the minimality of r.

(b) In view of (a), it suffices to show that if σ is successor, then a \a
implies aσ I aσ. But this is easy, for if σ = p + 1, then we have, for a
regressive,

aσ = ap + a * ap + a = aσ.

Theorem 6 is "best possible" in the sense that the converse to
Theorem 6 (a) is false. We show this by demonstrating that for each limit
ordinal σ >ω, the order-type ω*σ is not regressive, although of course ω*
is regressive. Firstly, let us prove that ω*co is not regressive. Suppose
the contrary; then we would have ω*ω = β for some proper initial segment
0 Φ 0 of ω*ω. It is easy to see, however, that each such β is of the form
ω*n for some positive integer n, and obviously there is no n such that
ω*ω = ω*n. Now let σ be an arbitrary nonzero limit ordinal; thus σ = ωr
for some ordinal r > 0. But now, if ω*σ = (ω*ω)τ were regressive, then
ω*ω would be regressive by Theorem 6 (a), contradicting the result just
established.

We wish now to give a simple but rather interesting criterion for the
regressiveness of aσ, a an order-type and σ a (nonzero) limit ordinal. A
preliminary result is required.

Theorem 7 Let A be a set, and suppose that A ^ I, I being some interval of
A. Then A ^ S, where S is the initial segment {aeA; a ̂  x for some x e /}
of A.

Proof: Let / : A ^ I be an isomorphism, and define a map g : A —> A by
g(a) = a for all at {b e A; a ̂  /(«)}, and g(a) = f(a) otherwise. Putting B =
g"A, we see easily that g : A ^ B is an isomorphism, and that B c S. It
thus suffices to show that S c B. Take xe S. If xjί I, then x < f(x) e /, and so
x = g(x) e B. Therefore it remains to show that / c B, and so we now take
xel. But then 3; = f~1(x) is a well-defined member of A. If y > x9 then
g(y) = f(y) = x, and so x e B. If, on the other hand, y ^ x, then x = f(y) ^f(x),
and once again x = g(x) e B. This proves our result.

Theorem 8 Let a be any order-type, σ any nonzero limit ordinal, and let
the smallest positive remainder of' σ be p. Then aσ I aσ if and only if ap j . a.

Proof: Assume firstly that apt a, and let r be any ordinal such that
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σ = τ + p. Then aσ = aτ + ap ί aτ + a \aτ + ap = aσ. Now suppose that aσ is
regressive, and let A, S, R be representative sets for a, σ, p respectively.
Then there is an isomorphism / : A x S ^ B, where B is some proper initial
segment of A x S. Since σ is limit, there is a proper initial segment S° of S
such that B is an initial segment of Ax S°, and we may assume o(S°) to be
minimal with respect to this property. We now consider two cases.

(1) BΦAx S°. From the minimality of o(S°), we conclude that S° = S$ + {s}
for some initial segment S^ of S and some s eS, and that B - A x Φ 4- C for
some proper initial segment C of A. Of course C φφ. Put T = S - S°: then
T is a nonempty final segment of S, and so o(T) ^ p ; thus we may without
loss of generality assume that R is a final segment of T. But then there is
a nonempty final segment R' of R such that/"(A x R1) is an interval of C:
put C = # + / 4- J, where / = fft(A x Rr), and let r be the first element of R'.
Then Theorem 7 tells us that/"(A x {r}) « # +/"(A x {r}), whence A x iΓ <*
i/ + /, which gives us αp ί of.

(2) B = Ax S°. We thus have an isomorphism / : A x S ^ A x S°, where S°
is a proper initial segment of S, and we may assume / to have been chosen
so that o(S°) is minimal in this respect. However, g = f2 is certainly an
isomorphism: A x S ^ F , with B1 a proper initial segment of B = A x S°,
and so we cannot have Bf = A x Sf for any initial segment S* of S. Therefore
we are in the situation of (1), and can proceed as there to show that apί a.

At first glance, it may appear plausible to try to strengthen Theorem 8
by replacing (iaρ± a" with "ap = a". This, however, cannot be done, as we
show by an example.

Take a = η + 1, σ = ω. Thus we have p = ω. By considering the semi-
open intervals {n/(n+\), (n+ί)/(n + 2)] of the set (0,1) of rationale, we see
that (η + l)ω = 77. Hence (η + l)ω is regressive and (in accordance with
Theorem 8) (η + l)ω = η ί η + 1. But obviously η Φ η + 1.
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