ON YABLONSKII THEOREM CONCERNING FUNCTIONALLY COMPLETENESS OF k-VALUED LOGIC

KANZO HINO

In his paper, S. B. Yablonskii [1] proved a theorem concerning the functional completeness in k-valued logic (see [1], p. 64). The theorem asserts that the system of functions consisting of constant $k-2, \sim x$, and $x_{1} \supset x_{2}$ is functionally complete in this logic. His proof is incomplete. In this paper, we shall give a simple proof of this theorem.

Let P_{k} be the set of all functions that are defined on the set $\{0,1, \ldots, k-1\}$ and take their values on the same set. First, we shall give a lemma needed for the proof of the theorem.
Lemma The system consisting of functions $0,1, \ldots, k-1, \max \left(x_{1}, x_{2}\right)$, $\min \left(x_{1}, x_{2}\right)$ and $\mathrm{i}_{i}(x)(0 \leqslant i \leqslant k-1)$ defined by

$$
\mathrm{i}_{i}(x)=\left\{\begin{array}{cc}
k-1, & \text { if } x=i \\
0, & \text { if } x \neq i
\end{array}\right.
$$

is functionally complete in P_{k}.
Proof: We use the induction. All the constants are already given. If we put

$$
\max \left(y_{1}, y_{2}, \ldots, y_{n}\right)=\max \left[\max \left\{\ldots \max \left(\max \left(y_{1}, y_{2}\right), y_{3}\right) \ldots\right\}, y_{n}\right],
$$

then

$$
\begin{gathered}
\mathrm{f}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\max \left[\min \left\{\mathrm{f}\left(x_{1}, \ldots, x_{n}, 0\right), \mathrm{i}_{0}\left(x_{n+1}\right)\right\},\right. \\
\left.\min \left\{\mathrm{f}\left(x_{1}, \ldots, x_{n}, 1\right), \mathrm{i}_{1}\left(x_{n+1}\right)\right\}, \ldots, \min \left\{\mathrm{f}\left(x_{1}, \ldots, x_{n}, k-1\right), \mathrm{i}_{k-1}\left(x_{n+1}\right)\right\}\right] .
\end{gathered}
$$

Therefore, from the induction hypothesis we can construct every $n+1$ variable function in P_{k} by superposition. The lemma is proved.

Now we shall prove the following theorem:
Theorem The system of functions consisting of the constant $k-2, \sim x$, and $x_{1} \supset x_{2}$, where $x_{1} \supset x_{2}=\min \left(k-1, x_{2}-x_{1}+k-1\right)$, is functionally complete in P_{k}.

Proof: It is easy to see that

$$
\begin{aligned}
\left(x_{1} \supset x_{2}\right) \supset x_{2} & =\min \left[k-1, x_{2}-\left(x_{1} \supset x_{2}\right)+k-1\right] \\
& =\min \left[k-1, x_{2}-\min \left(k-1, x_{2}-x_{1}+k-1\right)+k-1\right] \\
& =\max \left(x_{1}, x_{2}\right) .
\end{aligned}
$$

By superposition of functions $\sim x$ and $\max \left(x_{1}, x_{2}\right)$, we can define $\min \left(x_{1}, x_{2}\right)$ as follows:

$$
\min \left(x_{1}, x_{2}\right)=\sim \max \left(\sim x_{1}, \sim x_{2}\right) .
$$

Let us consider the function $h_{i}(x)$ defined by means of the following way:

$$
h_{1}(x)=\sim x \text { and } h_{i+1}(x)=x \supset h_{i}(x)(i=1,2, \ldots, k-2) .
$$

Then

$$
h_{1}(x)=k-1-x \text {, }
$$

and

$$
\begin{aligned}
h_{2}(x) & =x \supset \sim x \\
& =\min [k-1,(k-1-x)-x+k-1)] \\
& =\min [k-1,2(k-1-x)] .
\end{aligned}
$$

From the assumption

$$
h_{m}(x)=\min [k-1, m(k-1-x)],
$$

it follows that

$$
\begin{aligned}
h_{m+1}(x) & =x \supset h_{m}(x) \\
& =\min \left[k-1, h_{m}(x)-x+k-1\right] \\
& =\min [k-1, \min \{k-1, m(k-1-x)\}-x+k-1] \\
& =\min [k-1,(m+1)(k-1-x)] .
\end{aligned}
$$

Hence,

$$
h_{n}(x)=\min [k-1, n(k-1-x)]
$$

for any positive integer n. Hence

$$
h_{k-1}(x)=\min [k-1,(k-1)(k-1-x)]=\left\{\begin{array}{cc}
0, & \text { if } x=k-1, \\
k-1, & \text { if } x \neq k-1 .
\end{array}\right.
$$

From this function, we can obtain

$$
\mathrm{i}_{k-1}(x)=\sim h_{k-1}(x),
$$

and

$$
\mathrm{i}_{0}(x)=\mathrm{i}_{k-1}(\sim x) .
$$

Let

$$
f_{1}(x)=\max \left(h_{k-2}(x), x\right) \text { and } f_{2}(x)=\min \left(h_{k-2}(x), x\right) .
$$

Then we consider the function

$$
\mathrm{i}_{k-1}\left(f_{1}(x) \supset f_{2}(x)\right) .
$$

In order to calculate the values of the function $f_{1}(x) \supset f_{2}(x)$ we shall consider the function $h_{k-2}(x)$. Since

$$
\begin{gathered}
2(k-2) \geqslant k-1, \text { for } k \geqslant 3, \\
h_{k-2}(x)=\left\{\begin{array}{l}
0, \quad \text { if } x=k-1, \\
k-2, \text { if } x=k-2, \\
k-1, \text { otherwise },
\end{array}\right.
\end{gathered}
$$

Therefore,

$$
f_{1}(x)=\max \left(h_{k-2}(x), x\right)=\left\{\begin{array}{l}
k-1, \text { if } x=k-1, \\
k-2, \text { if } x=k-2, \\
k-1, \text { otherwise },
\end{array}\right.
$$

and

$$
f_{2}(x)=\min \left(h_{k-2}(x), x\right)=\left\{\begin{array}{cc}
0, & \text { if } x=k-1, \\
k-2, & \text { if } x=k-2, \\
x, & \text { otherwise } .
\end{array}\right.
$$

Thus it follows that the function $f_{1}(x) \supset f_{2}(x)$ takes the value $k-1$ if and only if $x=k-2$. The results above show

$$
\mathrm{i}_{k-1}\left(f_{1}(x) \supset f_{2}(x)\right)=\mathrm{i}_{k-2}(x),
$$

and

$$
\mathrm{i}_{1}(x)=\mathrm{i}_{k-2}(\sim x) .
$$

Every constant is constructed as follows:

$$
\begin{gathered}
\sim(k-2)=1, \\
k-2 \supset 1=2, \\
k-2 \supset 2=3, \\
\ldots \ldots \ldots \ldots . \\
k-2 \supset k-2=k-1, \\
\sim(k-1)=0 .
\end{gathered}
$$

Hence

$$
\sim\left(x_{1} \supset x_{2}\right)=\left\{\begin{array}{cc}
x_{1}-x_{2}, & \text { if } x_{1} \geqslant x_{2}, \\
0, & \text { if } x_{1}<x_{2}
\end{array}\right.
$$

implies

$$
\mathrm{i}_{2}(x)=\mathrm{i}_{1}(\sim(x \supset 1)) .
$$

Similarly

$$
\begin{gathered}
\mathrm{i}_{3}(x)=\mathrm{i}_{2}(\sim(x \supset 1)), \\
\mathrm{i}_{4}(x)=\mathrm{i}_{3}(\sim(x \supset 1)), \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \\
\mathrm{i}_{k-3}(x)=\mathrm{i}_{k-4}(\sim(x \supset 1)) .
\end{gathered}
$$

Thus we can obtain every constant, functions $\max \left(x_{1}, x_{2}\right), \min \left(x_{1}, x_{2}\right)$ and $\mathrm{i}_{i}(x)(i=0,1, \ldots, k-1)$. The theorem follows from the lemma.

Remark: We can construct the functions $\dot{i}_{i}(x)$ as follows:

$$
\begin{gathered}
\mathrm{i}_{2}(x)=\mathrm{i}_{1}(\sim(x \supset 1)), \\
\mathrm{i}_{3}(x)=\mathrm{i}_{1}(\sim(x \supset 2), \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\mathrm{i}_{k-3}(x)=\mathrm{i}_{1}(\sim(x \supset k-4)) .
\end{gathered}
$$

REFERENCE

[1] С. В. Яблонсний, "Фуннциональные построения в н-значной логине,' Труды Математичесного Института Имени В.А. Стенлова, Том 51 (1958), страны 5-142.

Kyushu Dental College
Kitakyushu, Japan

