Notre Dame Journal of Formal Logic Volume XVIII, Number 2, April 1977 NDJFAM

INFINITE SERIES OF REGRESSIVE ISOLS UNDER ADDITION

JUDITH L. GERSTING

1 Introduction Let E denote the collection of all non-negative integers (numbers), Λ the collection of all isols, Λ_R the collection of all regressive isols, and Λ_{TR} the collection of T-regressive isols. (T-regressive isols were introduced in [4].) We recall the definition of an infinite series of isols, $\sum_{T} a_n$, where $T \in \Lambda_R - E$ and $a_n: E \to E$:

$$\sum_{\mathsf{T}} a_n = \operatorname{Req} \sum_{0}^{\infty} j(t_n, \nu(a_n))$$

where $j(x, y): E^2 \to E$ is a one-to-one recursive function, t_n is any regressive function ranging over a set in T, and for any number n, $\nu(n) = \{x \mid x < n\}$. Infinite series of isols were introduced by J. C. E. Dekker in [2], where it was shown that $\sum_{T} a_n \in \Lambda$. In [1] J. Barback studied infinite series of the form $\sum_{T} a_n$ where $T \leq a_{n-1}$. The relation $T \leq a_{n-1}$ means that for any regressive function t_n ranging over a set in T, the mapping $t_n \to a_{n-1}$ has a partial recursive extension. Professor Barback proved that for $T \leq a_{n-1}$, $\sum_{T} a_n \in \Lambda_R$. Because

$$a_n \text{ recursive } \Rightarrow \mathsf{T} \leq * a_n \Rightarrow \mathsf{T} \leq * a_{n-1}$$

but not conversely, there are several conditions of varying strength on the function a_n such that $\sum_{\mathsf{T}} a_n \in \Lambda_{\mathsf{R}}$. It is also known [5] that $\mathsf{T} \leq a_{n-1}$ is not a necessary condition for $\sum_{\mathsf{T}} a_n$ to be a regressive isol.

The following questions were posed by Professor Barback. Let $T \in \Lambda_R$ - E and let $a_n, b_n: E \to E$ be functions such that $\sum_T a_n, \sum_T b_n \in \Lambda_R$:

(1) Does $\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n \in \Lambda_{\mathsf{R}}$? (2) Does $\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n = \sum_{\mathsf{T}} (a_n + b_n)$?

The present paper provides some partial answers to these questions.

2 Some results We will assume throughout that $T \in \Lambda_R - E$ and that $a_n, b_n: E \to E$ with $\sum_T a_n, \sum_T b_n \in \Lambda_R$.

Theorem 1 Let α and β be disjoint recursive sets with $\alpha \cup \beta = E$ such that

Received November 7, 1975

 $T \leq a_n$ on α and $T \leq b_n$ on β , that is, for any regressive function t_n ranging over a set in T, there exist partial recursive functions f_{α} and f_{β} such that

 $(\forall n) [n \in \alpha \implies t_n \in \delta f_\alpha \text{ and } f_\alpha(t_n) = a_n \text{ and } n \in \beta \implies t_n \in \delta f_\beta \text{ and } f_\beta(t_n) = b_n].$

Then

$$\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n = \sum_{\mathsf{T}} (a_n + b_n).$$

Proof: Suppose first that α and β are both infinite sets. Let r_n be the strictly increasing function ranging over α and let s_n be the strictly increasing function ranging over β . Define sets $\overline{\alpha}$ and $\overline{\beta}$ by

$$\overline{\alpha} = \left[\bigcup_{i} (j(t_{s(i)}, b_{s(i)}), \dots, j(t_{s(i)}, b_{s(i)} + a_{s(i)} - 1)) \right]$$

$$\cup \left[\bigcup_{i} (j(t_{r(i)}, 0), \dots, j(t_{r(i)}, a_{r(i)} - 1)) \right]$$

$$\overline{\beta} = \left[\bigcup_{i} (j(t_{s(i)}, 0), \dots, j(t_{s(i)}, b_{s(i)} - 1)) \right]$$

$$\cup \left[\bigcup_{i} (j(t_{r(i)}, a_{r(i)}), \dots, j(t_{r(i)}, a_{r(i)} + b_{r(i)} - 1)) \right]$$

Then $\sum_{\tau} a_n = \text{Req } \overline{\alpha}$ and $\sum_{\tau} b_n = \text{Req } \overline{\beta}$. Also, $\overline{\alpha} | \overline{\beta}$ and $\overline{\alpha} \cup \overline{\beta} = \sum_{0}^{\infty} j(t_n, \nu(a_n + b_n)) \in \sum_{\tau} (a_n + b_n)$. The argument is easily modified to take care of the case where one of sets α or β is finite (or even empty).

Corollary 1 If $T \leq a_n$, then $\sum_{T} a_n + \sum_{T} b_n = \sum_{T} (a_n + b_n)$.

Thus under the condition $T \leq a_n$, the answer to Question (2) is affirmative. Keeping $T \leq a_n$, we investigate several conditions on the function b_n which result in affirmative answers to Question (1) as well.

Lemma 1 If $T \leq a_n$ and $T \leq b_{n-1}$, then $\sum_{T} (a_n + b_n) \in \Lambda_R$.

Proof: $T \leq a_n$ and $T \leq b_{n-1}$ implies $T \leq (a_{n-1} + b_{n-1})$ which means (by Proposition 5 of [1]) that $\sum_{T}(a_n + b_n)$ is regressive.

Theorem 2 For $T \leq a_n$ and $T \leq b_{n-1}$ (or $T \leq b_n$ or b_n recursive), $\sum_{T} a_n + \sum_{T} b_n \in \Lambda_R$.

Lemma 2 If $T \leq a_n$ and for all $n, a_n, b_n \geq 1$, then $\sum_T a_n + \sum_T b_n \in \Lambda_R$.

Proof: Let t_n be a regressive function ranging over a set in T. Let f be a partial recursive function such that $\rho t_n \subset \delta f$ and $(\forall n) [f(t_n) = a_n]$. Let

$$\alpha = \sum_{0}^{\infty} j_3(t_n, \nu(a_n), 0)$$

$$\beta = \sum_{0}^{\infty} j_3(t_n, \nu(b_n), 1).$$

Then $\alpha \in \sum_{T} a_n$ and $\beta \in \sum_{T} b_n$ while $\alpha \mid \beta$. Hence $\text{Req}(\alpha \cup \beta) = \sum_{T} a_n + \sum_{T} b_n$. By the assumption that $\sum_{T} b_n \in \Lambda_R$, β is a regressive set. Let $\beta = \rho s_n$, where s_n is a regressive function; let p(x) be a regressing function for s_n . We define by induction a function r_n such that r_n is a regressive function and r_n ranges over $\alpha \cup \beta$.

Let $r_0 = s_0$. Let $n \ge 1$, and assume that r_0, \ldots, r_{n-1} have been defined. For the definition of r_n , we consider the following two cases:

Case I. $r_{n-1} \in \alpha$, say $r_{n-1} = j_3(t_x, y, 0), 0 \le y \le a_x - 1$. Subcase (i) $y \ne a_x - 1$. Set $r_n = j_3(t_x, y + 1, 0)$. Subcase (ii) $y = a_x - 1$. Set $r_n = s_z$ where $p(s_z) = j_3(t_x, 0, 1)$. Case II. $r_{n-1} \in \beta$, say $r_{n-1} = j_3(t_x, y, 1), 0 \le y \le b_x - 1$. Subcase (i) $y \ne 0$. Set $r_n = s_z$ where $p(s_z) = r_{n-1}$. Subcase (ii) y = 0. Set $r_n = j_3(t_x, 0, 0)$.

This completes the definition of r_n . It can be seen that r_n ranges over $\alpha \cup \beta$. Further, consider the function q_n defined on ρr_n by

$$q_n(r_n) = \begin{cases} j_3(t_x, y - 1, 0) & \text{for } r_n = j_3(t_x, y, 0), y \neq 0\\ j_3(t_x, 0, 1) & \text{for } r_n = j_3(t_x, 0, 0)\\ p(r_n) & \text{for } r_n = j_3(t_x, y, 1), k_{32}p(r_n) \neq 0\\ j_3(k_{31}p(r_n), fk_{31}p(r_n) - 1, 0) & \text{for } r_n = j_3(t_x, y, 1), k_{32}p(r_n) = 0 \end{cases}$$

Then q has a partial recursive extension, say q^* , and $q^*(r_n) = r_{n-1}$. Therefore r_n is a regressive function, $\alpha \cup \beta$ is a regressive set, and $\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n \in \Lambda_{\mathsf{R}}$.

Lemma 3 If
$$T \leq a_n$$
 and for all $n, b_n \geq 1$, then $\sum_T a_n + \sum_T b_n \in \Lambda_R$.

Proof: Let $\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n = A$. Then

$$\begin{split} & \sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n + \mathsf{T} = A + \mathsf{T} \\ \Rightarrow & \sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n + \sum_{\mathsf{T}} 1 = A + \mathsf{T} \\ \Rightarrow & \sum_{\mathsf{T}} (a_n + 1) + \sum_{\mathsf{T}} b_n = A + \mathsf{T} \\ \Rightarrow & A + \mathsf{T} \in \Lambda_{\mathsf{R}} \end{split}$$
 (by Corollary 1, since $\mathsf{T} \leq * a_n$)
(by Lemma 2, since $\mathsf{T} \leq * a_n + 1$)

Because $A \leq A + T$, it follows that $A \in \Lambda_R$.

Actually, the argument of Lemma 2 can easily be modified to take care of the possibility of the function a_n having zero values, but this does not seem as elegant an approach as the proof of Lemma 3!

Theorem 3 If $T \leq a_n$ and there exists a number *m* such that for $n \geq m$, $b_n \geq 1$, then $\sum_T a_n + \sum_T b_n \in \Lambda_R$.

Proof:
$$\sum_{T} a_n + \sum_{T} b_n$$

= $(a_0 + \ldots + a_{m-1}) + \sum_{T-m} a_{n+m} + (b_0 + \ldots + b_{m-1}) + \sum_{T-m} b_{n+m}$
= $k + \sum_{T-m} a_{n+m} + \sum_{T-m} b_{n+m}$

where $k \in E$. By the assumption that $\sum_{\mathsf{T}} a_n$, $\sum_{\mathsf{T}} b_n \in \Lambda_{\mathsf{R}}$, it follows that $\sum_{\mathsf{T}-m} a_{n+m}$, $\sum_{\mathsf{T}-m} b_{n+m} \in \Lambda_{\mathsf{R}}$. Also, since $\mathsf{T} \leq a_n$, we have that $\mathsf{T} - m \leq a_{n+m}$. Thus, by Lemma 3, $\sum_{\mathsf{T}-m} a_{n+m} + \sum_{\mathsf{T}-m} b_{n+m} \in \Lambda_{\mathsf{R}}$ and hence $\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n \in \Lambda_{\mathsf{R}}$.

Remark: Theorem 3 of [5] provides an example of an infinite regressive isol T and a function b_n with $b_n \ge 1$ for all n, $\sum_{\mathsf{T}} b_n \in \Lambda_{\mathsf{R}}$, and $\mathsf{T} \not\leq \mathsf{t} b_{n-1}$. We can use Theorem 3 above to generate a whole class of such examples from

this one. Let a_n be any function with $T \leq a_n$, and let c_n be the function defined by $c_n = a_n + b_n$. Then $\sum_T a_n + \sum_T b_n = \sum_T c_n \in \Lambda_R$ but $T \not\leq c_{n-1}$.

What happens in the case of b_n functions that do not fit Theorems 2 or 3 above, that is, $T \not\leq b_{n-1}$ and $b_n = 0$ at infinitely many places? The following Lemma, due to Professor M. Hassett, shows that such functions do exist.

Lemma 4 (Hassett) Let $T \in \Lambda_R - E$. Then there exists a function $b_n: E \to E$ such that for all $n, 0 \le b_n \le 1$, $b_n = 0$ at infinitely many values of n, $\sum_{T} b_n \in \Lambda_R$, and $T \ne b_{n-1}$.

Proof: Let t_n be a retraceable function ranging over a set in T. Let a_n be any retraceable function such that $a_0 > 0$ and $\rho t(a_n)$ is not a separated subset of ρt_n . This is possible because there are c retraceable functions, hence c subsets of the form $\rho t(a_n)$, but ρt_n has only \aleph_0 separated subsets. Let $\alpha = \rho t(a_n)$. We define a function b_n by

$$b_n = \begin{cases} 0 \text{ if } t_{n+1} \notin \alpha \\ \\ 1 \text{ if } t_{n+1} \in \alpha. \end{cases}$$

Then $0 \le b_n \le 1$ for all *n*. Also $b_n = 0$ at infinitely many values of *n*, because if $b_n = 1$ from some point on, then α would be a separated subset of ρt_n .

The function $t(a_n - 1)$ is the composition of two retraceable functions, hence is retraceable, and Req $\rho t(a_n - 1) = \text{Req} \sum_{0}^{\infty} j(t_{a_n-1}, 0) = \sum_{T} b_n$. Thus $\sum_{T} b_n \epsilon \Lambda_R$. Finally, if $T \leq b_{n-1}$, then given t_n we could compute b_{n-1} and hence decide whether or not $t_n \epsilon \alpha$. This would contradict the fact that α is not a separated subset of ρt_n .

Lemma 5 Let $T \in \Lambda_{TR}$. Let $c_n: E \to E$ be such that there exists a number M with $1 \leq c_n \leq M$ for all n. If $\sum_{T} c_n \in \Lambda_R$, then $T \leq * c_{n-1}$.

Proof: Let t_n be a T-retraceable function ranging over a set in T. Let $\sigma = \sum_{0}^{\infty} j(t_n, \nu(c_n))$, and let $\sum_{\mathsf{T}} c_n \in \Lambda_{\mathsf{R}}$. Then σ is an infinite regressive set. Let $\sigma = \rho s_n$ where s_n is a regressive function and let p(x) be a regressing function for s_n . For $0 \le i \le M - 1$, we define functions $q_i(x)$ by $q_i(x) = pj(x, i)$. Then each q_i is a partial recursive function. Because t_n is a T-retraceable function, it follows that for each $q_i(x)$, $0 \le i \le M - 1$, there exists a number m_i such that for $n \ge m_i$, $q_i(t_n) \le t_{n+1}$. Let $m = \max_{0 \le i \le M-1} m_i$, and consider the finite set

$$j(t_0, 0), \ldots, j(t_0, c_0 - 1), j(t_1, 0), \ldots, j(t_1, c_1 - 1), \ldots, j(t_m, 0), \ldots, j(t_m, c_m - 1)$$

Let q be the maximum index of s_n represented in this set, and consider the finite set

$$k(s_q), k(s_{q-1}), \ldots, k(s_0).$$

Let k be the maximum index of t_n occurring in this set. We can now describe an effective procedure for computing c_{n-1} from t_n for $n \ge k + 1$. Thus, assume $n \ge k + 1$. Then it follows that $j(t_n, 0) = s_r$ with r > q. Suppose that a term of the form $j(t_{n-1}, y)$ with $0 \le y \le c_{n-1} \le M$ has an index in s of r_1 with $r_1 > r$, say $r_1 = r + b$, $b \ge 1$. Then

$$s_{r_1-1} = p(s_{r_1}) = pj(t_{n-1}, y) = q_y(t_{n-1}) < t_n$$

since $n - 1 \ge k \ge m \ge m_y$. The term s_{r_1-1} has the following properties:

(i) $s_{r_1-1} = j(t_p, y_p)$ with $0 \le y_p \le c_p - 1$ (ii) $p \le n - 1$.

Property (i) follows from the definition of the s_n function. For (ii), note that $t_p \leq j(t_p, y_p) = s_{r_1-1} < t_n$ and since t_n is a strictly increasing function, p < n. Also, $r_1 - 1 \geq r \geq q$ so that p > m. Therefore this argument may be repeated on the term s_{r_1-2} , etc. The result is that each term below s_{r_1} in the ordering s_n has for the *t*-index of its first component a number $\leq n - 1$. After *b* times, however, $j(t_n, 0)$ is reached and a contradiction is obtained. Hence every term of the form $j(t_{n-1}, y)$, $0 \leq y < c_{n-1}$, has an index in *s* which is less than *r*.

Now let t_n be given, with $n \ge k + 1$. We may then compute the index n and the term $j(t_n, 0) = s_r$. We can then effectively generate the list

$$s_r, s_{r-1}, \ldots, s_0$$

and compute the *t*-indices of all the first components of this list. The number of *t*-indices with value n - 1 is equal to c_{n-1} . We can easily patch up the finite number of points with index below k + 1 and thus conclude that $T \leq r_{n-1}$.

Combining Lemmas 4 and 5, we will see that even with a very strong condition on the function a_n , namely a_n equal to the constant function 1, we can produce a case where the answer to Question (1) is negative.

Theorem 4 There exists $T \in \Lambda_R - E$ and functions $a_n, b_n: E \to E$ such that $\sum_T a_n, \sum_T b_n \in \Lambda_R$ but $\sum_T a_n + \sum_T b_n \notin \Lambda_R$.

Proof: Let $T \in \Lambda_{TR}$ and let b_n be the function guaranteed by Lemma 4. Then $0 \le b_n \le 1$ for all $n, \sum_T b_n \in \Lambda_R$ and $T \ne b_{n-1}$. Let a_n be the constant function 1. By Corollary 1,

$$\sum_{\mathsf{T}} a_n + \sum_{\mathsf{T}} b_n = \sum_{\mathsf{T}} (a_n + b_n) = \sum_{\mathsf{T}} (\mathbf{1} + b_n).$$

Now $1 \leq 1 + b_n \leq 2$ and $T \leq (1 + b_{n-1})$, so by Lemma 5, $\sum_T (1 + b_n) \notin \Lambda_R$.

Remark: Theorem 4 above provides still another example of the non-closure of Λ_{R} under addition.

3 An open question For $T \in \Lambda_R - E$, we know that $T \leq a_{n-1}$ and $T \leq b_{n-1}$ implies $\sum_T a_n$, $\sum_T b_n \in \Lambda_R$. This is certainly an obvious way to pursue Questions (1) and (2). Under these conditions we of course have $T \leq a_{n-1} + b_{n-1}$ so that $\sum_T (a_n + b_n) \in \Lambda_R$, and an affirmative answer to Question (2) for this case is mentioned by Barback in Lemma 3 of [1]. However, for $T \leq a_{n-1}$, $T \leq b_{n-1}$, it remains an open question whether $\sum_T a_n + \sum_T b_n = \sum_T (a_n + b_n)$ or even whether $\sum_T a_n + \sum_T b_n$ is regressive at all.

JUDITH L. GERSTING

REFERENCES

- Barback, J., "Regressive upper bounds," Seminario Matematico, vol. 39 (1967), pp. 248-272.
- [2] Dekker, J. C. E., "Infinite series of isols," in *Recursive Function Theory*, American Mathematical Society Proceedings of Symposia in Pure Mathematics, vol. 5 (1962), pp. 77-96.
- [3] Dekker, J. C. E., and J. Myhill, "Retraceable sets," *Canadian Journal of Mathematics*, vol. 10 (1958), pp. 357-373.
- [4] Gersting, J., "A rate of growth criterion for universality of regressive isols," Pacific Journal of Mathematics, vol. 31 (1969), pp. 669-677.
- [5] Gersting, J., "A note on infinite series of isols," Rocky Mountain Journal of Mathematics, vol. 2 (1972), pp. 661-666.

Indiana University-Purdue University at Indianapolis Indianapolis, Indiana