INFINITE SERIES OF REGRESSIVE ISOLS UNDER ADDITION

JUDITH L. GERSTING

1 Introduction Let E denote the collection of all non-negative integers (numbers), Λ the collection of all isols, Λ_{R} the collection of all regressive isols, and $\Lambda_{T R}$ the collection of T-regressive isols. (T-regressive isols were introduced in [4].) We recall the definition of an infinite series of isols, $\Sigma_{\mathrm{T}} a_{n}$, where $\mathrm{T} \in \Lambda_{\mathrm{R}}-E$ and $a_{n}: E \rightarrow E$:

$$
\Sigma_{\mathrm{T}} a_{n}=\operatorname{Req} \sum_{0}^{\infty} j\left(t_{n}, \nu\left(a_{n}\right)\right)
$$

where $j(x, y): E^{2} \rightarrow E$ is a one-to-one recursive function, t_{n} is any regressive function ranging over a set in T , and for any number $n, \nu(n)=\{x \mid x<n\}$. Infinite series of isols were introduced by J. C. E. Dekker in [2], where it was shown that $\Sigma_{\top} a_{n} \in \Lambda$. In [1] J. Barback studied infinite series of the form $\sum_{\mathrm{T}} a_{n}$ where $\mathrm{T} \leqslant * a_{n-1}$. The relation $\mathrm{T} \leqslant * a_{n-1}$ means that for any regressive function t_{n} ranging over a set in T , the mapping $t_{n} \rightarrow a_{n-1}$ has a partial recursive extension. Professor Barback proved that for $\mathrm{T} \leqslant * a_{n-1}$, $\sum_{\mathrm{T}} a_{n} \in \Lambda_{\mathrm{R}}$. Because

$$
a_{n} \text { recursive } \Rightarrow \mathrm{T} \leqslant * a_{n} \Rightarrow \mathrm{~T} \leqslant * a_{n-1}
$$

but not conversely, there are several conditions of varying strength on the function a_{n} such that $\sum_{\mathrm{T}} a_{n} \in \Lambda_{\mathrm{R}}$. It is also known [5] that $T \leqslant * a_{n-1}$ is not a necessary condition for $\sum_{T} a_{n}$ to be a regressive isol.

The following questions were posed by Professor Barback. Let $\mathrm{T} \in \Lambda_{\mathrm{R}}-E$ and let $a_{n}, b_{n}: E \rightarrow E$ be functions such that $\sum_{\mathrm{T}} a_{n}, \Sigma_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$:
(1) Does $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$?
(2) Does $\sum_{\top} a_{n}+\sum_{\top} b_{n}=\sum_{\top}\left(a_{n}+b_{n}\right)$?

The present paper provides some partial answers to these questions.
2 Some results We will assume throughout that $T \in \Lambda_{R}-E$ and that $a_{n}, b_{n}: E \rightarrow E$ with $\Sigma_{\mathrm{T}} a_{n}, \Sigma_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$.
Theorem 1 Let α and β be disjoint recursive sets with $\alpha \cup \beta=E$ such that
$\mathrm{T} \leqslant * a_{n}$ on α and $\mathrm{T} \leqslant * b_{n}$ on β, that is, for any regressive function t_{n} ranging over a set in T , there exist partial recursive functions f_{α} and f_{β} such that

$$
(\forall n)\left[n \in \alpha \Longrightarrow t_{n} \in \delta f_{\alpha} \text { and } f_{\alpha}\left(t_{n}\right)=a_{n} \text { and } n \in \beta \Rightarrow t_{n} \in \delta f_{\beta} \text { and } f_{\beta}\left(t_{n}\right)=b_{n}\right]
$$

Then

$$
\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n}=\sum_{\mathrm{T}}\left(a_{n}+b_{n}\right)
$$

Proof: Suppose first that α and β are both infinite sets. Let r_{n} be the strictly increasing function ranging over α and let s_{n} be the strictly increasing function ranging over β. Define sets $\bar{\alpha}$ and $\bar{\beta}$ by

$$
\begin{aligned}
\bar{\alpha}= & {\left[\bigcup_{i}\left(j\left(t_{s(i)}, b_{s(i)}\right), \ldots, j\left(t_{s(i)}, b_{s(i)}+a_{s(i)}-1\right)\right)\right] } \\
& \cup\left[\bigcup_{i}\left(j\left(t_{r(i)}, 0\right), \ldots, j\left(t_{r(i)}, a_{r(i)}-1\right)\right)\right] \\
\bar{\beta}= & {\left[\bigcup_{i}\left(j\left(t_{s(i)}, 0\right), \ldots, j\left(t_{s(i)}, b_{s(i)}-1\right)\right)\right] } \\
& \cup\left[\bigcup_{i}\left(j\left(t_{r(i)}, a_{r(i)}\right), \ldots, j\left(t_{r(i)}, a_{r(i)}+b_{r(i)}-1\right)\right)\right] .
\end{aligned}
$$

Then $\sum_{\mathrm{T}} a_{n}=\operatorname{Req} \bar{\alpha}$ and $\sum_{\mathrm{T}} b_{n}=\operatorname{Req} \bar{\beta}$. Also, $\bar{\alpha} \mid \bar{\beta}$ and $\bar{\alpha} \cup \bar{\beta}=\sum_{0}^{\infty} j\left(t_{n}, \nu\left(a_{n}+\right.\right.$ $\left.\left.b_{n}\right)\right) \in \sum_{\mathrm{T}}\left(a_{n}+b_{n}\right)$. The argument is easily modified to take care of the case where one of sets α or β is finite (or even empty).
Corollary 1 If $\mathrm{T} \leqslant * a_{n}$, then $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n}=\sum_{\mathrm{T}}\left(a_{n}+b_{n}\right)$.
Thus under the condition $\mathrm{T} \leqslant * a_{n}$, the answer to Question (2) is affirmative. Keeping $T \leqslant * a_{n}$, we investigate several conditions on the function b_{n} which result in affirmative answers to Question (1) as well.
Lemma 1 If $\mathrm{T} \leqslant * a_{n}$ and $\mathrm{T} \leqslant * b_{n-1}$, then $\sum_{\mathrm{T}}\left(a_{n}+b_{n}\right) \in \Lambda_{\mathrm{R}}$.
Proof: $\mathrm{T} \leqslant * a_{n}$ and $\mathrm{T} \leqslant * b_{n-1}$ implies $\mathrm{T} \leqslant *\left(a_{n-1}+b_{n-1}\right)$ which means (by Proposition 5 of [1]) that $\sum_{\top}\left(a_{n}+b_{n}\right)$ is regressive.
Theorem 2 For $T \leqslant * a_{n}$ and $T \leqslant * b_{n-1}$ (or $T \leqslant * b_{n}$ or b_{n} recursive), $\sum_{\mathrm{T}} a_{n}+$ $\sum_{\top} b_{n} \in \Lambda_{R}$.
Lemma 2 If $\mathrm{T} \leqslant * a_{n}$ and for all $n, a_{n}, b_{n} \geqslant 1$, then $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$.
Proof: Let t_{n} be a regressive function ranging over a set in T. Let f be a partial recursive function such that $\rho t_{n} \subset \delta f$ and $(\forall n)\left[f\left(t_{n}\right)=a_{n}\right]$. Let

$$
\begin{aligned}
& \alpha=\sum_{0}^{\infty} j_{3}\left(t_{n}, \nu\left(a_{n}\right), 0\right) \\
& \beta=\sum_{0}^{\infty} j_{3}\left(t_{n}, \nu\left(b_{n}\right), 1\right)
\end{aligned}
$$

Then $\alpha \in \sum_{\top} a_{n}$ and $\beta \in \sum_{\top} b_{n}$ while $\alpha \mid \beta$. Hence $\operatorname{Req}(\alpha \cup \beta)=\sum_{\top} a_{n}+\sum_{\top} b_{n}$. By the assumption that $\sum_{T} b_{n} \in \Lambda_{R}, \beta$ is a regressive set. Let $\beta=\rho s_{n}$, where s_{n} is a regressive function; let $p(x)$ be a regressing function for s_{n}. We define by induction a function r_{n} such that r_{n} is a regressive function and r_{n} ranges over $\alpha \cup \beta$.

Let $r_{0}=s_{0}$. Let $n \geqslant 1$, and assume that r_{0}, \ldots, r_{n-1} have been defined. For the definition of r_{n}, we consider the following two cases:

Case I. $\quad r_{n-1} \in \alpha$, say $r_{n-1}=j_{3}\left(t_{x}, y, 0\right), 0 \leqslant y \leqslant a_{x}-1$.
Subcase (i) $y \neq a_{x}-1$. Set $r_{n}=j_{3}\left(t_{x}, y+1,0\right)$.
Subcase (ii) $y=a_{x}-1$. Set $r_{n}=s_{z}$ where $p\left(s_{z}\right)=j_{3}\left(t_{x}, 0,1\right)$.
Case II. $r_{n-1} \in \beta$, say $r_{n-1}=j_{3}\left(t_{x}, y, 1\right), 0 \leqslant y \leqslant b_{x}-1$.
Subcase (i) $y \neq 0$. Set $r_{n}=s_{z}$ where $p\left(s_{z}\right)=r_{n-1}$.
Subcase (ii) $y=0$. Set $r_{n}=j_{3}\left(t_{x}, 0,0\right)$.
This completes the definition of r_{n}. It can be seen that r_{n} ranges over $\alpha \cup \beta$. Further, consider the function q_{n} defined on ρr_{n} by

$$
q_{n}\left(r_{n}\right)= \begin{cases}j_{3}\left(t_{x}, y-1,0\right) & \text { for } r_{n}=j_{3}\left(t_{x}, y, 0\right), y \neq 0 \\ j_{3}\left(t_{x}, 0,1\right) & \text { for } r_{n}=j_{3}\left(t_{x}, 0,0\right) \\ p\left(r_{n}\right) & \text { for } r_{n}=j_{3}\left(t_{x}, y, 1\right), k_{32} p\left(r_{n}\right) \neq 0 \\ j_{3}\left(k_{31} p\left(r_{n}\right), f k_{31} p\left(r_{n}\right)-1,0\right) & \text { for } r_{n}=j_{3}\left(t_{x}, y, 1\right), k_{32} p\left(r_{n}\right)=0\end{cases}
$$

Then q has a partial recursive extension, say q^{*}, and $q^{*}\left(r_{n}\right)=r_{n-1}$. Therefore γ_{n} is a regressive function, $\alpha \cup \beta$ is a regressive set, and $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$.
Lemma 3 If $\mathrm{T} \leqslant * a_{n}$ and for all $n, b_{n} \geqslant 1$, then $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$.
Proof: Let $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n}=A$. Then

$$
\begin{aligned}
& \sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n}+\mathrm{T}=A+\mathrm{T} \\
\Rightarrow & \sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n}+\sum_{\mathrm{T}} 1=A+\mathrm{T} \\
\Rightarrow & \sum_{\mathrm{T}}\left(a_{n}+1\right)+\sum_{\mathrm{T}} b_{n}=A+\mathrm{T} \\
\Rightarrow & A+\mathrm{T} \in \Lambda_{\mathrm{R}}
\end{aligned}
$$

(since $T=\sum_{T} 1$)
(by Corollary 1 , since $T \leqslant * a_{n}$) (by Lemma 2 , since $T \leqslant * a_{n}+1$)

Because $A \leqslant A+\mathrm{T}$, it follows that $A \in \Lambda_{\mathrm{R}}$.
Actually, the argument of Lemma 2 can easily be modified to take care of the possibility of the function a_{n} having zero values, but this does not seem as elegant an approach as the proof of Lemma 3!

Theorem 3 If $\mathrm{T} \leqslant * a_{n}$ and there exists a number m such that for $n \geqslant m$, $b_{n} \geqslant 1$, then $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$.
Proof: $\sum_{\top} a_{n}+\sum_{\top} b_{n}$

$$
\begin{aligned}
& =\left(a_{0}+\ldots+a_{m-1}\right)+\sum_{\mathrm{T}-m} a_{n+m}+\left(b_{0}+\ldots+b_{m-1}\right)+\sum_{\mathrm{T}-m} b_{n+m} \\
& =k+\sum_{\mathrm{T}-m} a_{n+m}+\sum_{\mathrm{T}-m} b_{n+m}
\end{aligned}
$$

where $k \in E$. By the assumption that $\sum_{\top} a_{n}, \sum_{\top} b_{n} \in \Lambda_{R}$, it follows that $\sum_{\mathrm{T}-m} a_{n+m}, \sum_{\mathrm{T}-m} b_{n+m} \in \Lambda_{\mathrm{R}}$. Also, since $\mathrm{T} \leqslant * a_{n}$, we have that $T-m \leqslant * a_{n+m}$. Thus, by Lemma $3, \sum_{\mathrm{T}-m} a_{n+m}+\sum_{\mathrm{T}-m} b_{n+m} \in \Lambda_{\mathrm{R}}$ and hence $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$.

Remark: Theorem 3 of [5] provides an example of an infinite regressive isol T and a function b_{n} with $b_{n} \geqslant 1$ for all $n, \sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$, and $\mathrm{T} \not \dot{*}^{*} b_{n-1}$. We can use Theorem 3 above to generate a whole class of such examples from
this one. Let a_{n} be any function with $T \leqslant * a_{n}$, and let c_{n} be the function defined by $c_{n}=a_{n}+b_{n}$. Then $\Sigma_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n}=\sum_{\mathrm{T}} c_{n} \in \Lambda_{\mathrm{R}}$ but $\mathrm{T} \nexists^{*} c_{n-1}$.

What happens in the case of b_{n} functions that do not fit Theorems 2 or 3 above, that is, $T \nexists^{*} b_{n-1}$ and $b_{n}=0$ at infinitely many places? The following Lemma, due to Professor M. Hassett, shows that such functions do exist.

Lemma 4 (Hassett) Let $\mathrm{T} \in \Lambda_{R}-E$. Then there exists a function $b_{n}: E \rightarrow E$ such that for all $n, 0 \leqslant b_{n} \leqslant 1, b_{n}=0$ at infinitely many values of n, $\sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$, and $\mathrm{T} \not \neq *_{*} b_{n-1}$.

Proof: Let t_{n} be a retraceable function ranging over a set in T. Let a_{n} be any retraceable function such that $a_{0}>0$ and $\rho t\left(a_{n}\right)$ is not a separated subset of ρt_{n}. This is possible because there are c retraceable functions, hence c subsets of the form $\rho t\left(a_{n}\right)$, but ρt_{n} has only \aleph_{0} separated subsets. Let $\alpha=\rho t\left(a_{n}\right)$. We define a function b_{n} by

$$
b_{n}=\left\{\begin{array}{l}
0 \text { if } t_{n+1} \notin \alpha \\
1 \text { if } t_{n+1} \in \alpha .
\end{array}\right.
$$

Then $0 \leqslant b_{n} \leqslant 1$ for all n. Also $b_{n}=0$ at infinitely many values of n, because if $b_{n}=1$ from some point on, then α would be a separated subset of ρt_{n}.

The function $t\left(a_{n}-1\right)$ is the composition of two retraceable functions, hence is retraceable, and Req $\rho t\left(a_{n}-1\right)=\operatorname{Req} \sum_{0}^{\infty} j\left(t_{a_{n}-1}, 0\right)=\sum_{\mathrm{T}} b_{n}$. Thus $\sum_{T} b_{n} \in \Lambda_{\mathrm{R}}$. Finally, if $\mathrm{T} \leqslant{ }^{*} b_{n-1}$, then given t_{n} we could compute b_{n-1} and hence decide whether or not $t_{n} \in \alpha$. This would contradict the fact that α is not a separated subset of ρt_{n}.

Lemma 5 Let $\mathrm{T} \in \Lambda_{T R}$. Let $c_{n}: E \rightarrow E$ be such that there exists a number M with $1 \leqslant c_{n} \leqslant M$ for all n. If $\sum_{\mathrm{T}} c_{n} \in \Lambda_{\mathrm{R}}$, then $\mathrm{T} \leqslant * c_{n-1}$.
Proof: Let t_{n} be a T -retraceable function ranging over a set in T . Let $\sigma=\sum_{0}^{\infty} j\left(t_{n}, \nu\left(c_{n}\right)\right)$, and let $\sum_{\mathrm{T}} c_{n} \in \Lambda_{\mathrm{R}}$. Then σ is an infinite regressive set. Let $\sigma=\rho s_{n}$ where s_{n} is a regressive function and let $p(x)$ be a regressing function for s_{n}. For $0 \leqslant i \leqslant M-1$, we define functions $q_{i}(x)$ by $q_{i}(x)=$ $p j(x, i)$. Then each q_{i} is a partial recursive function. Because t_{n} is a T -retraceable function, it follows that for each $q_{i}(x), 0 \leqslant i \leqslant M-1$, there exists a number m_{i} such that for $n \geqslant m_{i}, q_{i}\left(t_{n}\right)<t_{n+1}$. Let $m=\max _{0 \leqslant i \leqslant M-1} m_{i}$, and consider the finite set

$$
j\left(t_{0}, 0\right), \ldots, j\left(t_{0}, c_{0}-1\right), j\left(t_{1}, 0\right), \ldots, j\left(t_{1}, c_{1}-1\right), \ldots, j\left(t_{m}, 0\right), \ldots, j\left(t_{m}, c_{m}-1\right)
$$

Let q be the maximum index of s_{n} represented in this set, and consider the finite set

$$
k\left(s_{q}\right), k\left(s_{q-1}\right), \ldots, k\left(s_{0}\right) .
$$

Let k be the maximum index of t_{n} occurring in this set. We can now describe an effective procedure for computing c_{n-1} from t_{n} for $n \geqslant k+1$. Thus, assume $n \geqslant k+1$. Then it follows that $j\left(t_{n}, 0\right)=s_{r}$ with $r>q$.

Suppose that a term of the form $j\left(t_{n-1}, y\right)$ with $0 \leqslant y<c_{n-1} \leqslant M$ has an index in s of r_{1} with $r_{1}>r$, say $r_{1}=r+b, b \geqslant 1$. Then

$$
s_{r_{1}-1}=p\left(s_{r_{1}}\right)=p j\left(t_{n-1}, y\right)=q_{y}\left(t_{n-1}\right)<t_{n}
$$

since $n-1 \geqslant k \geqslant m \geqslant m_{y}$. The term $s_{r_{1}-1}$ has the following properties:
(i) $s_{r_{1}-1}=j\left(t_{p}, y_{p}\right)$ with $0 \leqslant y_{p} \leqslant c_{p}-1$
(ii) $p \leqslant n-1$.

Property (i) follows from the definition of the s_{n} function. For (ii), note that $t_{p} \leqslant j\left(t_{p}, y_{p}\right)=s_{r_{1}-1}<t_{n}$ and since t_{n} is a strictly increasing function, $p<n$. Also, $\quad r_{1}-1 \geqslant r>q$ so that $p>m$. Therefore this argument may be repeated on the term $s_{r_{1}-2}$, etc. The result is that each term below $s_{r_{1}}$ in the ordering s_{n} has for the t-index of its first component a number $\leqslant n-1$. After b times, however, $j\left(t_{n}, 0\right)$ is reached and a contradiction is obtained. Hence every term of the form $j\left(t_{n-1}, y\right), 0 \leqslant y<c_{n-1}$, has an index in s which is less than r.

Now let t_{n} be given, with $n \geqslant k+1$. We may then compute the index n and the term $j\left(t_{n}, 0\right)=s_{r}$. We can then effectively generate the list

$$
s_{r}, s_{r-1}, \ldots, s_{0}
$$

and compute the t-indices of all the first components of this list. The number of t-indices with value $n-1$ is equal to c_{n-1}. We can easily patch up the finite number of points with index below $k+1$ and thus conclude that $\mathrm{T} \leqslant c_{n-1}$.

Combining Lemmas 4 and 5 , we will see that even with a very strong condition on the function a_{n}, namely a_{n} equal to the constant function 1 , we can produce a case where the answer to Question (1) is negative.
Theorem 4 There exists $T \in \Lambda_{R}-E$ and functions $a_{n}, b_{n}: E \rightarrow E$ such that $\sum_{\mathrm{T}} a_{n}, \sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$ but $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n} \notin \Lambda_{\mathrm{R}}$.

Proof: Let $T \in \Lambda_{T R}$ and let b_{n} be the function guaranteed by Lemma 4. Then $0 \leqslant b_{n} \leqslant 1$ for all $n, \sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$ and $\mathrm{T} \not \AA^{*} b_{n-1}$. Let a_{n} be the constant function 1. By Corollary 1 ,

$$
\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n}=\sum_{\mathrm{T}}\left(a_{n}+b_{n}\right)=\sum_{\mathrm{T}}\left(1+b_{n}\right)
$$

Now $1 \leqslant 1+b_{n} \leqslant 2$ and $T \not \AA^{*}\left(1+b_{n-1}\right)$, so by Lemma $5, \Sigma_{T}\left(1+b_{n}\right) \notin \Lambda_{R}$.
Remark: Theorem 4 above provides still another example of the nonclosure of Λ_{R} under addition.

3 An open question For $\mathrm{T} \in \Lambda_{\mathrm{R}}-E$, we know that $\mathrm{T} \leqslant * a_{n-1}$ and $\mathrm{T} \leqslant * b_{n-1}$ implies $\sum_{T} a_{n}, \sum_{\mathrm{T}} b_{n} \in \Lambda_{\mathrm{R}}$. This is certainly an obvious way to pursue Questions (1) and (2). Under these conditions we of course have $T \leqslant *$ $\left(a_{n-1}+b_{n-1}\right)$ so that $\sum_{\mathrm{T}}\left(a_{n}+b_{n}\right) \in \Lambda_{\mathrm{R}}$, and an affirmative answer to Question (2) for this case is mentioned by Barback in Lemma 3 of [1]. However, for $\mathrm{T} \leqslant * a_{n-1}, \mathrm{~T} \leqslant * b_{n-1}$, it remains an open question whether $\Sigma_{\mathrm{T}} a_{n}+\Sigma_{\mathrm{T}} b_{n}=$ $\sum_{\mathrm{T}}\left(a_{n}+b_{n}\right)$ or even whether $\sum_{\mathrm{T}} a_{n}+\sum_{\mathrm{T}} b_{n}$ is regressive at all.

REFERENCES

[1] Barback, J., "Regressive upper bounds," Seminavio Matematico, vol. 39 (1967), pp. 248-272.
[2] Dekker, J. C. E., 'Infinite series of isols," in Recursive Function Theory, American Mathematical Society Proceedings of Symposia in Pure Mathematics, vol. 5 (1962), pp. 77-96.
[3] Dekker, J. C. E., and J. Myhill, "Retraceable sets,'" Canadian Journal of Mathematics, vol. 10 (1958), pp. 357-373.
[4] Gersting, J., "A rate of growth criterion for universality of regressive isols," Pacific Journal of Mathematics, vol. 31 (1969), pp. 669-677.
[5] Gersting, J., "A note on infinite series of isols," Rocky Mountain Journal of Mathematics, vol. 2 (1972), pp. 661-666.

Indiana University-Purdue University at Indianapolis
 Indianapolis, Indiana

