Notre Dame Journal of Formal Logic Volume XVIII, Number 3, July 1977 NDJFAM

AN AXIOMATIZATION OF HERZBERGER'S 2-DIMENSIONAL PRESUPPOSITIONAL SEMANTICS

JOHN N. MARTIN

The purpose of this paper* is to axiomatize two 4-valued propositional logics suggested by Herzberger in [1], section VI. They are of philosophical interest because their interpretation makes use of two ideas inspired by Jean Buridan: (1) a proposition may correspond to the world and yet be untrue because it is semantically deviant, and (2) logically valid arguments preserve correspondence with reality, not truth. If the two non-classical truth-values of these systems are identified, the resulting tables for the classical connectives are the weak and strong systems of Kleene. Unlike Kleene's system, the 4-valued ones offer a choice of designated values that renders semantic entailment perfectly classical. Compare Herzberger [2] and Martin [5].

Let the set \mathcal{F} of formulas be inductively defined over a denumerable set of atomic formulas such that $\neg A$, A & B, CA, BA, TA, FA, tA, and fAare formulas if A and B are. Let \mathcal{W} be the set of all \mathfrak{w} such that for some v and \mathfrak{v} ,

- (1) for any atomic formula A, v(A), $v(A) \in \{0, 1\}$;
- (2) v(¬A) = 1 if v(A) = 0; v(¬A) = 0 otherwise; v(A & B) = 1 if v(A) = v(B) = 1; v(A & B) = 0 otherwise; v(CA) = 1 if v(A) = 1; v(CA) = 0 otherwise; v(BA) = 1 if v(A) = 1; v(BA) = 0 otherwise; v(TA) = 1 if v(A) = v(A) = 1; v(TA) = 0 otherwise; v(FA) = 1 if v(A) = 0 and v(A) = 1; v(FA) = 0 otherwise; v(tA) = 1 if v(A) = 1 and v(A) = 0; v(tA) = 0 otherwise; v(tA) = 1 if v(A) = 1; v(¬A) = 0 otherwise;
 (3) v(¬A) = 1 if v(A) = 1; v(¬A) = 0 otherwise; v(A & B) = 1 if v(A) = v(B) = 1; v(A & B) = 0 otherwise;
 - $\mathbf{v}(\mathbf{C}A) = \mathbf{v}(\mathbf{B}A) = \mathbf{v}(\mathbf{T}A) = \mathbf{v}(\mathbf{F}A) = \mathbf{v}(\mathbf{t}A) = \mathbf{v}(\mathbf{f}A) = 1;$

378

^{*}I would like to thank Leo Simons for his helpful comments on a draft of this paper.

(4) $\mathfrak{w}(A) = \langle \boldsymbol{\nu}(A), \boldsymbol{\nu}(A) \rangle.$

Let $\mathcal{L} = \langle \mathcal{P}, \mathcal{W} \rangle$, and abbreviate $\langle 11 \rangle$ by T, $\langle 01 \rangle$ by F, $\langle 10 \rangle$ by t, and $\langle 00 \rangle$ by f, and define $A \lor B$ as $\neg (\neg A \And \neg B)$, $A \to B$ as $\neg A \lor B$, and $A \nleftrightarrow B$ as $(A \to B) \& (B \to A)$.

Intuitively, values on the first co-ordinate record whether a sentence corresponds to the world and values on the second whether it is semantically normal in the sense that all its presuppositions are satisfied. A sentence is assigned T for true iff it both corresponds and is normal and F for false iff though normal, it does not correspond. Hence 'C' is read as 'corresponds' and 'B' as 'is bivalent'. CA and BA could have been introduced by definition as $TA \lor tA$ and $TA \lor FA$ respectively.

The values on the first coordinate of members of \mathcal{W} , those on the second, and the compound values for members of \mathcal{W} conform to tables under I, II, and I \times II respectively:

т

					1						
1 11	,	п					в	Т	F 0 1 0 0	t	f
Т 8 1 0 0 1	& 1	0	<u> </u>		-	11	1	1	0	0	0
1 0	1	0	1			01	1	0	1	0	0
0 1	0	0	0			10	0	0	0	1	0
	00	0	0	0	0	1					
										•	•
]	Ι						
	ר	&	10 10 00	c	в	∥т	F	t	f		
1	1		10	1	1	1	1	1	1		
0	0		00	1	1	1	1	1	1		

 $\mathbf{I} \times \mathbf{II}$

	٦	&	TFtf	v	TFtf	\rightarrow	TFtf	с	в	т	F	t	f
Т	F		TFtf		TTtt		T F t f T T t t	Т	Т	Т	F	F	F
F	Т		FFff		TFtf		TTtt	F	т	F	т	F	F
t	f		t f t f		* * * * *		t f t f t t t t	Т	F	F	F	T	F
f	t		ffff		t f t f		t t t t t	F	F	F	F	F	Т

The operations of $I \times II$ are functionally incomplete as is seen from the fact that T and F are never taken into t or f. Further, substitution of truth-functional equivalents fails among the non-classical formulas, e.g., if $\mathfrak{w}(A) = T$ and $\mathfrak{w}(B) = t$, then $\mathfrak{w}(A \leftrightarrow B) = t$ but $\mathfrak{w}(TA \leftrightarrow TB) = F$.

If t and f are identified, \neg , &, and \lor become Kleene's weak connectives (*cf.* Kleene [3]). Let $D = \{\mathsf{T}, t\}$ be the set of designated values, and let a set Γ of formulas semantically entail A, briefly $\Gamma \Vdash A$, iff $\forall \mathbf{w} \in \mathcal{W}$, and $\forall B \in \Gamma$, if $\mathbf{w}(B) \in D$, then $\mathbf{w}(A) \in D$. Observe also that \mathcal{L} is a conservative extension of classical logic. That is, for all formulas shared by both \mathcal{L} and classical logic, $\Gamma \Vdash A$ iff the argument from Γ to A is classically valid. For, given

any formula A made up from just \neg and &, v(A) conforms to the classical matrix for \neg and &, and w(A) is designated iff v(A) = 1.

The set of *axioms* for \mathcal{L} is defined as the least set both containing all classical tautologies and all instances of the following axiom schemata, and closed under *modus ponens*:

1. $(A \& BA) \rightarrow TA$	7.*	$CA \leftrightarrow A$	13.	BF A
2. $\neg A \& BA \to FA$	8.	$BA \leftrightarrow B \urcorner A$	14.	$\mathbf{Bt}A$
3. $(A \And \neg \mathbf{B}A) \rightarrow \mathbf{t}A$	9.**	$(BA \And BB) \longleftrightarrow B(A \And B)$	15.	$\mathbf{Bf}A$
4. (¬A & ¬BA) → fA	10.	ר(T A & F A)	16.	BBA
5. $\mathbf{B}A \rightarrow (\neg \mathbf{t}A \And \neg \mathbf{f}A)$	11.	ר(t A & fA)	17.*	$\mathbf{BC}A$
6.* $(T A \lor F A) \to B A$	12.	BTA		

Let A be *deducible from* Γ , briefly $\Gamma \vdash A$, iff there is a finite sequence A_1, \ldots, A_n such that $A_n = A$ and $A_m, m < n$, is either an axiom, a member of Γ , or a consequent of previous A_i by *modus ponens*. The *theorems* of \mathcal{L} are all formulas deducible from the empty set. They include the following as well as all instances of 6^* , 7^* , and 17^* if C and B are introduced by definition:

18.	$TA \vee FA \vee tA \vee fA$	27. f $A \rightarrow \neg CA$
19.	ר(T A & tA)	28. $CA \rightarrow (TA \lor tA)$
20.	ר(T A & fA)	29. $BA \rightarrow (TA \lor FA)$
21.	ר(F A & tA)	30. В ¬СА
22.	ר(F A & f A)	31. B ⊐BA
23.**	$(\mathbf{B}A \And \mathbf{B}B) \longleftrightarrow \mathbf{B}(A \to B)$	32. B ┐TA
24.	$\mathbf{T}A \rightarrow \mathbf{C}A$	33. B ┐ F A
25.	$\mathbf{t}A \rightarrow \mathbf{C}A$	34. B ⊓tA
26.	$FA ightarrow \GammaA$	35. B ר f A

Let a set Γ of formulas be *consistent* iff for some A, $\Gamma \not\models A$, and let Γ be *maximally consistent* iff Γ is consistent and for all A, $A \in \Gamma$ or $\neg A \in \Gamma$. The proof that every consistent set is contained in a maximally consistent set carries over unaltered from classical logic.

Lemma Any maximally consistent Γ is the set of all designated formulas of some $\mathbf{w} \in \mathcal{W}$.

Proof: Let Γ be maximally consistent and define v, v, and w as follows: v(A) = 1 if $A \in \Gamma$, v(A) = 0 otherwise, v(A) = 1 if $BA \in \Gamma$, v(A) = 0 otherwise, and $w(A) = \langle v(A), v(A) \rangle$. Clearly, Γ is the set of formulas designated by w. To show $w \in W$, it suffices to show v and v satisfy (1)-(3) of the definition of W. Since v and v are both functions from \mathcal{F} into $\{1,0\}$, (1) is satisfied. For (2) consider first $\neg A$. If v(A) = 1, then $A \in \Gamma$, and $v(\neg A) = 0$. If v(A) = 0, then $\neg A \in \Gamma$, and $v(\neg A) = 1$. Consider next A & B. If v(A) = v(B) = 1, then $A, B \in \Gamma, A \& B \in \Gamma$, and v(A & B) = 1. If v(A) or v(B) is 0, then $\neg A$ or $\neg B$ is in Γ , $\neg (A \& B) \in \Gamma$, and v(A & B) = 0. Consider CA. If $w(A) \in \{T, t\}$, then $A \in \Gamma$, CA $\in \Gamma$, and v(CA) = 1. If $w(A) \in \{F, f\}$, then $\neg A \in \Gamma$, $\neg CA \in \Gamma$, and v(CA) = 0. Consider BA. If $w(A) \in \{T, F\}$, then $BA \in \Gamma$, and v(BA) = 1. If $w(A) \in \{t, f\}$, then $\neg BA \in \Gamma$, and v(BA) = 0. Consider TA. If w(A) = 1, then A, $BA \in \Gamma$, $TA \in \Gamma$, and $\nu(TA) = 1$. If w(A) = F, then $\neg A$, $BA \in \Gamma$, $FA \in \Gamma$, $\neg TA \in \Gamma$, and $\nu(TA) = 0$. If $\mathfrak{w}(A) = \mathfrak{t}$, then $tA \in \Gamma$, $\neg TA \in \Gamma$, and $\nu(TA) = 0$. If $\mathfrak{w}(A) = \mathfrak{f}$, then $\mathfrak{f}A \in \Gamma$, $\neg \mathsf{T}A \in \Gamma$, and $\nu(\mathsf{T}A) = 0$. Consider $\mathsf{F}A$. If $\mathfrak{w}(A) = \mathsf{T}$, then $\mathsf{T}A \in \Gamma$, $\neg \mathsf{F}A \in \Gamma$, and $\nu(\mathsf{F}A) = 0$. If $\mathfrak{w}(A) = \mathsf{F}$, then $\mathsf{F}A \in \Gamma$, $\nu(\mathsf{F}A) = 1$. If $\mathfrak{w}(A) \in \{\mathfrak{t}, \mathfrak{f}\}, \text{ then } \exists BA \in \Gamma, \exists FA \in \Gamma, v(FA) = 0. \text{ Consider } \mathfrak{t}A. \text{ If } \mathfrak{w}(A) = \mathsf{T},$ then $\mathsf{T}A \in \Gamma$, $\exists \mathsf{t}A \in \Gamma$, and $\nu(\mathsf{t}A) = 0$. If $\mathfrak{w}(A) = F$, then $\mathsf{F}A \in \Gamma$, $\exists \mathsf{t}A \in \Gamma$, and $v(\mathbf{t}A) = 0$. If w(A) = t, then $\mathbf{t}A \in \Gamma$, and $v(\mathbf{t}A) = 1$. If w(A) = f, then $\mathbf{f}A \in \Gamma$, $\exists t A \in \Gamma$, and v(tA) = 0. Consider fA. If w(A) = T, then $T A \in \Gamma$, $\exists f A \in \Gamma$, and v(fA) = 0. If w(A) = F, then $FA \in \Gamma$, $\neg fA \in \Gamma$, and v(fA) = 0. If w(A) = t, then $\mathsf{T}A \in \Gamma$, $\exists \mathsf{f}A \in \Gamma$, and $\upsilon(\mathsf{f}A) = 0$. If $\mathfrak{w}(A) = \mathfrak{f}$, then $\mathsf{f}A \in \Gamma$, and $\upsilon(\mathsf{f}A) = 1$. For (3) consider first $\neg A$. If $\mathbf{v}(A) = 1$, then $\mathbf{B}A \in \Gamma$, $\mathbf{B} \neg A \in \Gamma$, and $\mathbf{v}(A) = 1$. If $\mathfrak{v}(A) = 0$, then $\exists BA \in \Gamma$, $\exists B \neg A \in \Gamma$, $B \neg A \notin \Gamma$, and $\mathfrak{v}(\exists A) = 0$. Consider A & B. If $\mathfrak{v}(A) = \mathfrak{v}(B) = 1$, then $\mathsf{B}A$, $\mathsf{B}B \in \Gamma$, $\mathsf{B}(A \& B) \in \Gamma$, and $\mathfrak{v}(A \& B) = 1$. If $\mathfrak{v}(A)$ or $\mathfrak{v}(B)$ is 0, then $\exists BA$ or $\exists BB$ is in Γ . In either case $\exists B(A \& B) \in \Gamma$ and $\mathbf{v}(A \& B) = \mathbf{0}$. For the other connectives observe that since **BC**A, **BB**A, BTA, BFA, BtA, BfA $\in \Gamma$, $\mathfrak{v}(CA) = \mathfrak{v}(BA) = \mathfrak{v}(TA) = \mathfrak{v}(FA) = \mathfrak{v}(tA) = \mathfrak{v}(tA) = 1$, no matter what $\mathbf{v}(A)$ is.

Theorem $\Gamma \vdash A$ iff $\Gamma \Vdash A$.

TT

Proof: (1) Let $\Gamma \vdash A$. Then there exist a finite sequence A_1, \ldots, A_n such that $A_n = A$ and for all A_m , m < n, A_n is either an axiom, a member of Γ , or a consequent by *modus ponens* of previous members. Assume that $\forall B \in \Gamma$, $\mathfrak{w}(B) \in D$. But then since all the axioms are designated by any \mathfrak{w} , and *modus ponens* preserves designation, $\mathfrak{w}(A) \in D$. (2) Assume $\Gamma \nvDash A$. Then $\Gamma \cup \{ \neg A \}$ is consistent and contained in some maximally consistent Δ . Further there is a \mathfrak{w} such that Δ is the set of designated formulas of \mathfrak{w} . Hence \mathfrak{w} satisfies Γ , yet $\mathfrak{w}(A) \notin D$. Hence $\Gamma \nvDash A$. Q.E.D.

This axiom system is also adaptable to Herzberger's 2-dimensional rendering of Kleene's strong connectives. Let *W be defined like W except that clause (3) is altered as follows:

$$\mathfrak{v}(A \& B) = 1$$
 if $\mathfrak{v}(A) = 0$ and $\mathfrak{v}(A) = 1$, or $\mathfrak{v}(B) = 0$ and $\mathfrak{v}(B) = 1$,
or $\mathfrak{v}(A) = \mathfrak{v}(B) = 1$; $\mathfrak{v}(A \& B) = 0$ otherwise.

We retain the same abbreviations and defined connectives as before. The truth tables remain the same except for the following changes.

*11							$1 \times * \Pi$													
&	Т	F	t	f		&	Т	F	t	f	v	Т	F	t	f	→	Т	F	t	f
Т	1	1	0	0			т	F	t	f		Т	Т	т	т		т	F	t	f
	1																			
t	0	1	0	0			t	F	t	f		Т	t	t	t		Т	f	t	f
f	0	1	0	0			f	F	f	f		T	f	t	f		T	t	t	t

The tables for the strong connectives are obtained by identifying \dagger and f with N. (Cf. Kleene [4], pp. 334-335.) Also, the new language $*\mathcal{L} = \langle \mathcal{F}, *\mathcal{W} \rangle$ remains a conservative extension of classical logic. For the axiomatization, all the previous schemata are retained except 9** which is replaced by

*9. $B(A \& B) \leftrightarrow (FA \lor FB \lor (BA \& BB))$.

The list of previous theorems remains unchanged except for 23^{**} which is replaced by:

*23. $B(A \rightarrow B) \leftrightarrow (FA \lor TB \lor (BA \& BB))$.

The proof of the soundness and completeness results remains the same except that the proof of the lemma for clause (3) of the definition of *W should be altered as follows: Consider A & B. If v(A) = v(B) = v(A) = v(B) = 1, then BA, $BB \in \Gamma$, $B(A \& B) \in \Gamma$, and v(A & B) = 1. If v(A) = 0 and v(A) = 1, or v(B) = 0 and v(B) = 1, then either $\neg A$, $BA \in \Gamma$ or $\neg B$, $BB \in \Gamma$, either $FA \in \Gamma$ or $FB \in \Gamma$, $B(A \& B) \in \Gamma$, and v(A & B) = 1. If v(A) = v(B) = 0, then $\neg BA$, $\neg BB \in \Gamma$, $\neg B(A \& B) \in \Gamma$, and v(A & B) = 0.

REFERENCES

- Herzberger, H. G., "Dimensions of truth," Journal of Philosophical Logic, vol. 2 (1973), pp. 535-556.
- [2] Herzberger, H. G., "Truth and modality in semantically closed languages," in *Paradox of the Liar*, R. L. Martin, ed., Yale University Press, New Haven (1970), pp. 25-46.
- [3] Kleene, S. C., "On a notation for ordinal numbers," The Journal of Symbolic Logic, vol. 3 (1938), pp. 150-155.
- [4] Kleene, S. C., Introduction to Metamathematics, North Holland Co., Amsterdam (1959).
- [5] Martin, J. N., "A syntactic characterization of Kleene's strong connectives with two designated values," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 181-184.

University of Cincinnati Cincinnati, Ohio