Notre Dame Journal of Formal Logic Volume XVIII, Number 3, July 1977 NDJFAM

AN AXIOMATIZATION OF HERZBERGER'S 2-DIMENSIONAL PRESUPPOSITIONAL SEMANTICS

JOHN N. MARTIN

The purpose of this paper* is to axiomatize two 4 -valued propositional logics suggested by Herzberger in [1], section VI. They are of philosophical interest because their interpretation makes use of two ideas inspired by Jean Buridan: (1) a proposition may correspond to the world and yet be untrue because it is semantically deviant, and (2) logically valid arguments preserve correspondence with reality, not truth. If the two non-classical truth-values of these systems are identified, the resulting tables for the classical connectives are the weak and strong systems of Kleene. Unlike Kleene's system, the 4 -valued ones offer a choice of designated values that renders semantic entailment perfectly classical. Compare Herzberger [2] and Martin [5].

Let the set \mathcal{F} of formulas be inductively defined over a denumerable set of atomic formulas such that $\urcorner A, A \& B, \mathrm{C} A, \mathrm{~B} A, \mathrm{~T} A, \mathrm{~F} A, \mathbf{t} A$, and $\mathrm{f} A$ are formulas if A and B are. Let \boldsymbol{w} be the set of all \boldsymbol{w} such that for some \boldsymbol{v} and \boldsymbol{v},
(1) for any atomic formula $A, v(A), \mathfrak{v}(A) \in\{0,1\}$;
(2) $v(\urcorner A)=1$ if $v(A)=0 ; v(\urcorner A)=0$ otherwise;
$\boldsymbol{v}(A \& B)=1$ if $\boldsymbol{v}(A)=\boldsymbol{v}(B)=1 ; \boldsymbol{v}(A \& B)=0$ otherwise;
$\nu(C A)=1$ if $v(A)=1 ; v(C A)=0$ otherwise;
$v(B A)=1$ if $v(A)=1 ; \boldsymbol{v}(B A)=0$ otherwise;
$v(\mathrm{~T} A)=1$ if $v(A)=v(A)=1 ; v(\mathrm{~T} A)=0$ otherwise;
$\boldsymbol{v}(F A)=1$ if $\boldsymbol{v}(A)=0$ and $\boldsymbol{v}(A)=1 ; \boldsymbol{v}(F A)=0$ otherwise;
$v(\mathbf{t} A)=1$ if $v(A)=1$ and $v(A)=0 ; \boldsymbol{v}(\mathbf{t} A)=0$ otherwise;
$\boldsymbol{v}(\mathbf{f} A)=1$ if $\boldsymbol{v}(A)=v(A)=0 ; \boldsymbol{v}(\boldsymbol{f} A)=0$ otherwise;
(3) $\mathfrak{v}(\urcorner A)=1$ if $\mathfrak{v}(A)=1 ; \mathfrak{v}(\urcorner A)=0$ otherwise;
$\mathfrak{v}(A \& B)=1$ if $\mathfrak{v}(A)=\mathfrak{v}(B)=1 ; \mathfrak{v}(A \& B)=0$ otherwise;
$\mathfrak{v}(\mathrm{C} A)=\mathfrak{v}(\mathrm{B} A)=\mathfrak{v}(\mathbf{T} A)=\mathfrak{v}(\mathrm{F} A)=\boldsymbol{u}(\mathbf{t} A)=\mathfrak{v}(\mathbf{f} A)=1 ;$

[^0](4) $\mathfrak{v}(A)=\langle\boldsymbol{v}(A), \mathfrak{v}(A)\rangle$.

Let $\mathcal{L}=\langle\mathcal{F}, \boldsymbol{W}\rangle$, and abbreviate $\langle 11\rangle$ by $\mathrm{T},\langle 01\rangle$ by $\mathrm{F},\langle 10\rangle$ by t , and $\langle 00\rangle$ by f, and define $A \vee B$ as $\urcorner(\neg A \& \neg B), A \rightarrow B$ as $\urcorner A \vee B$, and $A \leftrightarrow B$ as $(A \rightarrow B) \&(B \rightarrow A)$.

Intuitively, values on the first co-ordinate record whether a sentence corresponds to the world and values on the second whether it is semantically normal in the sense that all its presuppositions are satisfied. A sentence is assigned T for true iff it both corresponds and is normal and F for false iff though normal, it does not correspond. Hence ' C ' is read as 'corresponds' and ' B ' as 'is bivalent'. $\mathrm{C} A$ and $\mathrm{B} A$ could have been introduced by definition as $\mathrm{T} A \vee \mathbf{t} A$ and $\mathrm{T} A \vee \mathrm{~F} A$ respectively.

The values on the first coordinate of members of \boldsymbol{W}, those on the second, and the compound values for members of \boldsymbol{W} conform to tables under I, II, and I \times II respectively:

> I

	\mathbf{B}	\mathbf{T}	\mathbf{F}	\mathbf{t}	\mathbf{f}
11	1	1	0	0	0
01	1	0	1	0	0
10	0	0	0	1	0
00	0	0	0	0	1

II

	7	$\&$	10	C	B	T	F	\mathbf{t}	\mathbf{f}
1	1		10	1	1	1	1	1	1
0	0		00	1	1	1	1	1	1

$\mathrm{I} \times \mathrm{II}$

	7	\&	TFtf	\checkmark	TFtf	\rightarrow	T Ftf	C	B	T	F	t	f
T	F		TFtf		TTtt		T Ftf	T	T	T	F	F	F
F	T		FFff		T F +f		T T t t	F	T	F	T	F	F
\dagger	f		+ftf		tttt		tftf	T	F	F	F	T	
f	\dagger		$f \mathrm{fff}$		t f tf		tttt	F	F	F	F	F	T

The operations of $I \times$ II are functionally incomplete as is seen from the fact that T and F are never taken into \dagger or f. Further, substitution of truthfunctional equivalents fails among the non-classical formulas, e.g., if $\mathfrak{w}(A)=\mathrm{T}$ and $\mathfrak{w}(B)=\boldsymbol{\dagger}$, then $\mathfrak{w}(A \leftrightarrow B)=\dagger$ but $\mathfrak{w}(\mathrm{T} A \leftrightarrow \mathrm{~T} B)=\mathrm{F}$.

If \dagger and f are identified, $\urcorner, \&$, and \vee become Kleene's weak connectives (cf. Kleene [3]). Let $D=\{\mathrm{T}, \mathrm{t}\}$ be the set of designated values, and let a set Γ of formulas semantically entail A, briefly $\Gamma \Vdash A$, iff $\forall \boldsymbol{v} \in \boldsymbol{W}$, and $\forall B \in \Gamma$, if $\mathfrak{w}(B) \in D$, then $\boldsymbol{w}(A) \in D$. Observe also that \mathcal{L} is a conservative extension of classical logic. That is, for all formulas shared by both \mathcal{K} and classical logic, $\Gamma \Vdash A$ iff the argument from Γ to A is classically valid. For, given
any formula A made up from just 7 and $\&, \boldsymbol{v}(A)$ conforms to the classical matrix for 7 and $\&$, and $\boldsymbol{w}(A)$ is designated iff $\boldsymbol{v}(A)=1$.

The set of axioms for \mathcal{L} is defined as the least set both containing all classical tautologies and all instances of the following axiom schemata, and closed under modus ponens:

1. $(A \& \mathrm{~B} A) \rightarrow \mathrm{T} A$
2. $\urcorner A \& \mathrm{~B} A \rightarrow \mathrm{~F} A$
3. $(A \& \neg \mathrm{~B} A) \rightarrow \mathbf{t} A$
4. $\quad(\urcorner A \&\urcorner \mathrm{B} A) \rightarrow \mathbf{f} A$
5. $\mathrm{B} A \rightarrow(7 \mathbf{t} A \& \neg \mathrm{f} A)$
6.* $(\mathbf{T} A \vee \mathbf{F} A) \rightarrow \mathbf{B} A$
7.* $\mathrm{C} A \leftrightarrow A$
6. $B F A$
7. $\mathrm{B} A \leftrightarrow \mathrm{~B}\urcorner A$
9.** $(\mathbf{B} A \& \mathbf{B} B) \leftrightarrow \mathbf{B}(A \& B)$
8. $\urcorner(\mathbf{T} A \& F A)$
9. $\urcorner(\mathbf{t} A \& \mathbf{f} A)$
10. $\mathrm{BT} A$
11. Bt A
12. $\mathrm{Bf} A$
13. BB A
17.* BC A

Let A be deducible from Γ, briefly $\Gamma \vdash A$, iff there is a finite sequence A_{1}, \ldots, A_{n} such that $A_{n}=A$ and $A_{m}, m<n$, is either an axiom, a member of Γ, or a consequent of previous A_{i} by modus ponens. The theorems of \mathcal{L} are all formulas deducible from the empty set. They include the following as well as all instances of 6*, 7*, and 17* if C and B are introduced by definition:

18.	$\mathrm{T} A \vee \mathrm{~F} A \vee \mathrm{t} A \vee \mathrm{f} A$	27. $\mathrm{f} A \rightarrow \mathrm{7} \mathrm{C} A$
19.	$7(\mathbf{T} A \& \mathbf{t} A)$	28. $\mathrm{C} A \rightarrow(\mathrm{~T} A \vee \mathrm{t} A)$
20.	$\urcorner(\mathbf{T} A \& f A)$	29. $\mathbf{B} A \rightarrow(\mathrm{~T} A \vee \mathrm{~F} A)$
21.	$7(\mathbf{F} A \& t A)$	30. B ᄀ $\mathrm{C} A$
22.	$7(\mathbf{F} A \& \mathrm{f} A)$	31. $\mathrm{B} 7 \mathrm{~B} A$
23.**	$(\mathrm{B} A \& \mathrm{~B} B) \leftrightarrow \mathbf{B}(A \rightarrow B)$	32. $\mathrm{B} 7 \mathrm{~T} A$
24.	$\mathrm{T} A \rightarrow \mathrm{C} A$	33. $\mathrm{B} \neg \mathrm{F} A$
25.	$\mathbf{t} A \rightarrow \mathrm{C} A$	34. B $7 \mathrm{t} A$
26.	$\mathbf{F} A \rightarrow 7 \mathrm{C} A$	35. B 7f A

Let a set Γ of formulas be consistent iff for some $A, \Gamma \nvdash A$, and let Γ be maximally consistent iff Γ is consistent and for all $A, A \in \Gamma$ or $\urcorner A \in \Gamma$. The proof that every consistent set is contained in a maximally consistent set carries over unaltered from classical logic.

Lemma Any maximally consistent Γ is the set of all designated formulas of some $\mathfrak{w} \in \boldsymbol{W}$.

Proof: Let Γ be maximally consistent and define \boldsymbol{v}, \boldsymbol{v}, and \boldsymbol{w} as follows: $\boldsymbol{v}(A)=1$ if $A \in \Gamma, \boldsymbol{v}(A)=0$ otherwise, $\boldsymbol{v}(A)=1$ if $\mathrm{B} A \in \Gamma, \boldsymbol{v}(A)=0$ otherwise, and $\mathfrak{w}(A)=\langle\boldsymbol{v}(A), \mathfrak{v}(A)\rangle$. Clearly, Γ is the set of formulas designated by \mathfrak{w}. To show $\mathfrak{w} \in \boldsymbol{W}$, it suffices to show \boldsymbol{v} and \boldsymbol{v} satisfy (1)-(3) of the definition of w. Since v and \mathfrak{v} are both functions from \mathcal{F} into $\{1,0\}$, (1) is satisfied. For (2) consider first $\urcorner A$. If $\boldsymbol{v}(A)=1$, then $A \in \Gamma$, and $\boldsymbol{v}(\urcorner A)=0$. If $\boldsymbol{v}(A)=0$, then $\urcorner A \in \Gamma$, and $\nu(\urcorner A)=1$. Consider next $A \& B$. If $\nu(A)=\boldsymbol{v}(B)=1$, then $A, B \in \Gamma, A \& B \in \Gamma$, and $\boldsymbol{v}(A \& B)=1$. If $\boldsymbol{\nu}(A)$ or $\boldsymbol{v}(B)$ is 0 , then $\urcorner A$ or $\neg B$ is in $\Gamma\urcorner,(A \& B) \in \Gamma$, and $\boldsymbol{v}(A \& B)=0$. Consider $C A$. If $\mathfrak{w}(A) \in\{\mathrm{T}, \dagger\}$, then $A \in \Gamma, \mathrm{C} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{C} A)=1$. If $\mathfrak{w}(A) \in\{\mathrm{F}, \mathrm{f}\}$, then $\urcorner A \in \Gamma\urcorner ,\mathrm{C} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{C} A)=0$. Consider $\mathrm{B} A$. If $\mathfrak{w}(A) \in\{\mathrm{T}, \mathrm{F}\}$, then $\mathrm{B} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{B} A)=1$. If $\mathfrak{w}(A) \in\{\mathrm{t}, \mathrm{f}\}$, then $\neg \mathrm{B} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{B} A)=0$. Consider $\mathrm{T} A$. If $\boldsymbol{w}(A)=\mathrm{T}$, then
$A, \mathrm{~B} A \in \Gamma, \mathrm{~T} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{T} A)=1$. If $\boldsymbol{w}(A)=\mathrm{F}$, then $\urcorner A, \mathrm{~B} A \in \Gamma, \mathrm{~F} A \in \Gamma$, $\urcorner \mathrm{T} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{T} A)=0$. If $\mathfrak{w}(A)=\mathrm{f}$, then $\mathrm{t} A \in \Gamma$, $\urcorner \mathrm{T} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{T} A)=0$. If $\mathfrak{v}(A)=\mathrm{f}$, then $\mathrm{f} A \in \Gamma$, $\urcorner \mathrm{T} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{T} A)=0$. Consider $\mathrm{F} A$. If $\boldsymbol{v}(A)=\mathrm{T}$, then $\mathrm{T} A \in \Gamma$, $ᄀ \mathrm{~F} A \in \Gamma$, and $\boldsymbol{v}(\mathrm{F} A)=0$. If $\boldsymbol{v}(A)=\mathrm{F}$, then $\mathrm{F} A \in \Gamma, \boldsymbol{v}(\mathrm{~F} A)=1$. If $\mathfrak{w}(A) \in\{\mathbf{t}, \mathfrak{f}\}$, then $\urcorner \mathbf{B} A \in \Gamma, \neg \mathbf{F} A \in \Gamma, \boldsymbol{v}(\mathbf{F} A)=0$. Consider $\mathbf{t} A$. If $\boldsymbol{w}(A)=\mathrm{T}$, then $\mathrm{T} A \in \Gamma$, $7 \mathbf{t} A \in \Gamma$, and $\boldsymbol{v}(\mathbf{t} A)=0$. If $\mathfrak{v}(A)=\mathrm{F}$, then $\mathrm{F} A \in \Gamma$, $7 \mathbf{t} A \in \Gamma$, and $\boldsymbol{v}(\mathbf{t} A)=0$. If $\mathfrak{v}(A)=\boldsymbol{f}$, then $\mathbf{t} A \in \Gamma$, and $\boldsymbol{v}(\mathbf{t} A)=1$. If $\mathfrak{v}(A)=\mathrm{f}$, then $\mathrm{f} A \in \Gamma$, $\urcorner \mathbf{t} A \in \Gamma$, and $\boldsymbol{v}(\mathbf{t} A)=0$. Consider $\mathrm{f} A$. If $\boldsymbol{w}(A)=\mathrm{T}$, then $\mathrm{T} A \in \Gamma$, $\urcorner \mathrm{f} A \in \Gamma$, and $\boldsymbol{v}(\mathbf{f} A)=0$. If $\boldsymbol{v}(A)=\mathrm{F}$, then $\mathrm{F} A \in \Gamma$, $\mathrm{f} A \in \Gamma$, and $\boldsymbol{v}(\mathbf{f} A)=0$. If $\mathfrak{w}(A)=\boldsymbol{f}$, then $\mathrm{T} A \in \Gamma$, $ᄀ \mathfrak{f} A \in \Gamma$, and $\boldsymbol{v}(\mathbf{f} A)=0$. If $\boldsymbol{w}(A)=\mathrm{f}$, then $\mathrm{f} A \in \Gamma$, and $\boldsymbol{v}(\mathbf{f} A)=1$. For (3) consider first $\urcorner A$. If $\mathfrak{v}(A)=1$, then $\mathrm{B} A \in \Gamma, \mathrm{~B}\urcorner A \in \Gamma$, and $\mathfrak{v}(A)=1$. If $\mathfrak{v}(A)=0$, then $\urcorner \mathrm{B} A \in \Gamma$, $\urcorner \mathrm{B} \neg A \in \Gamma, \mathrm{~B}\urcorner A \notin \Gamma$, and $\mathfrak{v}(\urcorner A)=0$. Consider $A \& B$. If $\mathfrak{v}(A)=\mathfrak{v}(B)=1$, then $\mathrm{B} A, \mathrm{~B} B \in \Gamma, \mathrm{~B}(A \& B) \in \Gamma$, and $\mathfrak{v}(A \& B)=1$. If $\mathfrak{v}(A)$ or $\mathfrak{v}(B)$ is 0 , then $\neg \mathrm{B} A$ or $\neg \mathrm{B} B$ is in Γ. In either case $\urcorner \mathrm{B}(A \& B) \in \Gamma$ and $\mathfrak{v}(A \& B)=0$. For the other connectives observe that since $\mathrm{BC} A, \mathrm{BB} A$, $\mathrm{BT} A, \mathrm{BF} A, \mathrm{~B} \mathbf{t} A, \mathrm{~B} \mathbf{f} \in \Gamma, \mathfrak{v}(\mathrm{C} A)=\mathfrak{v}(\mathbf{B} A)=\mathfrak{v}(\mathbf{T} A)=\mathfrak{v}(\mathbf{F} A)=\mathfrak{v}(\mathbf{t} A)=\mathfrak{v}(\mathbf{f} A)=1$, no matter what $\mathfrak{v}(A)$ is.

Theorem $\Gamma \vdash A$ iff $\Gamma \Vdash A$.

Proof: (1) Let $\Gamma \vdash A$. Then there exist a finite sequence A_{1}, \ldots, A_{n} such that $A_{n}=A$ and for all $A_{m}, m<n, A_{n}$ is either an axiom, a member of Γ, or a consequent by modus ponens of previous members. Assume that $\forall B \in \Gamma$, $\mathfrak{w}(B) \in D$. But then since all the axioms are designated by any \mathfrak{w}, and modus ponens preserves designation, $\mathfrak{w}(A) \in D$. (2) Assume $\Gamma \nvdash A$. Then $\Gamma \cup\{7 A\}$ is consistent and contained in some maximally consistent Δ. Further there is a \mathfrak{w} such that Δ is the set of designated formulas of \mathfrak{w}. Hence \boldsymbol{w} satisfies Γ, yet $\mathfrak{w}(A) \notin D$. Hence $\Gamma \nVdash A$.
Q.E.D.

This axiom system is also adaptable to Herzberger's 2-dimensional rendering of Kleene's strong connectives. Let $* \boldsymbol{w}$ be defined like \boldsymbol{W} except that clause (3) is altered as follows:

$$
\begin{aligned}
& \mathfrak{v}(A \& B)=1 \text { if } \boldsymbol{v}(A)=0 \text { and } \mathfrak{v}(A)=1 \text {, or } \boldsymbol{v}(B)=0 \text { and } \mathfrak{v}(B)=1 \text {, } \\
& \text { or } \mathfrak{v}(A)=\mathfrak{v}(B)=1 ; \mathfrak{v}(A \& B)=0 \text { otherwise. }
\end{aligned}
$$

We retain the same abbreviations and defined connectives as before. The truth tables remain the same except for the following changes.

*II					$\mathrm{I} \times$ * II														
\&	T	F	\dagger	f	\&	T	F	t	f	\checkmark	T	F	t	f	\rightarrow	T	F.	\dagger	f
T	1	1	0	0			F	\dagger	f			T	T	T		T	F	†	f
F	1	1	1	1		F	F	F	F			F	t	f		T	T	T	T
\dagger	0	1	0	0		+	F	t	f		T	t	t	t		T	f	\dagger	f
f	0	1	0	0		f	F	f	f		T	f	\dagger	f		T	\dagger	\dagger	\dagger

The tables for the strong connectives are obtained by identifying t and f with N. (Cf. Kleene [4], pp. 334-335.) Also, the new language $* \mathcal{L}=\langle\mathcal{F}, * \boldsymbol{W}\rangle$ remains a conservative extension of classical logic. For the axiomatization, all the previous schemata are retained except $9 * *$ which is replaced by
*9. $\mathrm{B}(A \& B) \leftrightarrow(\mathrm{F} A \vee \mathrm{~F} B \vee(\mathrm{~B} A \& \mathrm{~B} B))$.
The list of previous theorems remains unchanged except for $23^{* *}$ which is replaced by:
*23. $\mathrm{B}(A \rightarrow B) \leftrightarrow(\mathrm{F} A \vee \mathrm{~T} B \vee(\mathrm{~B} A \& \mathrm{~B} B))$.
The proof of the soundness and completeness results remains the same except that the proof of the lemma for clause (3) of the definition of $* \boldsymbol{w}$ should be altered as follows: Consider $A \& B$. If $\boldsymbol{v}(A)=\boldsymbol{v}(B)=\boldsymbol{v}(A)=$ $\mathfrak{v}(B)=1$, then $\mathrm{B} A, \mathrm{~B} B \in \Gamma, \mathrm{~B}(A \& B) \in \Gamma$, and $\mathfrak{v}(A \& B)=1$. If $v(A)=0$ and $\mathfrak{v}(A)=1$, or $\boldsymbol{v}(B)=0$ and $\mathfrak{v}(B)=1$, then either $\neg A, \mathrm{~B} A \in \Gamma$ or $\urcorner B, \mathrm{~B} B \in \Gamma$, either $\mathrm{F} A \in \Gamma$ or $\mathrm{F} B \in \Gamma, \mathrm{~B}(A \& B) \in \Gamma$, and $\mathfrak{v}(A \& B)=1$. If $\mathfrak{v}(A)=\mathfrak{v}(B)=0$, then $\urcorner \mathrm{B} A, \neg \mathrm{~B} B \in \Gamma, \neg \mathrm{~B}(A \& B) \in \Gamma$, and $\mathfrak{v}(A \& B)=0$.

REFERENCES

[1] Herzberger, H. G., 'Dimensions of truth,' Journal of Philosophical Logic, vol. 2 (1973), pp. 535-556.
[2] Herzberger, H. G., "Truth and modality in semantically closed languages,' in Paradox of the Liar, R. L. Martin, ed., Yale University Press, New Haven (1970), pp. 25-46.
[3] Kleene, S. C., "On a notation for ordinal numbers," The Journal of Symbolic Logic, vol. 3 (1938), pp. 150-155.
[4] Kleene, S. C., Introduction to Metamathematics, North Holland Co., Amsterdam (1959).
[5] Martin, J. N., "A syntactic characterization of Kleene's strong connectives with two designated values," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 181-184.

Cincinnati, Ohio

[^0]: *I would like to thank Leo Simons for his helpful comments on a draft of this paper.

