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THE CONTINUUM HYPOTHESIS IS INDEPENDENT
OF SECOND-ORDER ZF

THOMAS S. WESTON

0 In the last few years, several authors have discussed formulations of set
theory with underlying logic of order greater than one ([4], [5], [β], [8],
[9]). Some of these writers have also considered the question of the utility
of higher logic in deciding the continuum hypothesis ([4], [8], [9]). Kreisel,
for example, has claimed that the CH is "decided" in second-order set
theory ([8]). (Elsewhere, I have critically discussed the model-theoretic
result to which Kreisel refers. See [12].)

This note presents a proof that in the usual (proof-theoretic) sense of
"decided", second-order Zermelo-Frankel set theory (ZF2) does not decide
CH. The proof is a straight-forward adaptation of L. Tharp's unpublished
proof ([10]) that the CH is undecided in the set theory variously called VBI
(for von Neuman-Bernays-Impredicative), Kelley-Morse, ([3], [7]) or NQ
([11]). A proof of independence of CH from VBI using an inaccessible
cardinal has also been published by R. Chuaqui ([l]). The result presented
in section 3 is that the first-order theory VBI is "almost the same theory"
as ZF2, so that Tharp's results for VBI show the independence of CH from
ZF2.

1 VBI is an impredicative extension of the more familiar von Neuman-
Bernays set theory, VB. Recall that VB has axioms of Nullset, Pairing,
Sumset, Infinity, and Power set which concern only sets, as well as Founda-
tion, Replacement, and Extensionality which quantify over classes (upper
case variables) as well. The difference between VB and VBI is in the
Comprehension Schema:

(1) (Xi) . . . (Xn)(3Y)(xe Y = φ(x, Xl9..., Xn)) where φ(x, . . .) does not con-

tain Yfree.

If we impose the additional limitation that φ(x, . . .) contain no bound class
variables, we have VB.

2 ZF2 is a second-order theory with one-place predicate variables (upper
case letters). Like VBI, its only non-logical constant is *e\ Equality for
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individual variables is taken as a logical notion. In addition to the usual
first-order logical axioms, ZF2 has two schemata for second-order quanti-
fication:

(2) (P)(φ ̂  ψ) ̂  (φ ^ (P) ψ), where the predicate variable P is not free
in φ,

and

(3) (P)φ(P) 3 Sψ(χ) ψ(P), where the S means the result of substituting the
formula ψ(x) with individual free variable x {and perhaps others) for the
predicate variable P. It is understood that if ψ(x) is substituted for P(a),
then free occurrences of x in ψ(x) within φ are replaced by a. Substitution
ofψ(x) takes place subject to the folloimng restrictions (a) no well-formed
part of φ of the form {a)θ, where a is a free individual variable ofψ(x)
other than x, contains a free occurrence of P, and (b) for no free occur-
rence of P in φ of the form P(a) is it the case that x occurs free in a
well-formed subformula of ψ of the form (a)θ (see [2], p. 192).

Ordinarily, we write S</»(*) ΦW a s ψ(Ψ(χ))- As will be shown below, the
logical axiom schema (3) of ZF2 has essentially the same effect as the
non-logical schema (1) of VBI.

For the remaining axioms of ZF2, we have Nullset, Pairing, Sumset,
Infinity, and Powerset exactly as in VBI, while Extensionality is stated only
for sets. Replacement and Foundation involve predicate quantification, and
are the translations into primitive notation of the following:

(4) (P) [(x)(y)(z)((P((x, y)) & P((y, z))) D y = z) D
(x)(3y)(z)(z e y = (3u){uex& P((u, *»))]

and

(5) ( P ) [ ( 3 x ) P ( x ) D (3x)(P(x) & (y)(y e x ^ ~ P(y)))]

We want to establish a close relation between class quantification in
VBI and predicate quantification in ZF2, but as it stands, ZF2 has nothing
which corresponds to the Extensionality axiom of VBI:

(6) (X)(Y)[(x)(xeX^xeY)^X=Y)]

Indeed, equality of predicates is not even expressible in ZF2. This leads us
to the following definition of equality for predicates of ZF2:

(7) X= Y for (α)(X(α) = Y(a)), where a is chosen so as to avoid clash of
variables.

With the aid of (7), it is very straightforward to prove not only Exten-
sionality for predicates of ZF2, but the usual logical axioms of a theory
with equality for predicates.

3 We define the following transformation: φ —> φ* from well-formed
formulas of VBI to (abbreviated) formulas of ZF2: φ* results from φ by
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replacing every atom of φ of the form xe Xby the predicate variable X(x).
We can now state the main

Theorem VBI \-φ if and only if ZF2 \-φ*.

Proof: All axioms of VBI except Comprehension and Extensionality are
converted into axioms of ZF2 by the *-transformation. Conversely, all the
non-logical axioms of ZF2 are converted into axioms of VBI by the inverse
of the ^transformation. Extensionality is (an abbreviation of) a theorem
of ZF2. Hence we need only prove the following two lemmas relating VBI's
Comprehension to the Substitution schema (3) of ZF2:

Lemma 1 If θ(x, xl9 . . ., ΛΓW, Pλ9 . . ., P&) is a formula of ZF2 whose free
set and predicate variables are among those shown then ZF2 \-(xι) . . .
(xn)(Pi) . (Pύ(3P)(y)[P(y) = θ(y, xl9 . . ., xn, Pl9 . . ., Pk)] where y is
alphabetically the first variable not occurring in θ.

Lemma 2 If φ(X) is a formula of VBI with X free, and the restrictions in
(3) on 5 a r e satisfied for the substitution of the VBI formula ψ(x) for X in
φ(X), then VBI h [(X) φ(X) => φ(ψ(x))].

4 Proof of Lemma 1: We abbreviate θ{x, xl9 . . ., xn, Pϊ9 . . ., P&) as θ(x),
and we write 0(3;) for the result of substituting y for free x's in θ{x). Let
ψ(x) be θ(x) and φ(P) be ~(y){θ{y) = P(y)). Then:

(8) (P)~(y)(θ(y) = P(y)) 3 ~{y)(P(y) = P(y))

is an instance of the substitution schema (3). φ(P) satisfies restrictions (a)
and (b) of (3), and easy quantifier logic shows that (8) is equivalent to

(9) (BP)(y)(P(y) = θ(y)).

Hence by closure, we have:

(10) Z F V W . . . (xn)(Pj . . . (Pk)(3P)(y)(P(y) s θ(y, . . .)).

5 Proof of Lemma 2: Let φ(X) and ψ(x) satisfy the hypothesis of the
lemma, and let us temporarily suppose that X is not free in ψ(x). By the
Comprehension Schema (1), we have

(11) (3X)(x)(xeX^ψ(x)).

We want to show that (11) implies the desired conclusion

(12)[(X)φ(X)^φ(ψ(x))l

for which we need the following

Sublemma: Under the hypotheses of Lemma 2:

(13) VBI ̂ (X)[(x)(xeX = ψ(x)) => (φ(X) = φ(ψ(x)))].

Proof of Sublemma: By routine induction on the number of connectives and
quantifiers in φ. The quantifier clause: φ(X) = (a) Θ(X)9 where a is either
a set or class variable. By the induction hypothesis,

(14) VBI h[(x)(xeX 5 ψ(x)) 3 (Θ(X) s θ(ψ(x)))].
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If a is not free in (x)(xe X = ψ(x)), then (14) implies

(15) VBI h(x)(xeX = ψ(x)) D ((a) Θ(X) ^ (a) θ(ψ(x))).

Since by hypothesis φ(ψ(x)) satisfies (3)(a), a cannot be free in ψ(x). a can-
not be X because otherwise the substitution would not take place. So the
sublemma follows.

From (11) and (13), the usual rules for distributing quantifiers over o»
yield

(16) [(X)φ(X)^ φ(ψ(x))].

Thus (16) is obtained on the assumption that X is not free in ψ(x). In
case X is free in ψ(x)9 we first substitute for it some variable not used in
any formula of the proof of (16), and then substitute X for that variable in
(16). X does not thereby become bound in the consequent of (16) since the
quantifier (X) binds only the antecedent. The lemma and theorem follow.

6 Corrollary If ZF2 is consistent, then neither ZF2 i-CH nor ZF2 h~CH.

Proof of Corrollary: If ZF2 is consistent, then by the Theorem, VBI is
consistent. If VBI is consistent, then by Tharp's results, neither VBI hCH
nor VBIh~CH. Since CH contains no uppercase (class or predicate
variables), we have CH = CH*,'so by the Theorem, neither Z F 2 H C H nor
ZF 2h~CH.
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