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MODAL ELABORATIONS OF PROPOSITIONAL LOGICS

NICHOLAS RESCHER and RUTH MANOR

1. Modally Augmented Systems One interesting perspective upon modal
logic is obtained by beginning with a nonmodal system, and then developing
a modal system "around" it, so to speak, by construing necessity in the
"surrounding" modal system as provability within the initial system.1

Modality, so conceived, is obtained in the broader system by bridging rules
linking the necessity operator in this system to thesishood at the nonmodal
starting point. The aim of the present paper is to trace out one line of
thought along which this idea can be implemented.

Let L be an arbitrary system of (nonmodal) propositional logic based
upon negation (-), conjunction (&), and implication (—») as propositional
operators. The theses of L are to be derived from certain (at this point
unspecified) axioms by the rules of substitution and modus ponens. (We
shall write h^A to indicate that A is a thesis of the system X.)

To obtain the modal system ML, the modal augmentation of the initial
system L, we introduce the modal operator of necessity (D) subject to the
rules and axioms of the following sort:

I. Modal Axioms Internal to ML

(Al) hMLD/> - p

(A2) )jSLu{p-+q)-+ (Πp-^Πq)

II. ML-Internal Rules

(Rl) Substitution

(R2) Modus Ponens

(R3) Qualified Nee essitation: If ^ L A , then hMLDA, provided A is not

modal-free,

ΠI. L/ML Bridging Rule
(B) If ^A, then ^ L D A

1. The origins of this line of thought may be sought in [1]. Here necessity is
identified with provability in a certain system. See also [2] and [3].
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IV. Metarule of Closure
(C) ^ L ^ on^y tfA's being a thesis of ML follows from the preceding

rules and axioms.

It is readily shown that:

If A is a thesis of L, then A is a thesis of ML.

For if A is a thesis of L, then by (B),HDA in ML, which by (Al) and (R2)
yields A. Moreover:

If A is a thesis of ML and A is modal-free, then A is a thesis ofL.

For suppose A is a thesis of ML and A is modal-free. Then by (C) it
follows, in view of the nature of the rules and axioms, that A could be the
result only of (Al) and (R2). Hence we must have DA as a thesis of ML.
But this in turn could only be the result of rule (B). Hence A is a thesis of
L. It follows from these findings that ML must be a conservative extension
of L (whenever ML is consistent2).3

One obvious consequence of this approach is represented by the
theorem:

Ifh = PC, the classical propositional calculus, then ML = T, the well-known
system of Feys- von Wright.

In one well-known axiomatization, T is based on D as primitive,
subject to the following rules and axioms:

Rules
(TI) // HpCA, then h^A
(Til) // \-ΊA, then hτDA

Axioms:
(Ti) h^Πp^ p
(Tii) h^Df/O q) D (Up ^ Ώq)

Throughout, when L = PC, we shall write z> for -». Now given (R2), (TI)
follows from (Al) and (B). Moreover: (Ti) = (Al), and (Tii) = (A2). Thus
ML is at least as strong as T when L = PC. It can also be shown (though we
shall not do so here), that it is no stronger, so that ML = T in this case.
Finally, (TII) is proved as follows: If A is not modal-free and a thesis of
ML, then DA follows by (R3). If A is modal-free and a thesis of ML then,

2. The proof that ML is a conservative extension of L depends critically on the use
of the rule of closure (C), and such a use is possible only on the assumption that
ML is consistent.

3. The system 1/ is an extension of L if the vocabulary of L' contains that of L as
a subset and every L-thesis is an L' -thesis. L' is a conservative extension
of L if it is an extension such that all L' theses formulated in the L vocabulary
will also be theses of L'.
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using (C), we note that A could come only from (Al) and (R2), and so again
we must have DA as a thesis of ML.

Correspondingly, it is also readily seen that if we make a sufficient
addition to category I of ML-internal rules (by adding \-MLΠAly ^ L ΠA 2 ,
. . . , h^LΠAn, where Aι, A2, . . . , An are any syntactically suitable set of
PC-axioms) then the modally augmented system ML will have to contain T
(no assumptions whatsoever being made about the initial system L).

Suppose now that (R3) were dropped from the construction procedure
for ML and that (A2) strengthened to:

(A3) \-MLΠ(p-3 q)^Π(Πp^ Πq)

we now have the result:4

If h = PC, then ML = S3.

In the face of this finding, it is at once clear from [4] that S4 can also
be developed as a modally augmented system by the reinstatement of (R3),
and that S5 will then be obtained by further addition of the axiom:

(A4) *ML0/> 3 ΠOp where Oq = -Ώ-q

These observations indicate how systems of modal logic can be
developed via bridging rules from arbitrary systems of nonmodal proposi-
tional logic in such a way that in the case of classical propositional
calculus (PC) as the starting-system we obtain the spectrum of the most
familiar modal systems. This suggests the potentially interesting question,
or question family, of the modally augmented systems resulting from initial
propositional logics weaker than PC such as intuitionistic propositional
logic. On the other hand if the initial system is very strong—and
specifically is a system of arithmetic rather than propositional logic—then
a consistent modal augmentation becomes impossible when the modal
system is strong enough to contain the thesis: D(D/> -» p).5 Since ML has
(Al) as one of its axioms, and also the necessitation rule, clearly the
system will have Π(Πp —»/>); hence modal augmentation along the lines
indicated above is impossible when L is so strong a system. But note that
the proof that the general necessitation rule is derived in ML depends on
(R3). In the following we shall construct a sequence of modally augmented
systems which lack (R3), and do not have the necessitation rule, but only
some highly restricted form thereof.

2. Minimality In considering modal systems as modal augmentations of
nonmodal systems we can thus regard the derived modal systems as
developed (by a suitable procedure) from the underlying logical system L.
This leads to the problem of what modal systems are associated with a

4. This is obvious by inspection of the development of S3 given in [4],

5. See footnote 6 below, as well as its context in the text.
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logical system, and to the question of when a modal system of the type of
ML, satisfying the bridging-rule (B), could be properly called (in any
sense) a modal system for L. The following two conditions seem minimally
necessary:

(i) ML is consistent if L is so
(ii) ML is a conservative extension of L, so that if A is a thesis of ML and

A is modal free (m.f.) then A is a thesis of L.

This is a very weak sort of minimality; thus when L = PC, then all of the
Lewis systems will satisfy these conditions. However, for the present, we
shall characterize any system satisfying these conditions as a minimally
adequate modal augmentation of L.

If the initial system L is complete (in the strong sense that for every A
in its vocabulary either A or -A is a thesis of L), and ML (constructed by
the use of the bridging rule (B)) is consistent, then ML must satisfy the
remaining minimality condition if it has (Al) and (R2). For let A be (m.f.)
and suppose A is a thesis of ML but not of L. Then, since L is complete
-A in L and by (B) D-A in ML. This by (Al) and (R2) yields -A in ML,
contradicting the consistency of ML.

However, (Al) and (R2) are not sufficient to assure that ML satisfies
the minimality property in the more general case when L is incomplete.
But in this general case we have the theorem:

The modally augmented system ML, satisfying (B), (Al), and (R2), is a
^conservative extension of L if and only if it also satisfies the two following
rules,

(R3f) If Ĥ LA then ^LDA, where A is m.f.
(Bf) // Ϊ M I P ^ ^en ^ A , where A is m.f.

Proof: If ML is a conservative extension of L, suppose A is m.f. and a
thesis of ML. Then A in L, and hence by (B) DA in ML, so that (R3f)
obtains. And if DA in ML where A is m.f., then by (Al) and (R2) A in ML,
which by assumption yields A in L. Hence (B') also holds. To prove the
converse, suppose that ML satisfies both (R3f) and (Bf). If A is m.f. and a
thesis of ML then by (R3f) DA in ML, which by (Bf) yields A in L.

Note that in the previous section we took ML as satisfying (Al), (A2),
(Rl), (R2), (B) and the metarule (C). We now realize that all that was
needed in order to show that ML is a conservative extension of L apart
from (B), (Al), and (R2) was the metarule (C). Hence (C) entails (R3f) and
(Bf) under these conditions.

3. A Modal Hierarchy As a result of the foregoing, in order to satisfy the
minimality requirement, a system ML has to have a restricted form of the
necessitation rule (R3f), but need not have the general unrestricted rule,
(R3). For if ML is minimal, and has DA as a thesis then it does not follow
that DDA is a thesis in ML. This suggests that we can construct yet
another modal system "around" the minimal modal system ML, by
construing necessity in it as provability in ML. As we shall see, this
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yields a hierarchy of modal systems each a conservative extension of the
previous one. The system which is the "least upper bound" of the
hierarchy has the rule of necessitation in it, and hence if we add to it (A2)
and (Rl), it becomes T-like in the sense that when L = PC the system is T.

In order to show all this, we shall prove it for systems assumed to
have (A2) and (R2), but since the proof does not make use of these, the
corresponding general assertion about minimal systems follows. More-
over, the consistency (supposing that L is a consistent system of proposi-
tional logic) of each of the modal systems of the hierarchy follows
immediately from the consistency of T, since they must all be fragments
of T.

To facilitate the discussion, we shall introduce the notion of the degree
of a formula.

1. A formula A (of ML) is of degree 0, if it is modal free. We shall write
this as deg(A) = 0.

2. If A has the form ΠB, and άeg(B) = n then deg(A) = n + 1.
3. deg(-A) =deg(A).
4. deg(A & B) = Max(deg( A), deg(B)).
5. deg(A - B) = Max(deg(A), deg(£)).

The modal system ML is said to be of degree n, (in this case we shall
say ML = MWL) if it has theses of degree n but none of greater degree, so
that hĵ  LA implies that deg(A) — n. We allow n to be any non-negative
integer, understanding M0L to be the nonmodal system L.

Given the nonmodal system L = M0L, we can construct simultaneously
by induction on n(n = 1, 2, . . .) a hierarchy of systems where each is the
modal augmentation of the preceding one; thus:

I. Modal Axioms Internal to MnL

(A,l) \y^Πp-+P
(AW2) ^Πip-q) - (Up - Πq)

II. MnL Internal Rules
(Rwl) Substitution
(RW2) Modus Ponens

IΠ. Bridging Rules

<B«> V WxL A thβn V D A

A system MWL satisfying these rules and axioms is not in general a
conservative extension of Mw_iL. However, by a similar proof to that given
for the basic case, one can prove (by induction on n) that MnL is a
conservative extension of MW-XL if and only if it satisfies the following:

(RM3) // *MJ/L then ^ LGA, where deg(A) ^ n- 1

(Bή) // M * L D A t h e n % ~iLA' wh^re deg(A) < n - 1

Still, there is nothing to assure us that M«L is a system of degree n, i.e.,
all its theses have degree — n. This effect may be introduced by a



328 NICHOLAS RESCHER and RUTH MANOR

restriction on the language of M«L, allowing it to have as well-formed
formulas (wffs) only those whose degree is not greater than n.

A possible motivation for such an approach is the following. Just as in
the basic case, we consider a formula with modalities as foreign to the
non-modal system L, because the language of L does not have the degree
one necessity operator, so in the general case: if A is a formula itself of
degree n, then DA is not a meaningful formula of MWL because (although we
here use the same necessity symbol) this additional modality represents a
new, deeper modal operator foreign to the language of M»L. For example,
one might want to claim that if A is a thesis of a logical system L then it is
logically necessary, so that DA is a thesis of a modal system, but that
DDA is meaningless (in the sense of undefined).6 Alternatively, one might
consider this iteratedly modal formula as meaningful, but hold that the first
occurrence of the necessity operator has a meaning different from that of
the second one, so that one should properly write it as D2DXA rather than
simply DDA.

Thus if the initial system L were of a very strong sort (specifically, a
system of arithmetic), then the augmented modal systems (if they are to be
plausible as modal systems) should be cut off at some finite level, see [5].
Alternatively this result could be evaded by construing iterated modalities
as equivocal, along the lines of the present proposal. This suggests also
that we can consider modal augmentation of modal systems, i.e., where L
is itself a modal system. Consider for example the case where L = PC.
From it we construct MXL as before, only instead of using the symbol 'D*
we write 'DΛ Thus DXA in MXL if and only if A in PC. Now we add to MXL
the symbols and axioms of arithmetic and considering this system as our
base we construct its modal augmentation, using this time the symbol Ό%'.
Now in this system, call it M2L, DXA means A is a PC-thesis, D2A means A
is either a thesis of PC or a thesis of MXL or a thesis of MXL + arithmetic.
In short, since the latter is an extension of the first two systems, it is a
thesis of MiL + arithmetic. Clearly in M2L no formula of the form DiO jA
is a thesis, since no rule allows construction of it. Moreover, for the same
reason, M2L does not have D2D2A, which yields the inconsistency indicated
by Montague [5].

Yet another way of assuring ourselves that the system MWL will be of
degree n is by introducing the following:

Metarule of Closure
(Cj hjjj LA only if Affs being a thesis of MWL follows from the preceding

rules and axioms {of groups (I), (II), and (ΠI))

6. On this approach, modalities are to be viewed as classifiers of sentences (or as
predicates thereof) rather than as sentential operators like negation. Corres-
pondingly, modal iteration makes no sense. Thus if necessity is construed as
provability "is provably provable" could—from a suitable perspective—be
viewed as a nonsense.
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It can be easily shown that by adding this rule to the system, MWL is a
conservative extension of Mw_iL. (The proof is similar to the one given in
the first section.) Thus in order that our system will satisfy the minimality
condition it suffices that we introduce (Cw), and then (RW3) and (B )̂ will be
derived rules of the system.

By the construction of the hierarchy, each system is an extension of
the preceding one. Since each system allows as theses formulas of degree
n or less, an "upper bound'9 of this set will have the same rules and
axioms as MWL, except for the bridging-rule and the metarule of closure.
If we call this system M*L, it transpires that this system may be defined
by the stipulation that

l^*LA is to obtain just in case there exists an n such that v~M L A.

Now clearly, M*L will have the rule of necessitation. For if A is a thesis
of M*L, then there will be an n such that A is a thesis in MWL, and hence
DA in MW+1L, so that DA in M*L. Moreover, M*L will clearly have (Al),
(A2), (Rl), (R2), and hence M*L, thus defined, will be an extension of ML,
the modal augmentation of L introduced in the previous section. But ML is
an extension of each of the MML, and therefore M*L = ML. From this it
follows immediately that when L = PC, then M*L = T.7
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